/* * linux/drivers/video/omap2/dss/dss.c * * Copyright (C) 2009 Nokia Corporation * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com> * * Some code and ideas taken from drivers/video/omap/ driver * by Imre Deak. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see <http://www.gnu.org/licenses/>. */ #define DSS_SUBSYS_NAME "DSS" #include <linux/kernel.h> #include <linux/io.h> #include <linux/export.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/seq_file.h> #include <linux/clk.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/gfp.h> #include <linux/sizes.h> #include <video/omapdss.h> #include "dss.h" #include "dss_features.h" #define DSS_SZ_REGS SZ_512 struct dss_reg { u16 idx; }; #define DSS_REG(idx) ((const struct dss_reg) { idx }) #define DSS_REVISION DSS_REG(0x0000) #define DSS_SYSCONFIG DSS_REG(0x0010) #define DSS_SYSSTATUS DSS_REG(0x0014) #define DSS_CONTROL DSS_REG(0x0040) #define DSS_SDI_CONTROL DSS_REG(0x0044) #define DSS_PLL_CONTROL DSS_REG(0x0048) #define DSS_SDI_STATUS DSS_REG(0x005C) #define REG_GET(idx, start, end) \ FLD_GET(dss_read_reg(idx), start, end) #define REG_FLD_MOD(idx, val, start, end) \ dss_write_reg(idx, FLD_MOD(dss_read_reg(idx), val, start, end)) static int dss_runtime_get(void); static void dss_runtime_put(void); struct dss_features { u8 fck_div_max; u8 dss_fck_multiplier; const char *clk_name; int (*dpi_select_source)(enum omap_channel channel); }; static struct { struct platform_device *pdev; void __iomem *base; struct clk *dpll4_m4_ck; struct clk *dss_clk; unsigned long dss_clk_rate; unsigned long cache_req_pck; unsigned long cache_prate; struct dss_clock_info cache_dss_cinfo; struct dispc_clock_info cache_dispc_cinfo; enum omap_dss_clk_source dsi_clk_source[MAX_NUM_DSI]; enum omap_dss_clk_source dispc_clk_source; enum omap_dss_clk_source lcd_clk_source[MAX_DSS_LCD_MANAGERS]; bool ctx_valid; u32 ctx[DSS_SZ_REGS / sizeof(u32)]; const struct dss_features *feat; } dss; static const char * const dss_generic_clk_source_names[] = { [OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC] = "DSI_PLL_HSDIV_DISPC", [OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DSI] = "DSI_PLL_HSDIV_DSI", [OMAP_DSS_CLK_SRC_FCK] = "DSS_FCK", [OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC] = "DSI_PLL2_HSDIV_DISPC", [OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DSI] = "DSI_PLL2_HSDIV_DSI", }; static inline void dss_write_reg(const struct dss_reg idx, u32 val) { __raw_writel(val, dss.base + idx.idx); } static inline u32 dss_read_reg(const struct dss_reg idx) { return __raw_readl(dss.base + idx.idx); } #define SR(reg) \ dss.ctx[(DSS_##reg).idx / sizeof(u32)] = dss_read_reg(DSS_##reg) #define RR(reg) \ dss_write_reg(DSS_##reg, dss.ctx[(DSS_##reg).idx / sizeof(u32)]) static void dss_save_context(void) { DSSDBG("dss_save_context\n"); SR(CONTROL); if (dss_feat_get_supported_displays(OMAP_DSS_CHANNEL_LCD) & OMAP_DISPLAY_TYPE_SDI) { SR(SDI_CONTROL); SR(PLL_CONTROL); } dss.ctx_valid = true; DSSDBG("context saved\n"); } static void dss_restore_context(void) { DSSDBG("dss_restore_context\n"); if (!dss.ctx_valid) return; RR(CONTROL); if (dss_feat_get_supported_displays(OMAP_DSS_CHANNEL_LCD) & OMAP_DISPLAY_TYPE_SDI) { RR(SDI_CONTROL); RR(PLL_CONTROL); } DSSDBG("context restored\n"); } #undef SR #undef RR int dss_get_ctx_loss_count(void) { struct omap_dss_board_info *board_data = dss.pdev->dev.platform_data; int cnt; if (!board_data->get_context_loss_count) return -ENOENT; cnt = board_data->get_context_loss_count(&dss.pdev->dev); WARN_ONCE(cnt < 0, "get_context_loss_count failed: %d\n", cnt); return cnt; } void dss_sdi_init(int datapairs) { u32 l; BUG_ON(datapairs > 3 || datapairs < 1); l = dss_read_reg(DSS_SDI_CONTROL); l = FLD_MOD(l, 0xf, 19, 15); /* SDI_PDIV */ l = FLD_MOD(l, datapairs-1, 3, 2); /* SDI_PRSEL */ l = FLD_MOD(l, 2, 1, 0); /* SDI_BWSEL */ dss_write_reg(DSS_SDI_CONTROL, l); l = dss_read_reg(DSS_PLL_CONTROL); l = FLD_MOD(l, 0x7, 25, 22); /* SDI_PLL_FREQSEL */ l = FLD_MOD(l, 0xb, 16, 11); /* SDI_PLL_REGN */ l = FLD_MOD(l, 0xb4, 10, 1); /* SDI_PLL_REGM */ dss_write_reg(DSS_PLL_CONTROL, l); } int dss_sdi_enable(void) { unsigned long timeout; dispc_pck_free_enable(1); /* Reset SDI PLL */ REG_FLD_MOD(DSS_PLL_CONTROL, 1, 18, 18); /* SDI_PLL_SYSRESET */ udelay(1); /* wait 2x PCLK */ /* Lock SDI PLL */ REG_FLD_MOD(DSS_PLL_CONTROL, 1, 28, 28); /* SDI_PLL_GOBIT */ /* Waiting for PLL lock request to complete */ timeout = jiffies + msecs_to_jiffies(500); while (dss_read_reg(DSS_SDI_STATUS) & (1 << 6)) { if (time_after_eq(jiffies, timeout)) { DSSERR("PLL lock request timed out\n"); goto err1; } } /* Clearing PLL_GO bit */ REG_FLD_MOD(DSS_PLL_CONTROL, 0, 28, 28); /* Waiting for PLL to lock */ timeout = jiffies + msecs_to_jiffies(500); while (!(dss_read_reg(DSS_SDI_STATUS) & (1 << 5))) { if (time_after_eq(jiffies, timeout)) { DSSERR("PLL lock timed out\n"); goto err1; } } dispc_lcd_enable_signal(1); /* Waiting for SDI reset to complete */ timeout = jiffies + msecs_to_jiffies(500); while (!(dss_read_reg(DSS_SDI_STATUS) & (1 << 2))) { if (time_after_eq(jiffies, timeout)) { DSSERR("SDI reset timed out\n"); goto err2; } } return 0; err2: dispc_lcd_enable_signal(0); err1: /* Reset SDI PLL */ REG_FLD_MOD(DSS_PLL_CONTROL, 0, 18, 18); /* SDI_PLL_SYSRESET */ dispc_pck_free_enable(0); return -ETIMEDOUT; } void dss_sdi_disable(void) { dispc_lcd_enable_signal(0); dispc_pck_free_enable(0); /* Reset SDI PLL */ REG_FLD_MOD(DSS_PLL_CONTROL, 0, 18, 18); /* SDI_PLL_SYSRESET */ } const char *dss_get_generic_clk_source_name(enum omap_dss_clk_source clk_src) { return dss_generic_clk_source_names[clk_src]; } void dss_dump_clocks(struct seq_file *s) { unsigned long dpll4_ck_rate; unsigned long dpll4_m4_ck_rate; const char *fclk_name, *fclk_real_name; unsigned long fclk_rate; if (dss_runtime_get()) return; seq_printf(s, "- DSS -\n"); fclk_name = dss_get_generic_clk_source_name(OMAP_DSS_CLK_SRC_FCK); fclk_real_name = dss_feat_get_clk_source_name(OMAP_DSS_CLK_SRC_FCK); fclk_rate = clk_get_rate(dss.dss_clk); if (dss.dpll4_m4_ck) { dpll4_ck_rate = clk_get_rate(clk_get_parent(dss.dpll4_m4_ck)); dpll4_m4_ck_rate = clk_get_rate(dss.dpll4_m4_ck); seq_printf(s, "dpll4_ck %lu\n", dpll4_ck_rate); seq_printf(s, "%s (%s) = %lu / %lu * %d = %lu\n", fclk_name, fclk_real_name, dpll4_ck_rate, dpll4_ck_rate / dpll4_m4_ck_rate, dss.feat->dss_fck_multiplier, fclk_rate); } else { seq_printf(s, "%s (%s) = %lu\n", fclk_name, fclk_real_name, fclk_rate); } dss_runtime_put(); } static void dss_dump_regs(struct seq_file *s) { #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dss_read_reg(r)) if (dss_runtime_get()) return; DUMPREG(DSS_REVISION); DUMPREG(DSS_SYSCONFIG); DUMPREG(DSS_SYSSTATUS); DUMPREG(DSS_CONTROL); if (dss_feat_get_supported_displays(OMAP_DSS_CHANNEL_LCD) & OMAP_DISPLAY_TYPE_SDI) { DUMPREG(DSS_SDI_CONTROL); DUMPREG(DSS_PLL_CONTROL); DUMPREG(DSS_SDI_STATUS); } dss_runtime_put(); #undef DUMPREG } static void dss_select_dispc_clk_source(enum omap_dss_clk_source clk_src) { struct platform_device *dsidev; int b; u8 start, end; switch (clk_src) { case OMAP_DSS_CLK_SRC_FCK: b = 0; break; case OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC: b = 1; dsidev = dsi_get_dsidev_from_id(0); dsi_wait_pll_hsdiv_dispc_active(dsidev); break; case OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC: b = 2; dsidev = dsi_get_dsidev_from_id(1); dsi_wait_pll_hsdiv_dispc_active(dsidev); break; default: BUG(); return; } dss_feat_get_reg_field(FEAT_REG_DISPC_CLK_SWITCH, &start, &end); REG_FLD_MOD(DSS_CONTROL, b, start, end); /* DISPC_CLK_SWITCH */ dss.dispc_clk_source = clk_src; } void dss_select_dsi_clk_source(int dsi_module, enum omap_dss_clk_source clk_src) { struct platform_device *dsidev; int b, pos; switch (clk_src) { case OMAP_DSS_CLK_SRC_FCK: b = 0; break; case OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DSI: BUG_ON(dsi_module != 0); b = 1; dsidev = dsi_get_dsidev_from_id(0); dsi_wait_pll_hsdiv_dsi_active(dsidev); break; case OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DSI: BUG_ON(dsi_module != 1); b = 1; dsidev = dsi_get_dsidev_from_id(1); dsi_wait_pll_hsdiv_dsi_active(dsidev); break; default: BUG(); return; } pos = dsi_module == 0 ? 1 : 10; REG_FLD_MOD(DSS_CONTROL, b, pos, pos); /* DSIx_CLK_SWITCH */ dss.dsi_clk_source[dsi_module] = clk_src; } void dss_select_lcd_clk_source(enum omap_channel channel, enum omap_dss_clk_source clk_src) { struct platform_device *dsidev; int b, ix, pos; if (!dss_has_feature(FEAT_LCD_CLK_SRC)) { dss_select_dispc_clk_source(clk_src); return; } switch (clk_src) { case OMAP_DSS_CLK_SRC_FCK: b = 0; break; case OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC: BUG_ON(channel != OMAP_DSS_CHANNEL_LCD); b = 1; dsidev = dsi_get_dsidev_from_id(0); dsi_wait_pll_hsdiv_dispc_active(dsidev); break; case OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC: BUG_ON(channel != OMAP_DSS_CHANNEL_LCD2 && channel != OMAP_DSS_CHANNEL_LCD3); b = 1; dsidev = dsi_get_dsidev_from_id(1); dsi_wait_pll_hsdiv_dispc_active(dsidev); break; default: BUG(); return; } pos = channel == OMAP_DSS_CHANNEL_LCD ? 0 : (channel == OMAP_DSS_CHANNEL_LCD2 ? 12 : 19); REG_FLD_MOD(DSS_CONTROL, b, pos, pos); /* LCDx_CLK_SWITCH */ ix = channel == OMAP_DSS_CHANNEL_LCD ? 0 : (channel == OMAP_DSS_CHANNEL_LCD2 ? 1 : 2); dss.lcd_clk_source[ix] = clk_src; } enum omap_dss_clk_source dss_get_dispc_clk_source(void) { return dss.dispc_clk_source; } enum omap_dss_clk_source dss_get_dsi_clk_source(int dsi_module) { return dss.dsi_clk_source[dsi_module]; } enum omap_dss_clk_source dss_get_lcd_clk_source(enum omap_channel channel) { if (dss_has_feature(FEAT_LCD_CLK_SRC)) { int ix = channel == OMAP_DSS_CHANNEL_LCD ? 0 : (channel == OMAP_DSS_CHANNEL_LCD2 ? 1 : 2); return dss.lcd_clk_source[ix]; } else { /* LCD_CLK source is the same as DISPC_FCLK source for * OMAP2 and OMAP3 */ return dss.dispc_clk_source; } } /* calculate clock rates using dividers in cinfo */ int dss_calc_clock_rates(struct dss_clock_info *cinfo) { if (dss.dpll4_m4_ck) { unsigned long prate; if (cinfo->fck_div > dss.feat->fck_div_max || cinfo->fck_div == 0) return -EINVAL; prate = clk_get_rate(clk_get_parent(dss.dpll4_m4_ck)); cinfo->fck = prate / cinfo->fck_div * dss.feat->dss_fck_multiplier; } else { if (cinfo->fck_div != 0) return -EINVAL; cinfo->fck = clk_get_rate(dss.dss_clk); } return 0; } bool dss_div_calc(unsigned long fck_min, dss_div_calc_func func, void *data) { int fckd, fckd_start, fckd_stop; unsigned long fck; unsigned long fck_hw_max; unsigned long fckd_hw_max; unsigned long prate; unsigned m; if (dss.dpll4_m4_ck == NULL) { /* * TODO: dss1_fclk can be changed on OMAP2, but the available * dividers are not continuous. We just use the pre-set rate for * now. */ fck = clk_get_rate(dss.dss_clk); fckd = 1; return func(fckd, fck, data); } fck_hw_max = dss_feat_get_param_max(FEAT_PARAM_DSS_FCK); fckd_hw_max = dss.feat->fck_div_max; m = dss.feat->dss_fck_multiplier; prate = dss_get_dpll4_rate(); fck_min = fck_min ? fck_min : 1; fckd_start = min(prate * m / fck_min, fckd_hw_max); fckd_stop = max(DIV_ROUND_UP(prate * m, fck_hw_max), 1ul); for (fckd = fckd_start; fckd >= fckd_stop; --fckd) { fck = prate / fckd * m; if (func(fckd, fck, data)) return true; } return false; } int dss_set_clock_div(struct dss_clock_info *cinfo) { if (dss.dpll4_m4_ck) { unsigned long prate; int r; prate = clk_get_rate(clk_get_parent(dss.dpll4_m4_ck)); DSSDBG("dpll4_m4 = %ld\n", prate); r = clk_set_rate(dss.dpll4_m4_ck, DIV_ROUND_UP(prate, cinfo->fck_div)); if (r) return r; } else { if (cinfo->fck_div != 0) return -EINVAL; } dss.dss_clk_rate = clk_get_rate(dss.dss_clk); WARN_ONCE(dss.dss_clk_rate != cinfo->fck, "clk rate mismatch: %lu != %lu", dss.dss_clk_rate, cinfo->fck); DSSDBG("fck = %ld (%d)\n", cinfo->fck, cinfo->fck_div); return 0; } unsigned long dss_get_dpll4_rate(void) { if (dss.dpll4_m4_ck) return clk_get_rate(clk_get_parent(dss.dpll4_m4_ck)); else return 0; } unsigned long dss_get_dispc_clk_rate(void) { return dss.dss_clk_rate; } static int dss_setup_default_clock(void) { unsigned long max_dss_fck, prate; unsigned fck_div; struct dss_clock_info dss_cinfo = { 0 }; int r; if (dss.dpll4_m4_ck == NULL) return 0; max_dss_fck = dss_feat_get_param_max(FEAT_PARAM_DSS_FCK); prate = dss_get_dpll4_rate(); fck_div = DIV_ROUND_UP(prate * dss.feat->dss_fck_multiplier, max_dss_fck); dss_cinfo.fck_div = fck_div; r = dss_calc_clock_rates(&dss_cinfo); if (r) return r; r = dss_set_clock_div(&dss_cinfo); if (r) return r; return 0; } void dss_set_venc_output(enum omap_dss_venc_type type) { int l = 0; if (type == OMAP_DSS_VENC_TYPE_COMPOSITE) l = 0; else if (type == OMAP_DSS_VENC_TYPE_SVIDEO) l = 1; else BUG(); /* venc out selection. 0 = comp, 1 = svideo */ REG_FLD_MOD(DSS_CONTROL, l, 6, 6); } void dss_set_dac_pwrdn_bgz(bool enable) { REG_FLD_MOD(DSS_CONTROL, enable, 5, 5); /* DAC Power-Down Control */ } void dss_select_hdmi_venc_clk_source(enum dss_hdmi_venc_clk_source_select src) { enum omap_display_type dp; dp = dss_feat_get_supported_displays(OMAP_DSS_CHANNEL_DIGIT); /* Complain about invalid selections */ WARN_ON((src == DSS_VENC_TV_CLK) && !(dp & OMAP_DISPLAY_TYPE_VENC)); WARN_ON((src == DSS_HDMI_M_PCLK) && !(dp & OMAP_DISPLAY_TYPE_HDMI)); /* Select only if we have options */ if ((dp & OMAP_DISPLAY_TYPE_VENC) && (dp & OMAP_DISPLAY_TYPE_HDMI)) REG_FLD_MOD(DSS_CONTROL, src, 15, 15); /* VENC_HDMI_SWITCH */ } enum dss_hdmi_venc_clk_source_select dss_get_hdmi_venc_clk_source(void) { enum omap_display_type displays; displays = dss_feat_get_supported_displays(OMAP_DSS_CHANNEL_DIGIT); if ((displays & OMAP_DISPLAY_TYPE_HDMI) == 0) return DSS_VENC_TV_CLK; if ((displays & OMAP_DISPLAY_TYPE_VENC) == 0) return DSS_HDMI_M_PCLK; return REG_GET(DSS_CONTROL, 15, 15); } static int dss_dpi_select_source_omap2_omap3(enum omap_channel channel) { if (channel != OMAP_DSS_CHANNEL_LCD) return -EINVAL; return 0; } static int dss_dpi_select_source_omap4(enum omap_channel channel) { int val; switch (channel) { case OMAP_DSS_CHANNEL_LCD2: val = 0; break; case OMAP_DSS_CHANNEL_DIGIT: val = 1; break; default: return -EINVAL; } REG_FLD_MOD(DSS_CONTROL, val, 17, 17); return 0; } static int dss_dpi_select_source_omap5(enum omap_channel channel) { int val; switch (channel) { case OMAP_DSS_CHANNEL_LCD: val = 1; break; case OMAP_DSS_CHANNEL_LCD2: val = 2; break; case OMAP_DSS_CHANNEL_LCD3: val = 3; break; case OMAP_DSS_CHANNEL_DIGIT: val = 0; break; default: return -EINVAL; } REG_FLD_MOD(DSS_CONTROL, val, 17, 16); return 0; } int dss_dpi_select_source(enum omap_channel channel) { return dss.feat->dpi_select_source(channel); } static int dss_get_clocks(void) { struct clk *clk; clk = devm_clk_get(&dss.pdev->dev, "fck"); if (IS_ERR(clk)) { DSSERR("can't get clock fck\n"); return PTR_ERR(clk); } dss.dss_clk = clk; if (dss.feat->clk_name) { clk = clk_get(NULL, dss.feat->clk_name); if (IS_ERR(clk)) { DSSERR("Failed to get %s\n", dss.feat->clk_name); return PTR_ERR(clk); } } else { clk = NULL; } dss.dpll4_m4_ck = clk; return 0; } static void dss_put_clocks(void) { if (dss.dpll4_m4_ck) clk_put(dss.dpll4_m4_ck); } static int dss_runtime_get(void) { int r; DSSDBG("dss_runtime_get\n"); r = pm_runtime_get_sync(&dss.pdev->dev); WARN_ON(r < 0); return r < 0 ? r : 0; } static void dss_runtime_put(void) { int r; DSSDBG("dss_runtime_put\n"); r = pm_runtime_put_sync(&dss.pdev->dev); WARN_ON(r < 0 && r != -ENOSYS && r != -EBUSY); } /* DEBUGFS */ #if defined(CONFIG_OMAP2_DSS_DEBUGFS) void dss_debug_dump_clocks(struct seq_file *s) { dss_dump_clocks(s); dispc_dump_clocks(s); #ifdef CONFIG_OMAP2_DSS_DSI dsi_dump_clocks(s); #endif } #endif static const struct dss_features omap24xx_dss_feats __initconst = { .fck_div_max = 16, .dss_fck_multiplier = 2, .clk_name = NULL, .dpi_select_source = &dss_dpi_select_source_omap2_omap3, }; static const struct dss_features omap34xx_dss_feats __initconst = { .fck_div_max = 16, .dss_fck_multiplier = 2, .clk_name = "dpll4_m4_ck", .dpi_select_source = &dss_dpi_select_source_omap2_omap3, }; static const struct dss_features omap3630_dss_feats __initconst = { .fck_div_max = 32, .dss_fck_multiplier = 1, .clk_name = "dpll4_m4_ck", .dpi_select_source = &dss_dpi_select_source_omap2_omap3, }; static const struct dss_features omap44xx_dss_feats __initconst = { .fck_div_max = 32, .dss_fck_multiplier = 1, .clk_name = "dpll_per_m5x2_ck", .dpi_select_source = &dss_dpi_select_source_omap4, }; static const struct dss_features omap54xx_dss_feats __initconst = { .fck_div_max = 64, .dss_fck_multiplier = 1, .clk_name = "dpll_per_h12x2_ck", .dpi_select_source = &dss_dpi_select_source_omap5, }; static int __init dss_init_features(struct platform_device *pdev) { const struct dss_features *src; struct dss_features *dst; dst = devm_kzalloc(&pdev->dev, sizeof(*dst), GFP_KERNEL); if (!dst) { dev_err(&pdev->dev, "Failed to allocate local DSS Features\n"); return -ENOMEM; } switch (omapdss_get_version()) { case OMAPDSS_VER_OMAP24xx: src = &omap24xx_dss_feats; break; case OMAPDSS_VER_OMAP34xx_ES1: case OMAPDSS_VER_OMAP34xx_ES3: case OMAPDSS_VER_AM35xx: src = &omap34xx_dss_feats; break; case OMAPDSS_VER_OMAP3630: src = &omap3630_dss_feats; break; case OMAPDSS_VER_OMAP4430_ES1: case OMAPDSS_VER_OMAP4430_ES2: case OMAPDSS_VER_OMAP4: src = &omap44xx_dss_feats; break; case OMAPDSS_VER_OMAP5: src = &omap54xx_dss_feats; break; default: return -ENODEV; } memcpy(dst, src, sizeof(*dst)); dss.feat = dst; return 0; } /* DSS HW IP initialisation */ static int __init omap_dsshw_probe(struct platform_device *pdev) { struct resource *dss_mem; u32 rev; int r; dss.pdev = pdev; r = dss_init_features(dss.pdev); if (r) return r; dss_mem = platform_get_resource(dss.pdev, IORESOURCE_MEM, 0); if (!dss_mem) { DSSERR("can't get IORESOURCE_MEM DSS\n"); return -EINVAL; } dss.base = devm_ioremap(&pdev->dev, dss_mem->start, resource_size(dss_mem)); if (!dss.base) { DSSERR("can't ioremap DSS\n"); return -ENOMEM; } r = dss_get_clocks(); if (r) return r; r = dss_setup_default_clock(); if (r) goto err_setup_clocks; pm_runtime_enable(&pdev->dev); r = dss_runtime_get(); if (r) goto err_runtime_get; dss.dss_clk_rate = clk_get_rate(dss.dss_clk); /* Select DPLL */ REG_FLD_MOD(DSS_CONTROL, 0, 0, 0); dss_select_dispc_clk_source(OMAP_DSS_CLK_SRC_FCK); #ifdef CONFIG_OMAP2_DSS_VENC REG_FLD_MOD(DSS_CONTROL, 1, 4, 4); /* venc dac demen */ REG_FLD_MOD(DSS_CONTROL, 1, 3, 3); /* venc clock 4x enable */ REG_FLD_MOD(DSS_CONTROL, 0, 2, 2); /* venc clock mode = normal */ #endif dss.dsi_clk_source[0] = OMAP_DSS_CLK_SRC_FCK; dss.dsi_clk_source[1] = OMAP_DSS_CLK_SRC_FCK; dss.dispc_clk_source = OMAP_DSS_CLK_SRC_FCK; dss.lcd_clk_source[0] = OMAP_DSS_CLK_SRC_FCK; dss.lcd_clk_source[1] = OMAP_DSS_CLK_SRC_FCK; rev = dss_read_reg(DSS_REVISION); printk(KERN_INFO "OMAP DSS rev %d.%d\n", FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0)); dss_runtime_put(); dss_debugfs_create_file("dss", dss_dump_regs); return 0; err_runtime_get: pm_runtime_disable(&pdev->dev); err_setup_clocks: dss_put_clocks(); return r; } static int __exit omap_dsshw_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); dss_put_clocks(); return 0; } static int dss_runtime_suspend(struct device *dev) { dss_save_context(); dss_set_min_bus_tput(dev, 0); return 0; } static int dss_runtime_resume(struct device *dev) { int r; /* * Set an arbitrarily high tput request to ensure OPP100. * What we should really do is to make a request to stay in OPP100, * without any tput requirements, but that is not currently possible * via the PM layer. */ r = dss_set_min_bus_tput(dev, 1000000000); if (r) return r; dss_restore_context(); return 0; } static const struct dev_pm_ops dss_pm_ops = { .runtime_suspend = dss_runtime_suspend, .runtime_resume = dss_runtime_resume, }; static struct platform_driver omap_dsshw_driver = { .remove = __exit_p(omap_dsshw_remove), .driver = { .name = "omapdss_dss", .owner = THIS_MODULE, .pm = &dss_pm_ops, }, }; int __init dss_init_platform_driver(void) { return platform_driver_probe(&omap_dsshw_driver, omap_dsshw_probe); } void dss_uninit_platform_driver(void) { platform_driver_unregister(&omap_dsshw_driver); }