/* * xHCI host controller driver * * Copyright (C) 2008 Intel Corp. * * Author: Sarah Sharp * Some code borrowed from the Linux EHCI driver. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/pci.h> #include <linux/irq.h> #include <linux/log2.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/slab.h> #include <linux/dmi.h> #include "xhci.h" #define DRIVER_AUTHOR "Sarah Sharp" #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ static int link_quirk; module_param(link_quirk, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); /* TODO: copied from ehci-hcd.c - can this be refactored? */ /* * xhci_handshake - spin reading hc until handshake completes or fails * @ptr: address of hc register to be read * @mask: bits to look at in result of read * @done: value of those bits when handshake succeeds * @usec: timeout in microseconds * * Returns negative errno, or zero on success * * Success happens when the "mask" bits have the specified value (hardware * handshake done). There are two failure modes: "usec" have passed (major * hardware flakeout), or the register reads as all-ones (hardware removed). */ int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, u32 mask, u32 done, int usec) { u32 result; do { result = xhci_readl(xhci, ptr); if (result == ~(u32)0) /* card removed */ return -ENODEV; result &= mask; if (result == done) return 0; udelay(1); usec--; } while (usec > 0); return -ETIMEDOUT; } /* * Disable interrupts and begin the xHCI halting process. */ void xhci_quiesce(struct xhci_hcd *xhci) { u32 halted; u32 cmd; u32 mask; mask = ~(XHCI_IRQS); halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; if (!halted) mask &= ~CMD_RUN; cmd = xhci_readl(xhci, &xhci->op_regs->command); cmd &= mask; xhci_writel(xhci, cmd, &xhci->op_regs->command); } /* * Force HC into halt state. * * Disable any IRQs and clear the run/stop bit. * HC will complete any current and actively pipelined transactions, and * should halt within 16 ms of the run/stop bit being cleared. * Read HC Halted bit in the status register to see when the HC is finished. */ int xhci_halt(struct xhci_hcd *xhci) { int ret; xhci_dbg(xhci, "// Halt the HC\n"); xhci_quiesce(xhci); ret = xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); if (!ret) { xhci->xhc_state |= XHCI_STATE_HALTED; xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; } else xhci_warn(xhci, "Host not halted after %u microseconds.\n", XHCI_MAX_HALT_USEC); return ret; } /* * Set the run bit and wait for the host to be running. */ static int xhci_start(struct xhci_hcd *xhci) { u32 temp; int ret; temp = xhci_readl(xhci, &xhci->op_regs->command); temp |= (CMD_RUN); xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", temp); xhci_writel(xhci, temp, &xhci->op_regs->command); /* * Wait for the HCHalted Status bit to be 0 to indicate the host is * running. */ ret = xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 0, XHCI_MAX_HALT_USEC); if (ret == -ETIMEDOUT) xhci_err(xhci, "Host took too long to start, " "waited %u microseconds.\n", XHCI_MAX_HALT_USEC); if (!ret) xhci->xhc_state &= ~XHCI_STATE_HALTED; return ret; } /* * Reset a halted HC. * * This resets pipelines, timers, counters, state machines, etc. * Transactions will be terminated immediately, and operational registers * will be set to their defaults. */ int xhci_reset(struct xhci_hcd *xhci) { u32 command; u32 state; int ret, i; state = xhci_readl(xhci, &xhci->op_regs->status); if ((state & STS_HALT) == 0) { xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); return 0; } xhci_dbg(xhci, "// Reset the HC\n"); command = xhci_readl(xhci, &xhci->op_regs->command); command |= CMD_RESET; xhci_writel(xhci, command, &xhci->op_regs->command); ret = xhci_handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 10 * 1000 * 1000); if (ret) return ret; xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); /* * xHCI cannot write to any doorbells or operational registers other * than status until the "Controller Not Ready" flag is cleared. */ ret = xhci_handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 10 * 1000 * 1000); for (i = 0; i < 2; ++i) { xhci->bus_state[i].port_c_suspend = 0; xhci->bus_state[i].suspended_ports = 0; xhci->bus_state[i].resuming_ports = 0; } return ret; } #ifdef CONFIG_PCI static int xhci_free_msi(struct xhci_hcd *xhci) { int i; if (!xhci->msix_entries) return -EINVAL; for (i = 0; i < xhci->msix_count; i++) if (xhci->msix_entries[i].vector) free_irq(xhci->msix_entries[i].vector, xhci_to_hcd(xhci)); return 0; } /* * Set up MSI */ static int xhci_setup_msi(struct xhci_hcd *xhci) { int ret; struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); ret = pci_enable_msi(pdev); if (ret) { xhci_dbg(xhci, "failed to allocate MSI entry\n"); return ret; } ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 0, "xhci_hcd", xhci_to_hcd(xhci)); if (ret) { xhci_dbg(xhci, "disable MSI interrupt\n"); pci_disable_msi(pdev); } return ret; } /* * Free IRQs * free all IRQs request */ static void xhci_free_irq(struct xhci_hcd *xhci) { struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); int ret; /* return if using legacy interrupt */ if (xhci_to_hcd(xhci)->irq > 0) return; ret = xhci_free_msi(xhci); if (!ret) return; if (pdev->irq > 0) free_irq(pdev->irq, xhci_to_hcd(xhci)); return; } /* * Set up MSI-X */ static int xhci_setup_msix(struct xhci_hcd *xhci) { int i, ret = 0; struct usb_hcd *hcd = xhci_to_hcd(xhci); struct pci_dev *pdev = to_pci_dev(hcd->self.controller); /* * calculate number of msi-x vectors supported. * - HCS_MAX_INTRS: the max number of interrupts the host can handle, * with max number of interrupters based on the xhci HCSPARAMS1. * - num_online_cpus: maximum msi-x vectors per CPUs core. * Add additional 1 vector to ensure always available interrupt. */ xhci->msix_count = min(num_online_cpus() + 1, HCS_MAX_INTRS(xhci->hcs_params1)); xhci->msix_entries = kmalloc((sizeof(struct msix_entry))*xhci->msix_count, GFP_KERNEL); if (!xhci->msix_entries) { xhci_err(xhci, "Failed to allocate MSI-X entries\n"); return -ENOMEM; } for (i = 0; i < xhci->msix_count; i++) { xhci->msix_entries[i].entry = i; xhci->msix_entries[i].vector = 0; } ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); if (ret) { xhci_dbg(xhci, "Failed to enable MSI-X\n"); goto free_entries; } for (i = 0; i < xhci->msix_count; i++) { ret = request_irq(xhci->msix_entries[i].vector, (irq_handler_t)xhci_msi_irq, 0, "xhci_hcd", xhci_to_hcd(xhci)); if (ret) goto disable_msix; } hcd->msix_enabled = 1; return ret; disable_msix: xhci_dbg(xhci, "disable MSI-X interrupt\n"); xhci_free_irq(xhci); pci_disable_msix(pdev); free_entries: kfree(xhci->msix_entries); xhci->msix_entries = NULL; return ret; } /* Free any IRQs and disable MSI-X */ static void xhci_cleanup_msix(struct xhci_hcd *xhci) { struct usb_hcd *hcd = xhci_to_hcd(xhci); struct pci_dev *pdev = to_pci_dev(hcd->self.controller); xhci_free_irq(xhci); if (xhci->msix_entries) { pci_disable_msix(pdev); kfree(xhci->msix_entries); xhci->msix_entries = NULL; } else { pci_disable_msi(pdev); } hcd->msix_enabled = 0; return; } static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) { int i; if (xhci->msix_entries) { for (i = 0; i < xhci->msix_count; i++) synchronize_irq(xhci->msix_entries[i].vector); } } static int xhci_try_enable_msi(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); int ret; /* * Some Fresco Logic host controllers advertise MSI, but fail to * generate interrupts. Don't even try to enable MSI. */ if (xhci->quirks & XHCI_BROKEN_MSI) goto legacy_irq; /* unregister the legacy interrupt */ if (hcd->irq) free_irq(hcd->irq, hcd); hcd->irq = 0; ret = xhci_setup_msix(xhci); if (ret) /* fall back to msi*/ ret = xhci_setup_msi(xhci); if (!ret) /* hcd->irq is 0, we have MSI */ return 0; if (!pdev->irq) { xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); return -EINVAL; } legacy_irq: /* fall back to legacy interrupt*/ ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, hcd->irq_descr, hcd); if (ret) { xhci_err(xhci, "request interrupt %d failed\n", pdev->irq); return ret; } hcd->irq = pdev->irq; return 0; } #else static int xhci_try_enable_msi(struct usb_hcd *hcd) { return 0; } static void xhci_cleanup_msix(struct xhci_hcd *xhci) { } static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) { } #endif static void compliance_mode_recovery(unsigned long arg) { struct xhci_hcd *xhci; struct usb_hcd *hcd; u32 temp; int i; xhci = (struct xhci_hcd *)arg; for (i = 0; i < xhci->num_usb3_ports; i++) { temp = xhci_readl(xhci, xhci->usb3_ports[i]); if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { /* * Compliance Mode Detected. Letting USB Core * handle the Warm Reset */ xhci_dbg(xhci, "Compliance mode detected->port %d\n", i + 1); xhci_dbg(xhci, "Attempting compliance mode recovery\n"); hcd = xhci->shared_hcd; if (hcd->state == HC_STATE_SUSPENDED) usb_hcd_resume_root_hub(hcd); usb_hcd_poll_rh_status(hcd); } } if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) mod_timer(&xhci->comp_mode_recovery_timer, jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); } /* * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver * that causes ports behind that hardware to enter compliance mode sometimes. * The quirk creates a timer that polls every 2 seconds the link state of * each host controller's port and recovers it by issuing a Warm reset * if Compliance mode is detected, otherwise the port will become "dead" (no * device connections or disconnections will be detected anymore). Becasue no * status event is generated when entering compliance mode (per xhci spec), * this quirk is needed on systems that have the failing hardware installed. */ static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) { xhci->port_status_u0 = 0; init_timer(&xhci->comp_mode_recovery_timer); xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; xhci->comp_mode_recovery_timer.expires = jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); set_timer_slack(&xhci->comp_mode_recovery_timer, msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); add_timer(&xhci->comp_mode_recovery_timer); xhci_dbg(xhci, "Compliance mode recovery timer initialized\n"); } /* * This function identifies the systems that have installed the SN65LVPE502CP * USB3.0 re-driver and that need the Compliance Mode Quirk. * Systems: * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 */ bool xhci_compliance_mode_recovery_timer_quirk_check(void) { const char *dmi_product_name, *dmi_sys_vendor; dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); if (!dmi_product_name || !dmi_sys_vendor) return false; if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) return false; if (strstr(dmi_product_name, "Z420") || strstr(dmi_product_name, "Z620") || strstr(dmi_product_name, "Z820") || strstr(dmi_product_name, "Z1 Workstation")) return true; return false; } static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) { return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); } /* * Initialize memory for HCD and xHC (one-time init). * * Program the PAGESIZE register, initialize the device context array, create * device contexts (?), set up a command ring segment (or two?), create event * ring (one for now). */ int xhci_init(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); int retval = 0; xhci_dbg(xhci, "xhci_init\n"); spin_lock_init(&xhci->lock); if (xhci->hci_version == 0x95 && link_quirk) { xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); xhci->quirks |= XHCI_LINK_TRB_QUIRK; } else { xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); } retval = xhci_mem_init(xhci, GFP_KERNEL); xhci_dbg(xhci, "Finished xhci_init\n"); /* Initializing Compliance Mode Recovery Data If Needed */ if (xhci_compliance_mode_recovery_timer_quirk_check()) { xhci->quirks |= XHCI_COMP_MODE_QUIRK; compliance_mode_recovery_timer_init(xhci); } return retval; } /*-------------------------------------------------------------------------*/ #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING static void xhci_event_ring_work(unsigned long arg) { unsigned long flags; int temp; u64 temp_64; struct xhci_hcd *xhci = (struct xhci_hcd *) arg; int i, j; xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); spin_lock_irqsave(&xhci->lock, flags); temp = xhci_readl(xhci, &xhci->op_regs->status); xhci_dbg(xhci, "op reg status = 0x%x\n", temp); if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || (xhci->xhc_state & XHCI_STATE_HALTED)) { xhci_dbg(xhci, "HW died, polling stopped.\n"); spin_unlock_irqrestore(&xhci->lock, flags); return; } temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); xhci->error_bitmask = 0; xhci_dbg(xhci, "Event ring:\n"); xhci_debug_segment(xhci, xhci->event_ring->deq_seg); xhci_dbg_ring_ptrs(xhci, xhci->event_ring); temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); temp_64 &= ~ERST_PTR_MASK; xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); xhci_dbg(xhci, "Command ring:\n"); xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); xhci_dbg_cmd_ptrs(xhci); for (i = 0; i < MAX_HC_SLOTS; ++i) { if (!xhci->devs[i]) continue; for (j = 0; j < 31; ++j) { xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); } } spin_unlock_irqrestore(&xhci->lock, flags); if (!xhci->zombie) mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); else xhci_dbg(xhci, "Quit polling the event ring.\n"); } #endif static int xhci_run_finished(struct xhci_hcd *xhci) { if (xhci_start(xhci)) { xhci_halt(xhci); return -ENODEV; } xhci->shared_hcd->state = HC_STATE_RUNNING; xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; if (xhci->quirks & XHCI_NEC_HOST) xhci_ring_cmd_db(xhci); xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); return 0; } /* * Start the HC after it was halted. * * This function is called by the USB core when the HC driver is added. * Its opposite is xhci_stop(). * * xhci_init() must be called once before this function can be called. * Reset the HC, enable device slot contexts, program DCBAAP, and * set command ring pointer and event ring pointer. * * Setup MSI-X vectors and enable interrupts. */ int xhci_run(struct usb_hcd *hcd) { u32 temp; u64 temp_64; int ret; struct xhci_hcd *xhci = hcd_to_xhci(hcd); /* Start the xHCI host controller running only after the USB 2.0 roothub * is setup. */ hcd->uses_new_polling = 1; if (!usb_hcd_is_primary_hcd(hcd)) return xhci_run_finished(xhci); xhci_dbg(xhci, "xhci_run\n"); ret = xhci_try_enable_msi(hcd); if (ret) return ret; #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING init_timer(&xhci->event_ring_timer); xhci->event_ring_timer.data = (unsigned long) xhci; xhci->event_ring_timer.function = xhci_event_ring_work; /* Poll the event ring */ xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; xhci->zombie = 0; xhci_dbg(xhci, "Setting event ring polling timer\n"); add_timer(&xhci->event_ring_timer); #endif xhci_dbg(xhci, "Command ring memory map follows:\n"); xhci_debug_ring(xhci, xhci->cmd_ring); xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); xhci_dbg_cmd_ptrs(xhci); xhci_dbg(xhci, "ERST memory map follows:\n"); xhci_dbg_erst(xhci, &xhci->erst); xhci_dbg(xhci, "Event ring:\n"); xhci_debug_ring(xhci, xhci->event_ring); xhci_dbg_ring_ptrs(xhci, xhci->event_ring); temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); temp_64 &= ~ERST_PTR_MASK; xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); xhci_dbg(xhci, "// Set the interrupt modulation register\n"); temp = xhci_readl(xhci, &xhci->ir_set->irq_control); temp &= ~ER_IRQ_INTERVAL_MASK; temp |= (u32) 160; xhci_writel(xhci, temp, &xhci->ir_set->irq_control); /* Set the HCD state before we enable the irqs */ temp = xhci_readl(xhci, &xhci->op_regs->command); temp |= (CMD_EIE); xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", temp); xhci_writel(xhci, temp, &xhci->op_regs->command); temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); xhci_writel(xhci, ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); xhci_print_ir_set(xhci, 0); if (xhci->quirks & XHCI_NEC_HOST) xhci_queue_vendor_command(xhci, 0, 0, 0, TRB_TYPE(TRB_NEC_GET_FW)); xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); return 0; } static void xhci_only_stop_hcd(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); spin_lock_irq(&xhci->lock); xhci_halt(xhci); /* The shared_hcd is going to be deallocated shortly (the USB core only * calls this function when allocation fails in usb_add_hcd(), or * usb_remove_hcd() is called). So we need to unset xHCI's pointer. */ xhci->shared_hcd = NULL; spin_unlock_irq(&xhci->lock); } /* * Stop xHCI driver. * * This function is called by the USB core when the HC driver is removed. * Its opposite is xhci_run(). * * Disable device contexts, disable IRQs, and quiesce the HC. * Reset the HC, finish any completed transactions, and cleanup memory. */ void xhci_stop(struct usb_hcd *hcd) { u32 temp; struct xhci_hcd *xhci = hcd_to_xhci(hcd); if (!usb_hcd_is_primary_hcd(hcd)) { xhci_only_stop_hcd(xhci->shared_hcd); return; } spin_lock_irq(&xhci->lock); /* Make sure the xHC is halted for a USB3 roothub * (xhci_stop() could be called as part of failed init). */ xhci_halt(xhci); xhci_reset(xhci); spin_unlock_irq(&xhci->lock); xhci_cleanup_msix(xhci); #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING /* Tell the event ring poll function not to reschedule */ xhci->zombie = 1; del_timer_sync(&xhci->event_ring_timer); #endif /* Deleting Compliance Mode Recovery Timer */ if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && (!(xhci_all_ports_seen_u0(xhci)))) { del_timer_sync(&xhci->comp_mode_recovery_timer); xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n", __func__); } if (xhci->quirks & XHCI_AMD_PLL_FIX) usb_amd_dev_put(); xhci_dbg(xhci, "// Disabling event ring interrupts\n"); temp = xhci_readl(xhci, &xhci->op_regs->status); xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); xhci_writel(xhci, ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); xhci_print_ir_set(xhci, 0); xhci_dbg(xhci, "cleaning up memory\n"); xhci_mem_cleanup(xhci); xhci_dbg(xhci, "xhci_stop completed - status = %x\n", xhci_readl(xhci, &xhci->op_regs->status)); } /* * Shutdown HC (not bus-specific) * * This is called when the machine is rebooting or halting. We assume that the * machine will be powered off, and the HC's internal state will be reset. * Don't bother to free memory. * * This will only ever be called with the main usb_hcd (the USB3 roothub). */ void xhci_shutdown(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); if (xhci->quirks & XHCI_SPURIOUS_REBOOT) usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); spin_lock_irq(&xhci->lock); xhci_halt(xhci); spin_unlock_irq(&xhci->lock); xhci_cleanup_msix(xhci); xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", xhci_readl(xhci, &xhci->op_regs->status)); } #ifdef CONFIG_PM static void xhci_save_registers(struct xhci_hcd *xhci) { xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); } static void xhci_restore_registers(struct xhci_hcd *xhci) { xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); } static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) { u64 val_64; /* step 2: initialize command ring buffer */ val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue) & (u64) ~CMD_RING_RSVD_BITS) | xhci->cmd_ring->cycle_state; xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", (long unsigned long) val_64); xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); } /* * The whole command ring must be cleared to zero when we suspend the host. * * The host doesn't save the command ring pointer in the suspend well, so we * need to re-program it on resume. Unfortunately, the pointer must be 64-byte * aligned, because of the reserved bits in the command ring dequeue pointer * register. Therefore, we can't just set the dequeue pointer back in the * middle of the ring (TRBs are 16-byte aligned). */ static void xhci_clear_command_ring(struct xhci_hcd *xhci) { struct xhci_ring *ring; struct xhci_segment *seg; ring = xhci->cmd_ring; seg = ring->deq_seg; do { memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE); seg = seg->next; } while (seg != ring->deq_seg); /* Reset the software enqueue and dequeue pointers */ ring->deq_seg = ring->first_seg; ring->dequeue = ring->first_seg->trbs; ring->enq_seg = ring->deq_seg; ring->enqueue = ring->dequeue; ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; /* * Ring is now zeroed, so the HW should look for change of ownership * when the cycle bit is set to 1. */ ring->cycle_state = 1; /* * Reset the hardware dequeue pointer. * Yes, this will need to be re-written after resume, but we're paranoid * and want to make sure the hardware doesn't access bogus memory * because, say, the BIOS or an SMI started the host without changing * the command ring pointers. */ xhci_set_cmd_ring_deq(xhci); } /* * Stop HC (not bus-specific) * * This is called when the machine transition into S3/S4 mode. * */ int xhci_suspend(struct xhci_hcd *xhci) { int rc = 0; struct usb_hcd *hcd = xhci_to_hcd(xhci); u32 command; if (hcd->state != HC_STATE_SUSPENDED || xhci->shared_hcd->state != HC_STATE_SUSPENDED) return -EINVAL; /* Don't poll the roothubs on bus suspend. */ xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); del_timer_sync(&hcd->rh_timer); spin_lock_irq(&xhci->lock); clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); /* step 1: stop endpoint */ /* skipped assuming that port suspend has done */ /* step 2: clear Run/Stop bit */ command = xhci_readl(xhci, &xhci->op_regs->command); command &= ~CMD_RUN; xhci_writel(xhci, command, &xhci->op_regs->command); if (xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) { xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); spin_unlock_irq(&xhci->lock); return -ETIMEDOUT; } xhci_clear_command_ring(xhci); /* step 3: save registers */ xhci_save_registers(xhci); /* step 4: set CSS flag */ command = xhci_readl(xhci, &xhci->op_regs->command); command |= CMD_CSS; xhci_writel(xhci, command, &xhci->op_regs->command); if (xhci_handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) { xhci_warn(xhci, "WARN: xHC save state timeout\n"); spin_unlock_irq(&xhci->lock); return -ETIMEDOUT; } spin_unlock_irq(&xhci->lock); /* * Deleting Compliance Mode Recovery Timer because the xHCI Host * is about to be suspended. */ if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && (!(xhci_all_ports_seen_u0(xhci)))) { del_timer_sync(&xhci->comp_mode_recovery_timer); xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n", __func__); } /* step 5: remove core well power */ /* synchronize irq when using MSI-X */ xhci_msix_sync_irqs(xhci); return rc; } /* * start xHC (not bus-specific) * * This is called when the machine transition from S3/S4 mode. * */ int xhci_resume(struct xhci_hcd *xhci, bool hibernated) { u32 command, temp = 0; struct usb_hcd *hcd = xhci_to_hcd(xhci); struct usb_hcd *secondary_hcd; int retval = 0; bool comp_timer_running = false; /* Wait a bit if either of the roothubs need to settle from the * transition into bus suspend. */ if (time_before(jiffies, xhci->bus_state[0].next_statechange) || time_before(jiffies, xhci->bus_state[1].next_statechange)) msleep(100); set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); spin_lock_irq(&xhci->lock); if (xhci->quirks & XHCI_RESET_ON_RESUME) hibernated = true; if (!hibernated) { /* step 1: restore register */ xhci_restore_registers(xhci); /* step 2: initialize command ring buffer */ xhci_set_cmd_ring_deq(xhci); /* step 3: restore state and start state*/ /* step 3: set CRS flag */ command = xhci_readl(xhci, &xhci->op_regs->command); command |= CMD_CRS; xhci_writel(xhci, command, &xhci->op_regs->command); if (xhci_handshake(xhci, &xhci->op_regs->status, STS_RESTORE, 0, 10 * 1000)) { xhci_warn(xhci, "WARN: xHC restore state timeout\n"); spin_unlock_irq(&xhci->lock); return -ETIMEDOUT; } temp = xhci_readl(xhci, &xhci->op_regs->status); } /* If restore operation fails, re-initialize the HC during resume */ if ((temp & STS_SRE) || hibernated) { if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !(xhci_all_ports_seen_u0(xhci))) { del_timer_sync(&xhci->comp_mode_recovery_timer); xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n"); } /* Let the USB core know _both_ roothubs lost power. */ usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); xhci_dbg(xhci, "Stop HCD\n"); xhci_halt(xhci); xhci_reset(xhci); spin_unlock_irq(&xhci->lock); xhci_cleanup_msix(xhci); #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING /* Tell the event ring poll function not to reschedule */ xhci->zombie = 1; del_timer_sync(&xhci->event_ring_timer); #endif xhci_dbg(xhci, "// Disabling event ring interrupts\n"); temp = xhci_readl(xhci, &xhci->op_regs->status); xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); xhci_writel(xhci, ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); xhci_print_ir_set(xhci, 0); xhci_dbg(xhci, "cleaning up memory\n"); xhci_mem_cleanup(xhci); xhci_dbg(xhci, "xhci_stop completed - status = %x\n", xhci_readl(xhci, &xhci->op_regs->status)); /* USB core calls the PCI reinit and start functions twice: * first with the primary HCD, and then with the secondary HCD. * If we don't do the same, the host will never be started. */ if (!usb_hcd_is_primary_hcd(hcd)) secondary_hcd = hcd; else secondary_hcd = xhci->shared_hcd; xhci_dbg(xhci, "Initialize the xhci_hcd\n"); retval = xhci_init(hcd->primary_hcd); if (retval) return retval; comp_timer_running = true; xhci_dbg(xhci, "Start the primary HCD\n"); retval = xhci_run(hcd->primary_hcd); if (!retval) { xhci_dbg(xhci, "Start the secondary HCD\n"); retval = xhci_run(secondary_hcd); } hcd->state = HC_STATE_SUSPENDED; xhci->shared_hcd->state = HC_STATE_SUSPENDED; goto done; } /* step 4: set Run/Stop bit */ command = xhci_readl(xhci, &xhci->op_regs->command); command |= CMD_RUN; xhci_writel(xhci, command, &xhci->op_regs->command); xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 0, 250 * 1000); /* step 5: walk topology and initialize portsc, * portpmsc and portli */ /* this is done in bus_resume */ /* step 6: restart each of the previously * Running endpoints by ringing their doorbells */ spin_unlock_irq(&xhci->lock); done: if (retval == 0) { usb_hcd_resume_root_hub(hcd); usb_hcd_resume_root_hub(xhci->shared_hcd); } /* * If system is subject to the Quirk, Compliance Mode Timer needs to * be re-initialized Always after a system resume. Ports are subject * to suffer the Compliance Mode issue again. It doesn't matter if * ports have entered previously to U0 before system's suspension. */ if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) compliance_mode_recovery_timer_init(xhci); /* Re-enable port polling. */ xhci_dbg(xhci, "%s: starting port polling.\n", __func__); set_bit(HCD_FLAG_POLL_RH, &hcd->flags); usb_hcd_poll_rh_status(hcd); return retval; } #endif /* CONFIG_PM */ /*-------------------------------------------------------------------------*/ /** * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and * HCDs. Find the index for an endpoint given its descriptor. Use the return * value to right shift 1 for the bitmask. * * Index = (epnum * 2) + direction - 1, * where direction = 0 for OUT, 1 for IN. * For control endpoints, the IN index is used (OUT index is unused), so * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) */ unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) { unsigned int index; if (usb_endpoint_xfer_control(desc)) index = (unsigned int) (usb_endpoint_num(desc)*2); else index = (unsigned int) (usb_endpoint_num(desc)*2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; return index; } /* Find the flag for this endpoint (for use in the control context). Use the * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is * bit 1, etc. */ unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) { return 1 << (xhci_get_endpoint_index(desc) + 1); } /* Find the flag for this endpoint (for use in the control context). Use the * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is * bit 1, etc. */ unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) { return 1 << (ep_index + 1); } /* Compute the last valid endpoint context index. Basically, this is the * endpoint index plus one. For slot contexts with more than valid endpoint, * we find the most significant bit set in the added contexts flags. * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. */ unsigned int xhci_last_valid_endpoint(u32 added_ctxs) { return fls(added_ctxs) - 1; } /* Returns 1 if the arguments are OK; * returns 0 this is a root hub; returns -EINVAL for NULL pointers. */ static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, const char *func) { struct xhci_hcd *xhci; struct xhci_virt_device *virt_dev; if (!hcd || (check_ep && !ep) || !udev) { printk(KERN_DEBUG "xHCI %s called with invalid args\n", func); return -EINVAL; } if (!udev->parent) { printk(KERN_DEBUG "xHCI %s called for root hub\n", func); return 0; } xhci = hcd_to_xhci(hcd); if (xhci->xhc_state & XHCI_STATE_HALTED) return -ENODEV; if (check_virt_dev) { if (!udev->slot_id || !xhci->devs[udev->slot_id]) { printk(KERN_DEBUG "xHCI %s called with unaddressed " "device\n", func); return -EINVAL; } virt_dev = xhci->devs[udev->slot_id]; if (virt_dev->udev != udev) { printk(KERN_DEBUG "xHCI %s called with udev and " "virt_dev does not match\n", func); return -EINVAL; } } return 1; } static int xhci_configure_endpoint(struct xhci_hcd *xhci, struct usb_device *udev, struct xhci_command *command, bool ctx_change, bool must_succeed); /* * Full speed devices may have a max packet size greater than 8 bytes, but the * USB core doesn't know that until it reads the first 8 bytes of the * descriptor. If the usb_device's max packet size changes after that point, * we need to issue an evaluate context command and wait on it. */ static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, struct urb *urb) { struct xhci_container_ctx *in_ctx; struct xhci_container_ctx *out_ctx; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_ep_ctx *ep_ctx; int max_packet_size; int hw_max_packet_size; int ret = 0; out_ctx = xhci->devs[slot_id]->out_ctx; ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); if (hw_max_packet_size != max_packet_size) { xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); xhci_dbg(xhci, "Max packet size in usb_device = %d\n", max_packet_size); xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", hw_max_packet_size); xhci_dbg(xhci, "Issuing evaluate context command.\n"); /* Set up the modified control endpoint 0 */ xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, xhci->devs[slot_id]->out_ctx, ep_index); in_ctx = xhci->devs[slot_id]->in_ctx; ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); /* Set up the input context flags for the command */ /* FIXME: This won't work if a non-default control endpoint * changes max packet sizes. */ ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); ctrl_ctx->drop_flags = 0; xhci_dbg(xhci, "Slot %d input context\n", slot_id); xhci_dbg_ctx(xhci, in_ctx, ep_index); xhci_dbg(xhci, "Slot %d output context\n", slot_id); xhci_dbg_ctx(xhci, out_ctx, ep_index); ret = xhci_configure_endpoint(xhci, urb->dev, NULL, true, false); /* Clean up the input context for later use by bandwidth * functions. */ ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); } return ret; } /* * non-error returns are a promise to giveback() the urb later * we drop ownership so next owner (or urb unlink) can get it */ int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_td *buffer; unsigned long flags; int ret = 0; unsigned int slot_id, ep_index; struct urb_priv *urb_priv; int size, i; if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, true, __func__) <= 0) return -EINVAL; slot_id = urb->dev->slot_id; ep_index = xhci_get_endpoint_index(&urb->ep->desc); if (!HCD_HW_ACCESSIBLE(hcd)) { if (!in_interrupt()) xhci_dbg(xhci, "urb submitted during PCI suspend\n"); ret = -ESHUTDOWN; goto exit; } if (usb_endpoint_xfer_isoc(&urb->ep->desc)) size = urb->number_of_packets; else size = 1; urb_priv = kzalloc(sizeof(struct urb_priv) + size * sizeof(struct xhci_td *), mem_flags); if (!urb_priv) return -ENOMEM; buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); if (!buffer) { kfree(urb_priv); return -ENOMEM; } for (i = 0; i < size; i++) { urb_priv->td[i] = buffer; buffer++; } urb_priv->length = size; urb_priv->td_cnt = 0; urb->hcpriv = urb_priv; if (usb_endpoint_xfer_control(&urb->ep->desc)) { /* Check to see if the max packet size for the default control * endpoint changed during FS device enumeration */ if (urb->dev->speed == USB_SPEED_FULL) { ret = xhci_check_maxpacket(xhci, slot_id, ep_index, urb); if (ret < 0) { xhci_urb_free_priv(xhci, urb_priv); urb->hcpriv = NULL; return ret; } } /* We have a spinlock and interrupts disabled, so we must pass * atomic context to this function, which may allocate memory. */ spin_lock_irqsave(&xhci->lock, flags); if (xhci->xhc_state & XHCI_STATE_DYING) goto dying; ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); if (ret) goto free_priv; spin_unlock_irqrestore(&xhci->lock, flags); } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { spin_lock_irqsave(&xhci->lock, flags); if (xhci->xhc_state & XHCI_STATE_DYING) goto dying; if (xhci->devs[slot_id]->eps[ep_index].ep_state & EP_GETTING_STREAMS) { xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " "is transitioning to using streams.\n"); ret = -EINVAL; } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & EP_GETTING_NO_STREAMS) { xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " "is transitioning to " "not having streams.\n"); ret = -EINVAL; } else { ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); } if (ret) goto free_priv; spin_unlock_irqrestore(&xhci->lock, flags); } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { spin_lock_irqsave(&xhci->lock, flags); if (xhci->xhc_state & XHCI_STATE_DYING) goto dying; ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); if (ret) goto free_priv; spin_unlock_irqrestore(&xhci->lock, flags); } else { spin_lock_irqsave(&xhci->lock, flags); if (xhci->xhc_state & XHCI_STATE_DYING) goto dying; ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, slot_id, ep_index); if (ret) goto free_priv; spin_unlock_irqrestore(&xhci->lock, flags); } exit: return ret; dying: xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " "non-responsive xHCI host.\n", urb->ep->desc.bEndpointAddress, urb); ret = -ESHUTDOWN; free_priv: xhci_urb_free_priv(xhci, urb_priv); urb->hcpriv = NULL; spin_unlock_irqrestore(&xhci->lock, flags); return ret; } /* Get the right ring for the given URB. * If the endpoint supports streams, boundary check the URB's stream ID. * If the endpoint doesn't support streams, return the singular endpoint ring. */ static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, struct urb *urb) { unsigned int slot_id; unsigned int ep_index; unsigned int stream_id; struct xhci_virt_ep *ep; slot_id = urb->dev->slot_id; ep_index = xhci_get_endpoint_index(&urb->ep->desc); stream_id = urb->stream_id; ep = &xhci->devs[slot_id]->eps[ep_index]; /* Common case: no streams */ if (!(ep->ep_state & EP_HAS_STREAMS)) return ep->ring; if (stream_id == 0) { xhci_warn(xhci, "WARN: Slot ID %u, ep index %u has streams, " "but URB has no stream ID.\n", slot_id, ep_index); return NULL; } if (stream_id < ep->stream_info->num_streams) return ep->stream_info->stream_rings[stream_id]; xhci_warn(xhci, "WARN: Slot ID %u, ep index %u has " "stream IDs 1 to %u allocated, " "but stream ID %u is requested.\n", slot_id, ep_index, ep->stream_info->num_streams - 1, stream_id); return NULL; } /* * Remove the URB's TD from the endpoint ring. This may cause the HC to stop * USB transfers, potentially stopping in the middle of a TRB buffer. The HC * should pick up where it left off in the TD, unless a Set Transfer Ring * Dequeue Pointer is issued. * * The TRBs that make up the buffers for the canceled URB will be "removed" from * the ring. Since the ring is a contiguous structure, they can't be physically * removed. Instead, there are two options: * * 1) If the HC is in the middle of processing the URB to be canceled, we * simply move the ring's dequeue pointer past those TRBs using the Set * Transfer Ring Dequeue Pointer command. This will be the common case, * when drivers timeout on the last submitted URB and attempt to cancel. * * 2) If the HC is in the middle of a different TD, we turn the TRBs into a * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The * HC will need to invalidate the any TRBs it has cached after the stop * endpoint command, as noted in the xHCI 0.95 errata. * * 3) The TD may have completed by the time the Stop Endpoint Command * completes, so software needs to handle that case too. * * This function should protect against the TD enqueueing code ringing the * doorbell while this code is waiting for a Stop Endpoint command to complete. * It also needs to account for multiple cancellations on happening at the same * time for the same endpoint. * * Note that this function can be called in any context, or so says * usb_hcd_unlink_urb() */ int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { unsigned long flags; int ret, i; u32 temp; struct xhci_hcd *xhci; struct urb_priv *urb_priv; struct xhci_td *td; unsigned int ep_index; struct xhci_ring *ep_ring; struct xhci_virt_ep *ep; xhci = hcd_to_xhci(hcd); spin_lock_irqsave(&xhci->lock, flags); /* Make sure the URB hasn't completed or been unlinked already */ ret = usb_hcd_check_unlink_urb(hcd, urb, status); if (ret || !urb->hcpriv) goto done; temp = xhci_readl(xhci, &xhci->op_regs->status); if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { xhci_dbg(xhci, "HW died, freeing TD.\n"); urb_priv = urb->hcpriv; for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { td = urb_priv->td[i]; if (!list_empty(&td->td_list)) list_del_init(&td->td_list); if (!list_empty(&td->cancelled_td_list)) list_del_init(&td->cancelled_td_list); } usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock_irqrestore(&xhci->lock, flags); usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); xhci_urb_free_priv(xhci, urb_priv); return ret; } if ((xhci->xhc_state & XHCI_STATE_DYING) || (xhci->xhc_state & XHCI_STATE_HALTED)) { xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " "non-responsive xHCI host.\n", urb->ep->desc.bEndpointAddress, urb); /* Let the stop endpoint command watchdog timer (which set this * state) finish cleaning up the endpoint TD lists. We must * have caught it in the middle of dropping a lock and giving * back an URB. */ goto done; } ep_index = xhci_get_endpoint_index(&urb->ep->desc); ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; ep_ring = xhci_urb_to_transfer_ring(xhci, urb); if (!ep_ring) { ret = -EINVAL; goto done; } urb_priv = urb->hcpriv; i = urb_priv->td_cnt; if (i < urb_priv->length) xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, " "starting at offset 0x%llx\n", urb, urb->dev->devpath, urb->ep->desc.bEndpointAddress, (unsigned long long) xhci_trb_virt_to_dma( urb_priv->td[i]->start_seg, urb_priv->td[i]->first_trb)); for (; i < urb_priv->length; i++) { td = urb_priv->td[i]; list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); } /* Queue a stop endpoint command, but only if this is * the first cancellation to be handled. */ if (!(ep->ep_state & EP_HALT_PENDING)) { ep->ep_state |= EP_HALT_PENDING; ep->stop_cmds_pending++; ep->stop_cmd_timer.expires = jiffies + XHCI_STOP_EP_CMD_TIMEOUT * HZ; add_timer(&ep->stop_cmd_timer); xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); xhci_ring_cmd_db(xhci); } done: spin_unlock_irqrestore(&xhci->lock, flags); return ret; } /* Drop an endpoint from a new bandwidth configuration for this device. * Only one call to this function is allowed per endpoint before * check_bandwidth() or reset_bandwidth() must be called. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will * add the endpoint to the schedule with possibly new parameters denoted by a * different endpoint descriptor in usb_host_endpoint. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is * not allowed. * * The USB core will not allow URBs to be queued to an endpoint that is being * disabled, so there's no need for mutual exclusion to protect * the xhci->devs[slot_id] structure. */ int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep) { struct xhci_hcd *xhci; struct xhci_container_ctx *in_ctx, *out_ctx; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_slot_ctx *slot_ctx; unsigned int last_ctx; unsigned int ep_index; struct xhci_ep_ctx *ep_ctx; u32 drop_flag; u32 new_add_flags, new_drop_flags, new_slot_info; int ret; ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); if (ret <= 0) return ret; xhci = hcd_to_xhci(hcd); if (xhci->xhc_state & XHCI_STATE_DYING) return -ENODEV; xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); drop_flag = xhci_get_endpoint_flag(&ep->desc); if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", __func__, drop_flag); return 0; } in_ctx = xhci->devs[udev->slot_id]->in_ctx; out_ctx = xhci->devs[udev->slot_id]->out_ctx; ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); ep_index = xhci_get_endpoint_index(&ep->desc); ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); /* If the HC already knows the endpoint is disabled, * or the HCD has noted it is disabled, ignore this request */ if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == cpu_to_le32(EP_STATE_DISABLED)) || le32_to_cpu(ctrl_ctx->drop_flags) & xhci_get_endpoint_flag(&ep->desc)) { xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", __func__, ep); return 0; } ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); /* Update the last valid endpoint context, if we deleted the last one */ if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > LAST_CTX(last_ctx)) { slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); } new_slot_info = le32_to_cpu(slot_ctx->dev_info); xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", (unsigned int) ep->desc.bEndpointAddress, udev->slot_id, (unsigned int) new_drop_flags, (unsigned int) new_add_flags, (unsigned int) new_slot_info); return 0; } /* Add an endpoint to a new possible bandwidth configuration for this device. * Only one call to this function is allowed per endpoint before * check_bandwidth() or reset_bandwidth() must be called. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will * add the endpoint to the schedule with possibly new parameters denoted by a * different endpoint descriptor in usb_host_endpoint. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is * not allowed. * * The USB core will not allow URBs to be queued to an endpoint until the * configuration or alt setting is installed in the device, so there's no need * for mutual exclusion to protect the xhci->devs[slot_id] structure. */ int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep) { struct xhci_hcd *xhci; struct xhci_container_ctx *in_ctx, *out_ctx; unsigned int ep_index; struct xhci_slot_ctx *slot_ctx; struct xhci_input_control_ctx *ctrl_ctx; u32 added_ctxs; unsigned int last_ctx; u32 new_add_flags, new_drop_flags, new_slot_info; struct xhci_virt_device *virt_dev; int ret = 0; ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); if (ret <= 0) { /* So we won't queue a reset ep command for a root hub */ ep->hcpriv = NULL; return ret; } xhci = hcd_to_xhci(hcd); if (xhci->xhc_state & XHCI_STATE_DYING) return -ENODEV; added_ctxs = xhci_get_endpoint_flag(&ep->desc); last_ctx = xhci_last_valid_endpoint(added_ctxs); if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { /* FIXME when we have to issue an evaluate endpoint command to * deal with ep0 max packet size changing once we get the * descriptors */ xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", __func__, added_ctxs); return 0; } virt_dev = xhci->devs[udev->slot_id]; in_ctx = virt_dev->in_ctx; out_ctx = virt_dev->out_ctx; ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); ep_index = xhci_get_endpoint_index(&ep->desc); /* If this endpoint is already in use, and the upper layers are trying * to add it again without dropping it, reject the addition. */ if (virt_dev->eps[ep_index].ring && !(le32_to_cpu(ctrl_ctx->drop_flags) & xhci_get_endpoint_flag(&ep->desc))) { xhci_warn(xhci, "Trying to add endpoint 0x%x " "without dropping it.\n", (unsigned int) ep->desc.bEndpointAddress); return -EINVAL; } /* If the HCD has already noted the endpoint is enabled, * ignore this request. */ if (le32_to_cpu(ctrl_ctx->add_flags) & xhci_get_endpoint_flag(&ep->desc)) { xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", __func__, ep); return 0; } /* * Configuration and alternate setting changes must be done in * process context, not interrupt context (or so documenation * for usb_set_interface() and usb_set_configuration() claim). */ if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", __func__, ep->desc.bEndpointAddress); return -ENOMEM; } ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); /* If xhci_endpoint_disable() was called for this endpoint, but the * xHC hasn't been notified yet through the check_bandwidth() call, * this re-adds a new state for the endpoint from the new endpoint * descriptors. We must drop and re-add this endpoint, so we leave the * drop flags alone. */ new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); /* Update the last valid endpoint context, if we just added one past */ if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < LAST_CTX(last_ctx)) { slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); } new_slot_info = le32_to_cpu(slot_ctx->dev_info); /* Store the usb_device pointer for later use */ ep->hcpriv = udev; xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", (unsigned int) ep->desc.bEndpointAddress, udev->slot_id, (unsigned int) new_drop_flags, (unsigned int) new_add_flags, (unsigned int) new_slot_info); return 0; } static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) { struct xhci_input_control_ctx *ctrl_ctx; struct xhci_ep_ctx *ep_ctx; struct xhci_slot_ctx *slot_ctx; int i; /* When a device's add flag and drop flag are zero, any subsequent * configure endpoint command will leave that endpoint's state * untouched. Make sure we don't leave any old state in the input * endpoint contexts. */ ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); ctrl_ctx->drop_flags = 0; ctrl_ctx->add_flags = 0; slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); /* Endpoint 0 is always valid */ slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); for (i = 1; i < 31; ++i) { ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); ep_ctx->ep_info = 0; ep_ctx->ep_info2 = 0; ep_ctx->deq = 0; ep_ctx->tx_info = 0; } } static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, struct usb_device *udev, u32 *cmd_status) { int ret; switch (*cmd_status) { case COMP_ENOMEM: dev_warn(&udev->dev, "Not enough host controller resources " "for new device state.\n"); ret = -ENOMEM; /* FIXME: can we allocate more resources for the HC? */ break; case COMP_BW_ERR: case COMP_2ND_BW_ERR: dev_warn(&udev->dev, "Not enough bandwidth " "for new device state.\n"); ret = -ENOSPC; /* FIXME: can we go back to the old state? */ break; case COMP_TRB_ERR: /* the HCD set up something wrong */ dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " "add flag = 1, " "and endpoint is not disabled.\n"); ret = -EINVAL; break; case COMP_DEV_ERR: dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " "configure command.\n"); ret = -ENODEV; break; case COMP_SUCCESS: dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); ret = 0; break; default: xhci_err(xhci, "ERROR: unexpected command completion " "code 0x%x.\n", *cmd_status); ret = -EINVAL; break; } return ret; } static int xhci_evaluate_context_result(struct xhci_hcd *xhci, struct usb_device *udev, u32 *cmd_status) { int ret; struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; switch (*cmd_status) { case COMP_EINVAL: dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " "context command.\n"); ret = -EINVAL; break; case COMP_EBADSLT: dev_warn(&udev->dev, "WARN: slot not enabled for" "evaluate context command.\n"); ret = -EINVAL; break; case COMP_CTX_STATE: dev_warn(&udev->dev, "WARN: invalid context state for " "evaluate context command.\n"); xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); ret = -EINVAL; break; case COMP_DEV_ERR: dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " "context command.\n"); ret = -ENODEV; break; case COMP_MEL_ERR: /* Max Exit Latency too large error */ dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); ret = -EINVAL; break; case COMP_SUCCESS: dev_dbg(&udev->dev, "Successful evaluate context command\n"); ret = 0; break; default: xhci_err(xhci, "ERROR: unexpected command completion " "code 0x%x.\n", *cmd_status); ret = -EINVAL; break; } return ret; } static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx) { struct xhci_input_control_ctx *ctrl_ctx; u32 valid_add_flags; u32 valid_drop_flags; ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); /* Ignore the slot flag (bit 0), and the default control endpoint flag * (bit 1). The default control endpoint is added during the Address * Device command and is never removed until the slot is disabled. */ valid_add_flags = ctrl_ctx->add_flags >> 2; valid_drop_flags = ctrl_ctx->drop_flags >> 2; /* Use hweight32 to count the number of ones in the add flags, or * number of endpoints added. Don't count endpoints that are changed * (both added and dropped). */ return hweight32(valid_add_flags) - hweight32(valid_add_flags & valid_drop_flags); } static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx) { struct xhci_input_control_ctx *ctrl_ctx; u32 valid_add_flags; u32 valid_drop_flags; ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); valid_add_flags = ctrl_ctx->add_flags >> 2; valid_drop_flags = ctrl_ctx->drop_flags >> 2; return hweight32(valid_drop_flags) - hweight32(valid_add_flags & valid_drop_flags); } /* * We need to reserve the new number of endpoints before the configure endpoint * command completes. We can't subtract the dropped endpoints from the number * of active endpoints until the command completes because we can oversubscribe * the host in this case: * * - the first configure endpoint command drops more endpoints than it adds * - a second configure endpoint command that adds more endpoints is queued * - the first configure endpoint command fails, so the config is unchanged * - the second command may succeed, even though there isn't enough resources * * Must be called with xhci->lock held. */ static int xhci_reserve_host_resources(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx) { u32 added_eps; added_eps = xhci_count_num_new_endpoints(xhci, in_ctx); if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { xhci_dbg(xhci, "Not enough ep ctxs: " "%u active, need to add %u, limit is %u.\n", xhci->num_active_eps, added_eps, xhci->limit_active_eps); return -ENOMEM; } xhci->num_active_eps += added_eps; xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, xhci->num_active_eps); return 0; } /* * The configure endpoint was failed by the xHC for some other reason, so we * need to revert the resources that failed configuration would have used. * * Must be called with xhci->lock held. */ static void xhci_free_host_resources(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx) { u32 num_failed_eps; num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx); xhci->num_active_eps -= num_failed_eps; xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", num_failed_eps, xhci->num_active_eps); } /* * Now that the command has completed, clean up the active endpoint count by * subtracting out the endpoints that were dropped (but not changed). * * Must be called with xhci->lock held. */ static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx) { u32 num_dropped_eps; num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx); xhci->num_active_eps -= num_dropped_eps; if (num_dropped_eps) xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", num_dropped_eps, xhci->num_active_eps); } static unsigned int xhci_get_block_size(struct usb_device *udev) { switch (udev->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: return FS_BLOCK; case USB_SPEED_HIGH: return HS_BLOCK; case USB_SPEED_SUPER: return SS_BLOCK; case USB_SPEED_UNKNOWN: case USB_SPEED_WIRELESS: default: /* Should never happen */ return 1; } } static unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) { if (interval_bw->overhead[LS_OVERHEAD_TYPE]) return LS_OVERHEAD; if (interval_bw->overhead[FS_OVERHEAD_TYPE]) return FS_OVERHEAD; return HS_OVERHEAD; } /* If we are changing a LS/FS device under a HS hub, * make sure (if we are activating a new TT) that the HS bus has enough * bandwidth for this new TT. */ static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, int old_active_eps) { struct xhci_interval_bw_table *bw_table; struct xhci_tt_bw_info *tt_info; /* Find the bandwidth table for the root port this TT is attached to. */ bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; tt_info = virt_dev->tt_info; /* If this TT already had active endpoints, the bandwidth for this TT * has already been added. Removing all periodic endpoints (and thus * making the TT enactive) will only decrease the bandwidth used. */ if (old_active_eps) return 0; if (old_active_eps == 0 && tt_info->active_eps != 0) { if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) return -ENOMEM; return 0; } /* Not sure why we would have no new active endpoints... * * Maybe because of an Evaluate Context change for a hub update or a * control endpoint 0 max packet size change? * FIXME: skip the bandwidth calculation in that case. */ return 0; } static int xhci_check_ss_bw(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) { unsigned int bw_reserved; bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) return -ENOMEM; bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) return -ENOMEM; return 0; } /* * This algorithm is a very conservative estimate of the worst-case scheduling * scenario for any one interval. The hardware dynamically schedules the * packets, so we can't tell which microframe could be the limiting factor in * the bandwidth scheduling. This only takes into account periodic endpoints. * * Obviously, we can't solve an NP complete problem to find the minimum worst * case scenario. Instead, we come up with an estimate that is no less than * the worst case bandwidth used for any one microframe, but may be an * over-estimate. * * We walk the requirements for each endpoint by interval, starting with the * smallest interval, and place packets in the schedule where there is only one * possible way to schedule packets for that interval. In order to simplify * this algorithm, we record the largest max packet size for each interval, and * assume all packets will be that size. * * For interval 0, we obviously must schedule all packets for each interval. * The bandwidth for interval 0 is just the amount of data to be transmitted * (the sum of all max ESIT payload sizes, plus any overhead per packet times * the number of packets). * * For interval 1, we have two possible microframes to schedule those packets * in. For this algorithm, if we can schedule the same number of packets for * each possible scheduling opportunity (each microframe), we will do so. The * remaining number of packets will be saved to be transmitted in the gaps in * the next interval's scheduling sequence. * * As we move those remaining packets to be scheduled with interval 2 packets, * we have to double the number of remaining packets to transmit. This is * because the intervals are actually powers of 2, and we would be transmitting * the previous interval's packets twice in this interval. We also have to be * sure that when we look at the largest max packet size for this interval, we * also look at the largest max packet size for the remaining packets and take * the greater of the two. * * The algorithm continues to evenly distribute packets in each scheduling * opportunity, and push the remaining packets out, until we get to the last * interval. Then those packets and their associated overhead are just added * to the bandwidth used. */ static int xhci_check_bw_table(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, int old_active_eps) { unsigned int bw_reserved; unsigned int max_bandwidth; unsigned int bw_used; unsigned int block_size; struct xhci_interval_bw_table *bw_table; unsigned int packet_size = 0; unsigned int overhead = 0; unsigned int packets_transmitted = 0; unsigned int packets_remaining = 0; unsigned int i; if (virt_dev->udev->speed == USB_SPEED_SUPER) return xhci_check_ss_bw(xhci, virt_dev); if (virt_dev->udev->speed == USB_SPEED_HIGH) { max_bandwidth = HS_BW_LIMIT; /* Convert percent of bus BW reserved to blocks reserved */ bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); } else { max_bandwidth = FS_BW_LIMIT; bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); } bw_table = virt_dev->bw_table; /* We need to translate the max packet size and max ESIT payloads into * the units the hardware uses. */ block_size = xhci_get_block_size(virt_dev->udev); /* If we are manipulating a LS/FS device under a HS hub, double check * that the HS bus has enough bandwidth if we are activing a new TT. */ if (virt_dev->tt_info) { xhci_dbg(xhci, "Recalculating BW for rootport %u\n", virt_dev->real_port); if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { xhci_warn(xhci, "Not enough bandwidth on HS bus for " "newly activated TT.\n"); return -ENOMEM; } xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", virt_dev->tt_info->slot_id, virt_dev->tt_info->ttport); } else { xhci_dbg(xhci, "Recalculating BW for rootport %u\n", virt_dev->real_port); } /* Add in how much bandwidth will be used for interval zero, or the * rounded max ESIT payload + number of packets * largest overhead. */ bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + bw_table->interval_bw[0].num_packets * xhci_get_largest_overhead(&bw_table->interval_bw[0]); for (i = 1; i < XHCI_MAX_INTERVAL; i++) { unsigned int bw_added; unsigned int largest_mps; unsigned int interval_overhead; /* * How many packets could we transmit in this interval? * If packets didn't fit in the previous interval, we will need * to transmit that many packets twice within this interval. */ packets_remaining = 2 * packets_remaining + bw_table->interval_bw[i].num_packets; /* Find the largest max packet size of this or the previous * interval. */ if (list_empty(&bw_table->interval_bw[i].endpoints)) largest_mps = 0; else { struct xhci_virt_ep *virt_ep; struct list_head *ep_entry; ep_entry = bw_table->interval_bw[i].endpoints.next; virt_ep = list_entry(ep_entry, struct xhci_virt_ep, bw_endpoint_list); /* Convert to blocks, rounding up */ largest_mps = DIV_ROUND_UP( virt_ep->bw_info.max_packet_size, block_size); } if (largest_mps > packet_size) packet_size = largest_mps; /* Use the larger overhead of this or the previous interval. */ interval_overhead = xhci_get_largest_overhead( &bw_table->interval_bw[i]); if (interval_overhead > overhead) overhead = interval_overhead; /* How many packets can we evenly distribute across * (1 << (i + 1)) possible scheduling opportunities? */ packets_transmitted = packets_remaining >> (i + 1); /* Add in the bandwidth used for those scheduled packets */ bw_added = packets_transmitted * (overhead + packet_size); /* How many packets do we have remaining to transmit? */ packets_remaining = packets_remaining % (1 << (i + 1)); /* What largest max packet size should those packets have? */ /* If we've transmitted all packets, don't carry over the * largest packet size. */ if (packets_remaining == 0) { packet_size = 0; overhead = 0; } else if (packets_transmitted > 0) { /* Otherwise if we do have remaining packets, and we've * scheduled some packets in this interval, take the * largest max packet size from endpoints with this * interval. */ packet_size = largest_mps; overhead = interval_overhead; } /* Otherwise carry over packet_size and overhead from the last * time we had a remainder. */ bw_used += bw_added; if (bw_used > max_bandwidth) { xhci_warn(xhci, "Not enough bandwidth. " "Proposed: %u, Max: %u\n", bw_used, max_bandwidth); return -ENOMEM; } } /* * Ok, we know we have some packets left over after even-handedly * scheduling interval 15. We don't know which microframes they will * fit into, so we over-schedule and say they will be scheduled every * microframe. */ if (packets_remaining > 0) bw_used += overhead + packet_size; if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { unsigned int port_index = virt_dev->real_port - 1; /* OK, we're manipulating a HS device attached to a * root port bandwidth domain. Include the number of active TTs * in the bandwidth used. */ bw_used += TT_HS_OVERHEAD * xhci->rh_bw[port_index].num_active_tts; } xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " "Available: %u " "percent\n", bw_used, max_bandwidth, bw_reserved, (max_bandwidth - bw_used - bw_reserved) * 100 / max_bandwidth); bw_used += bw_reserved; if (bw_used > max_bandwidth) { xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", bw_used, max_bandwidth); return -ENOMEM; } bw_table->bw_used = bw_used; return 0; } static bool xhci_is_async_ep(unsigned int ep_type) { return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && ep_type != ISOC_IN_EP && ep_type != INT_IN_EP); } static bool xhci_is_sync_in_ep(unsigned int ep_type) { return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); } static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) { unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); if (ep_bw->ep_interval == 0) return SS_OVERHEAD_BURST + (ep_bw->mult * ep_bw->num_packets * (SS_OVERHEAD + mps)); return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 1 << ep_bw->ep_interval); } void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, struct xhci_bw_info *ep_bw, struct xhci_interval_bw_table *bw_table, struct usb_device *udev, struct xhci_virt_ep *virt_ep, struct xhci_tt_bw_info *tt_info) { struct xhci_interval_bw *interval_bw; int normalized_interval; if (xhci_is_async_ep(ep_bw->type)) return; if (udev->speed == USB_SPEED_SUPER) { if (xhci_is_sync_in_ep(ep_bw->type)) xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= xhci_get_ss_bw_consumed(ep_bw); else xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= xhci_get_ss_bw_consumed(ep_bw); return; } /* SuperSpeed endpoints never get added to intervals in the table, so * this check is only valid for HS/FS/LS devices. */ if (list_empty(&virt_ep->bw_endpoint_list)) return; /* For LS/FS devices, we need to translate the interval expressed in * microframes to frames. */ if (udev->speed == USB_SPEED_HIGH) normalized_interval = ep_bw->ep_interval; else normalized_interval = ep_bw->ep_interval - 3; if (normalized_interval == 0) bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; interval_bw = &bw_table->interval_bw[normalized_interval]; interval_bw->num_packets -= ep_bw->num_packets; switch (udev->speed) { case USB_SPEED_LOW: interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; break; case USB_SPEED_FULL: interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; break; case USB_SPEED_HIGH: interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; break; case USB_SPEED_SUPER: case USB_SPEED_UNKNOWN: case USB_SPEED_WIRELESS: /* Should never happen because only LS/FS/HS endpoints will get * added to the endpoint list. */ return; } if (tt_info) tt_info->active_eps -= 1; list_del_init(&virt_ep->bw_endpoint_list); } static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, struct xhci_bw_info *ep_bw, struct xhci_interval_bw_table *bw_table, struct usb_device *udev, struct xhci_virt_ep *virt_ep, struct xhci_tt_bw_info *tt_info) { struct xhci_interval_bw *interval_bw; struct xhci_virt_ep *smaller_ep; int normalized_interval; if (xhci_is_async_ep(ep_bw->type)) return; if (udev->speed == USB_SPEED_SUPER) { if (xhci_is_sync_in_ep(ep_bw->type)) xhci->devs[udev->slot_id]->bw_table->ss_bw_in += xhci_get_ss_bw_consumed(ep_bw); else xhci->devs[udev->slot_id]->bw_table->ss_bw_out += xhci_get_ss_bw_consumed(ep_bw); return; } /* For LS/FS devices, we need to translate the interval expressed in * microframes to frames. */ if (udev->speed == USB_SPEED_HIGH) normalized_interval = ep_bw->ep_interval; else normalized_interval = ep_bw->ep_interval - 3; if (normalized_interval == 0) bw_table->interval0_esit_payload += ep_bw->max_esit_payload; interval_bw = &bw_table->interval_bw[normalized_interval]; interval_bw->num_packets += ep_bw->num_packets; switch (udev->speed) { case USB_SPEED_LOW: interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; break; case USB_SPEED_FULL: interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; break; case USB_SPEED_HIGH: interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; break; case USB_SPEED_SUPER: case USB_SPEED_UNKNOWN: case USB_SPEED_WIRELESS: /* Should never happen because only LS/FS/HS endpoints will get * added to the endpoint list. */ return; } if (tt_info) tt_info->active_eps += 1; /* Insert the endpoint into the list, largest max packet size first. */ list_for_each_entry(smaller_ep, &interval_bw->endpoints, bw_endpoint_list) { if (ep_bw->max_packet_size >= smaller_ep->bw_info.max_packet_size) { /* Add the new ep before the smaller endpoint */ list_add_tail(&virt_ep->bw_endpoint_list, &smaller_ep->bw_endpoint_list); return; } } /* Add the new endpoint at the end of the list. */ list_add_tail(&virt_ep->bw_endpoint_list, &interval_bw->endpoints); } void xhci_update_tt_active_eps(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, int old_active_eps) { struct xhci_root_port_bw_info *rh_bw_info; if (!virt_dev->tt_info) return; rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; if (old_active_eps == 0 && virt_dev->tt_info->active_eps != 0) { rh_bw_info->num_active_tts += 1; rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; } else if (old_active_eps != 0 && virt_dev->tt_info->active_eps == 0) { rh_bw_info->num_active_tts -= 1; rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; } } static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct xhci_container_ctx *in_ctx) { struct xhci_bw_info ep_bw_info[31]; int i; struct xhci_input_control_ctx *ctrl_ctx; int old_active_eps = 0; if (virt_dev->tt_info) old_active_eps = virt_dev->tt_info->active_eps; ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); for (i = 0; i < 31; i++) { if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) continue; /* Make a copy of the BW info in case we need to revert this */ memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, sizeof(ep_bw_info[i])); /* Drop the endpoint from the interval table if the endpoint is * being dropped or changed. */ if (EP_IS_DROPPED(ctrl_ctx, i)) xhci_drop_ep_from_interval_table(xhci, &virt_dev->eps[i].bw_info, virt_dev->bw_table, virt_dev->udev, &virt_dev->eps[i], virt_dev->tt_info); } /* Overwrite the information stored in the endpoints' bw_info */ xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); for (i = 0; i < 31; i++) { /* Add any changed or added endpoints to the interval table */ if (EP_IS_ADDED(ctrl_ctx, i)) xhci_add_ep_to_interval_table(xhci, &virt_dev->eps[i].bw_info, virt_dev->bw_table, virt_dev->udev, &virt_dev->eps[i], virt_dev->tt_info); } if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { /* Ok, this fits in the bandwidth we have. * Update the number of active TTs. */ xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); return 0; } /* We don't have enough bandwidth for this, revert the stored info. */ for (i = 0; i < 31; i++) { if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) continue; /* Drop the new copies of any added or changed endpoints from * the interval table. */ if (EP_IS_ADDED(ctrl_ctx, i)) { xhci_drop_ep_from_interval_table(xhci, &virt_dev->eps[i].bw_info, virt_dev->bw_table, virt_dev->udev, &virt_dev->eps[i], virt_dev->tt_info); } /* Revert the endpoint back to its old information */ memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], sizeof(ep_bw_info[i])); /* Add any changed or dropped endpoints back into the table */ if (EP_IS_DROPPED(ctrl_ctx, i)) xhci_add_ep_to_interval_table(xhci, &virt_dev->eps[i].bw_info, virt_dev->bw_table, virt_dev->udev, &virt_dev->eps[i], virt_dev->tt_info); } return -ENOMEM; } /* Issue a configure endpoint command or evaluate context command * and wait for it to finish. */ static int xhci_configure_endpoint(struct xhci_hcd *xhci, struct usb_device *udev, struct xhci_command *command, bool ctx_change, bool must_succeed) { int ret; int timeleft; unsigned long flags; struct xhci_container_ctx *in_ctx; struct completion *cmd_completion; u32 *cmd_status; struct xhci_virt_device *virt_dev; union xhci_trb *cmd_trb; spin_lock_irqsave(&xhci->lock, flags); virt_dev = xhci->devs[udev->slot_id]; if (command) in_ctx = command->in_ctx; else in_ctx = virt_dev->in_ctx; if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && xhci_reserve_host_resources(xhci, in_ctx)) { spin_unlock_irqrestore(&xhci->lock, flags); xhci_warn(xhci, "Not enough host resources, " "active endpoint contexts = %u\n", xhci->num_active_eps); return -ENOMEM; } if ((xhci->quirks & XHCI_SW_BW_CHECKING) && xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) xhci_free_host_resources(xhci, in_ctx); spin_unlock_irqrestore(&xhci->lock, flags); xhci_warn(xhci, "Not enough bandwidth\n"); return -ENOMEM; } if (command) { cmd_completion = command->completion; cmd_status = &command->status; command->command_trb = xhci->cmd_ring->enqueue; /* Enqueue pointer can be left pointing to the link TRB, * we must handle that */ if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) command->command_trb = xhci->cmd_ring->enq_seg->next->trbs; list_add_tail(&command->cmd_list, &virt_dev->cmd_list); } else { cmd_completion = &virt_dev->cmd_completion; cmd_status = &virt_dev->cmd_status; } init_completion(cmd_completion); cmd_trb = xhci->cmd_ring->dequeue; if (!ctx_change) ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, udev->slot_id, must_succeed); else ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, udev->slot_id, must_succeed); if (ret < 0) { if (command) list_del(&command->cmd_list); if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) xhci_free_host_resources(xhci, in_ctx); spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); return -ENOMEM; } xhci_ring_cmd_db(xhci); spin_unlock_irqrestore(&xhci->lock, flags); /* Wait for the configure endpoint command to complete */ timeleft = wait_for_completion_interruptible_timeout( cmd_completion, XHCI_CMD_DEFAULT_TIMEOUT); if (timeleft <= 0) { xhci_warn(xhci, "%s while waiting for %s command\n", timeleft == 0 ? "Timeout" : "Signal", ctx_change == 0 ? "configure endpoint" : "evaluate context"); /* cancel the configure endpoint command */ ret = xhci_cancel_cmd(xhci, command, cmd_trb); if (ret < 0) return ret; return -ETIME; } if (!ctx_change) ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); else ret = xhci_evaluate_context_result(xhci, udev, cmd_status); if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { spin_lock_irqsave(&xhci->lock, flags); /* If the command failed, remove the reserved resources. * Otherwise, clean up the estimate to include dropped eps. */ if (ret) xhci_free_host_resources(xhci, in_ctx); else xhci_finish_resource_reservation(xhci, in_ctx); spin_unlock_irqrestore(&xhci->lock, flags); } return ret; } /* Called after one or more calls to xhci_add_endpoint() or * xhci_drop_endpoint(). If this call fails, the USB core is expected * to call xhci_reset_bandwidth(). * * Since we are in the middle of changing either configuration or * installing a new alt setting, the USB core won't allow URBs to be * enqueued for any endpoint on the old config or interface. Nothing * else should be touching the xhci->devs[slot_id] structure, so we * don't need to take the xhci->lock for manipulating that. */ int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) { int i; int ret = 0; struct xhci_hcd *xhci; struct xhci_virt_device *virt_dev; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_slot_ctx *slot_ctx; ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); if (ret <= 0) return ret; xhci = hcd_to_xhci(hcd); if (xhci->xhc_state & XHCI_STATE_DYING) return -ENODEV; xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); virt_dev = xhci->devs[udev->slot_id]; /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); /* Don't issue the command if there's no endpoints to update. */ if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && ctrl_ctx->drop_flags == 0) return 0; xhci_dbg(xhci, "New Input Control Context:\n"); slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); xhci_dbg_ctx(xhci, virt_dev->in_ctx, LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); ret = xhci_configure_endpoint(xhci, udev, NULL, false, false); if (ret) { /* Callee should call reset_bandwidth() */ return ret; } xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); xhci_dbg_ctx(xhci, virt_dev->out_ctx, LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); /* Free any rings that were dropped, but not changed. */ for (i = 1; i < 31; ++i) { if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); } xhci_zero_in_ctx(xhci, virt_dev); /* * Install any rings for completely new endpoints or changed endpoints, * and free or cache any old rings from changed endpoints. */ for (i = 1; i < 31; ++i) { if (!virt_dev->eps[i].new_ring) continue; /* Only cache or free the old ring if it exists. * It may not if this is the first add of an endpoint. */ if (virt_dev->eps[i].ring) { xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); } virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; virt_dev->eps[i].new_ring = NULL; } return ret; } void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) { struct xhci_hcd *xhci; struct xhci_virt_device *virt_dev; int i, ret; ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); if (ret <= 0) return; xhci = hcd_to_xhci(hcd); xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); virt_dev = xhci->devs[udev->slot_id]; /* Free any rings allocated for added endpoints */ for (i = 0; i < 31; ++i) { if (virt_dev->eps[i].new_ring) { xhci_ring_free(xhci, virt_dev->eps[i].new_ring); virt_dev->eps[i].new_ring = NULL; } } xhci_zero_in_ctx(xhci, virt_dev); } static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_container_ctx *out_ctx, u32 add_flags, u32 drop_flags) { struct xhci_input_control_ctx *ctrl_ctx; ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); ctrl_ctx->add_flags = cpu_to_le32(add_flags); ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); xhci_slot_copy(xhci, in_ctx, out_ctx); ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); xhci_dbg(xhci, "Input Context:\n"); xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); } static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, struct xhci_dequeue_state *deq_state) { struct xhci_container_ctx *in_ctx; struct xhci_ep_ctx *ep_ctx; u32 added_ctxs; dma_addr_t addr; xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, xhci->devs[slot_id]->out_ctx, ep_index); in_ctx = xhci->devs[slot_id]->in_ctx; ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr); if (addr == 0) { xhci_warn(xhci, "WARN Cannot submit config ep after " "reset ep command\n"); xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", deq_state->new_deq_seg, deq_state->new_deq_ptr); return; } ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); } void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, struct usb_device *udev, unsigned int ep_index) { struct xhci_dequeue_state deq_state; struct xhci_virt_ep *ep; xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); ep = &xhci->devs[udev->slot_id]->eps[ep_index]; /* We need to move the HW's dequeue pointer past this TD, * or it will attempt to resend it on the next doorbell ring. */ xhci_find_new_dequeue_state(xhci, udev->slot_id, ep_index, ep->stopped_stream, ep->stopped_td, &deq_state); /* HW with the reset endpoint quirk will use the saved dequeue state to * issue a configure endpoint command later. */ if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { xhci_dbg(xhci, "Queueing new dequeue state\n"); xhci_queue_new_dequeue_state(xhci, udev->slot_id, ep_index, ep->stopped_stream, &deq_state); } else { /* Better hope no one uses the input context between now and the * reset endpoint completion! * XXX: No idea how this hardware will react when stream rings * are enabled. */ xhci_dbg(xhci, "Setting up input context for " "configure endpoint command\n"); xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, ep_index, &deq_state); } } /* Deal with stalled endpoints. The core should have sent the control message * to clear the halt condition. However, we need to make the xHCI hardware * reset its sequence number, since a device will expect a sequence number of * zero after the halt condition is cleared. * Context: in_interrupt */ void xhci_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct xhci_hcd *xhci; struct usb_device *udev; unsigned int ep_index; unsigned long flags; int ret; struct xhci_virt_ep *virt_ep; xhci = hcd_to_xhci(hcd); udev = (struct usb_device *) ep->hcpriv; /* Called with a root hub endpoint (or an endpoint that wasn't added * with xhci_add_endpoint() */ if (!ep->hcpriv) return; ep_index = xhci_get_endpoint_index(&ep->desc); virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; if (!virt_ep->stopped_td) { xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", ep->desc.bEndpointAddress); return; } if (usb_endpoint_xfer_control(&ep->desc)) { xhci_dbg(xhci, "Control endpoint stall already handled.\n"); return; } xhci_dbg(xhci, "Queueing reset endpoint command\n"); spin_lock_irqsave(&xhci->lock, flags); ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); /* * Can't change the ring dequeue pointer until it's transitioned to the * stopped state, which is only upon a successful reset endpoint * command. Better hope that last command worked! */ if (!ret) { xhci_cleanup_stalled_ring(xhci, udev, ep_index); kfree(virt_ep->stopped_td); xhci_ring_cmd_db(xhci); } virt_ep->stopped_td = NULL; virt_ep->stopped_trb = NULL; virt_ep->stopped_stream = 0; spin_unlock_irqrestore(&xhci->lock, flags); if (ret) xhci_warn(xhci, "FIXME allocate a new ring segment\n"); } static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, struct usb_device *udev, struct usb_host_endpoint *ep, unsigned int slot_id) { int ret; unsigned int ep_index; unsigned int ep_state; if (!ep) return -EINVAL; ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); if (ret <= 0) return -EINVAL; if (ep->ss_ep_comp.bmAttributes == 0) { xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" " descriptor for ep 0x%x does not support streams\n", ep->desc.bEndpointAddress); return -EINVAL; } ep_index = xhci_get_endpoint_index(&ep->desc); ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; if (ep_state & EP_HAS_STREAMS || ep_state & EP_GETTING_STREAMS) { xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " "already has streams set up.\n", ep->desc.bEndpointAddress); xhci_warn(xhci, "Send email to xHCI maintainer and ask for " "dynamic stream context array reallocation.\n"); return -EINVAL; } if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " "endpoint 0x%x; URBs are pending.\n", ep->desc.bEndpointAddress); return -EINVAL; } return 0; } static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, unsigned int *num_streams, unsigned int *num_stream_ctxs) { unsigned int max_streams; /* The stream context array size must be a power of two */ *num_stream_ctxs = roundup_pow_of_two(*num_streams); /* * Find out how many primary stream array entries the host controller * supports. Later we may use secondary stream arrays (similar to 2nd * level page entries), but that's an optional feature for xHCI host * controllers. xHCs must support at least 4 stream IDs. */ max_streams = HCC_MAX_PSA(xhci->hcc_params); if (*num_stream_ctxs > max_streams) { xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", max_streams); *num_stream_ctxs = max_streams; *num_streams = max_streams; } } /* Returns an error code if one of the endpoint already has streams. * This does not change any data structures, it only checks and gathers * information. */ static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, unsigned int *num_streams, u32 *changed_ep_bitmask) { unsigned int max_streams; unsigned int endpoint_flag; int i; int ret; for (i = 0; i < num_eps; i++) { ret = xhci_check_streams_endpoint(xhci, udev, eps[i], udev->slot_id); if (ret < 0) return ret; max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); if (max_streams < (*num_streams - 1)) { xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", eps[i]->desc.bEndpointAddress, max_streams); *num_streams = max_streams+1; } endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); if (*changed_ep_bitmask & endpoint_flag) return -EINVAL; *changed_ep_bitmask |= endpoint_flag; } return 0; } static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps) { u32 changed_ep_bitmask = 0; unsigned int slot_id; unsigned int ep_index; unsigned int ep_state; int i; slot_id = udev->slot_id; if (!xhci->devs[slot_id]) return 0; for (i = 0; i < num_eps; i++) { ep_index = xhci_get_endpoint_index(&eps[i]->desc); ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; /* Are streams already being freed for the endpoint? */ if (ep_state & EP_GETTING_NO_STREAMS) { xhci_warn(xhci, "WARN Can't disable streams for " "endpoint 0x%x\n, " "streams are being disabled already.", eps[i]->desc.bEndpointAddress); return 0; } /* Are there actually any streams to free? */ if (!(ep_state & EP_HAS_STREAMS) && !(ep_state & EP_GETTING_STREAMS)) { xhci_warn(xhci, "WARN Can't disable streams for " "endpoint 0x%x\n, " "streams are already disabled!", eps[i]->desc.bEndpointAddress); xhci_warn(xhci, "WARN xhci_free_streams() called " "with non-streams endpoint\n"); return 0; } changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); } return changed_ep_bitmask; } /* * The USB device drivers use this function (though the HCD interface in USB * core) to prepare a set of bulk endpoints to use streams. Streams are used to * coordinate mass storage command queueing across multiple endpoints (basically * a stream ID == a task ID). * * Setting up streams involves allocating the same size stream context array * for each endpoint and issuing a configure endpoint command for all endpoints. * * Don't allow the call to succeed if one endpoint only supports one stream * (which means it doesn't support streams at all). * * Drivers may get less stream IDs than they asked for, if the host controller * hardware or endpoints claim they can't support the number of requested * stream IDs. */ int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, unsigned int num_streams, gfp_t mem_flags) { int i, ret; struct xhci_hcd *xhci; struct xhci_virt_device *vdev; struct xhci_command *config_cmd; unsigned int ep_index; unsigned int num_stream_ctxs; unsigned long flags; u32 changed_ep_bitmask = 0; if (!eps) return -EINVAL; /* Add one to the number of streams requested to account for * stream 0 that is reserved for xHCI usage. */ num_streams += 1; xhci = hcd_to_xhci(hcd); xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", num_streams); config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); if (!config_cmd) { xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); return -ENOMEM; } /* Check to make sure all endpoints are not already configured for * streams. While we're at it, find the maximum number of streams that * all the endpoints will support and check for duplicate endpoints. */ spin_lock_irqsave(&xhci->lock, flags); ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, num_eps, &num_streams, &changed_ep_bitmask); if (ret < 0) { xhci_free_command(xhci, config_cmd); spin_unlock_irqrestore(&xhci->lock, flags); return ret; } if (num_streams <= 1) { xhci_warn(xhci, "WARN: endpoints can't handle " "more than one stream.\n"); xhci_free_command(xhci, config_cmd); spin_unlock_irqrestore(&xhci->lock, flags); return -EINVAL; } vdev = xhci->devs[udev->slot_id]; /* Mark each endpoint as being in transition, so * xhci_urb_enqueue() will reject all URBs. */ for (i = 0; i < num_eps; i++) { ep_index = xhci_get_endpoint_index(&eps[i]->desc); vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; } spin_unlock_irqrestore(&xhci->lock, flags); /* Setup internal data structures and allocate HW data structures for * streams (but don't install the HW structures in the input context * until we're sure all memory allocation succeeded). */ xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", num_stream_ctxs, num_streams); for (i = 0; i < num_eps; i++) { ep_index = xhci_get_endpoint_index(&eps[i]->desc); vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, num_stream_ctxs, num_streams, mem_flags); if (!vdev->eps[ep_index].stream_info) goto cleanup; /* Set maxPstreams in endpoint context and update deq ptr to * point to stream context array. FIXME */ } /* Set up the input context for a configure endpoint command. */ for (i = 0; i < num_eps; i++) { struct xhci_ep_ctx *ep_ctx; ep_index = xhci_get_endpoint_index(&eps[i]->desc); ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); xhci_endpoint_copy(xhci, config_cmd->in_ctx, vdev->out_ctx, ep_index); xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, vdev->eps[ep_index].stream_info); } /* Tell the HW to drop its old copy of the endpoint context info * and add the updated copy from the input context. */ xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); /* Issue and wait for the configure endpoint command */ ret = xhci_configure_endpoint(xhci, udev, config_cmd, false, false); /* xHC rejected the configure endpoint command for some reason, so we * leave the old ring intact and free our internal streams data * structure. */ if (ret < 0) goto cleanup; spin_lock_irqsave(&xhci->lock, flags); for (i = 0; i < num_eps; i++) { ep_index = xhci_get_endpoint_index(&eps[i]->desc); vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", udev->slot_id, ep_index); vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; } xhci_free_command(xhci, config_cmd); spin_unlock_irqrestore(&xhci->lock, flags); /* Subtract 1 for stream 0, which drivers can't use */ return num_streams - 1; cleanup: /* If it didn't work, free the streams! */ for (i = 0; i < num_eps; i++) { ep_index = xhci_get_endpoint_index(&eps[i]->desc); xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); vdev->eps[ep_index].stream_info = NULL; /* FIXME Unset maxPstreams in endpoint context and * update deq ptr to point to normal string ring. */ vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; xhci_endpoint_zero(xhci, vdev, eps[i]); } xhci_free_command(xhci, config_cmd); return -ENOMEM; } /* Transition the endpoint from using streams to being a "normal" endpoint * without streams. * * Modify the endpoint context state, submit a configure endpoint command, * and free all endpoint rings for streams if that completes successfully. */ int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, gfp_t mem_flags) { int i, ret; struct xhci_hcd *xhci; struct xhci_virt_device *vdev; struct xhci_command *command; unsigned int ep_index; unsigned long flags; u32 changed_ep_bitmask; xhci = hcd_to_xhci(hcd); vdev = xhci->devs[udev->slot_id]; /* Set up a configure endpoint command to remove the streams rings */ spin_lock_irqsave(&xhci->lock, flags); changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, udev, eps, num_eps); if (changed_ep_bitmask == 0) { spin_unlock_irqrestore(&xhci->lock, flags); return -EINVAL; } /* Use the xhci_command structure from the first endpoint. We may have * allocated too many, but the driver may call xhci_free_streams() for * each endpoint it grouped into one call to xhci_alloc_streams(). */ ep_index = xhci_get_endpoint_index(&eps[0]->desc); command = vdev->eps[ep_index].stream_info->free_streams_command; for (i = 0; i < num_eps; i++) { struct xhci_ep_ctx *ep_ctx; ep_index = xhci_get_endpoint_index(&eps[i]->desc); ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= EP_GETTING_NO_STREAMS; xhci_endpoint_copy(xhci, command->in_ctx, vdev->out_ctx, ep_index); xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, &vdev->eps[ep_index]); } xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); spin_unlock_irqrestore(&xhci->lock, flags); /* Issue and wait for the configure endpoint command, * which must succeed. */ ret = xhci_configure_endpoint(xhci, udev, command, false, true); /* xHC rejected the configure endpoint command for some reason, so we * leave the streams rings intact. */ if (ret < 0) return ret; spin_lock_irqsave(&xhci->lock, flags); for (i = 0; i < num_eps; i++) { ep_index = xhci_get_endpoint_index(&eps[i]->desc); xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); vdev->eps[ep_index].stream_info = NULL; /* FIXME Unset maxPstreams in endpoint context and * update deq ptr to point to normal string ring. */ vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; } spin_unlock_irqrestore(&xhci->lock, flags); return 0; } /* * Deletes endpoint resources for endpoints that were active before a Reset * Device command, or a Disable Slot command. The Reset Device command leaves * the control endpoint intact, whereas the Disable Slot command deletes it. * * Must be called with xhci->lock held. */ void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, bool drop_control_ep) { int i; unsigned int num_dropped_eps = 0; unsigned int drop_flags = 0; for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { if (virt_dev->eps[i].ring) { drop_flags |= 1 << i; num_dropped_eps++; } } xhci->num_active_eps -= num_dropped_eps; if (num_dropped_eps) xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " "%u now active.\n", num_dropped_eps, drop_flags, xhci->num_active_eps); } /* * This submits a Reset Device Command, which will set the device state to 0, * set the device address to 0, and disable all the endpoints except the default * control endpoint. The USB core should come back and call * xhci_address_device(), and then re-set up the configuration. If this is * called because of a usb_reset_and_verify_device(), then the old alternate * settings will be re-installed through the normal bandwidth allocation * functions. * * Wait for the Reset Device command to finish. Remove all structures * associated with the endpoints that were disabled. Clear the input device * structure? Cache the rings? Reset the control endpoint 0 max packet size? * * If the virt_dev to be reset does not exist or does not match the udev, * it means the device is lost, possibly due to the xHC restore error and * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to * re-allocate the device. */ int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) { int ret, i; unsigned long flags; struct xhci_hcd *xhci; unsigned int slot_id; struct xhci_virt_device *virt_dev; struct xhci_command *reset_device_cmd; int timeleft; int last_freed_endpoint; struct xhci_slot_ctx *slot_ctx; int old_active_eps = 0; ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); if (ret <= 0) return ret; xhci = hcd_to_xhci(hcd); slot_id = udev->slot_id; virt_dev = xhci->devs[slot_id]; if (!virt_dev) { xhci_dbg(xhci, "The device to be reset with slot ID %u does " "not exist. Re-allocate the device\n", slot_id); ret = xhci_alloc_dev(hcd, udev); if (ret == 1) return 0; else return -EINVAL; } if (virt_dev->udev != udev) { /* If the virt_dev and the udev does not match, this virt_dev * may belong to another udev. * Re-allocate the device. */ xhci_dbg(xhci, "The device to be reset with slot ID %u does " "not match the udev. Re-allocate the device\n", slot_id); ret = xhci_alloc_dev(hcd, udev); if (ret == 1) return 0; else return -EINVAL; } /* If device is not setup, there is no point in resetting it */ slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == SLOT_STATE_DISABLED) return 0; xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); /* Allocate the command structure that holds the struct completion. * Assume we're in process context, since the normal device reset * process has to wait for the device anyway. Storage devices are * reset as part of error handling, so use GFP_NOIO instead of * GFP_KERNEL. */ reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); if (!reset_device_cmd) { xhci_dbg(xhci, "Couldn't allocate command structure.\n"); return -ENOMEM; } /* Attempt to submit the Reset Device command to the command ring */ spin_lock_irqsave(&xhci->lock, flags); reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; /* Enqueue pointer can be left pointing to the link TRB, * we must handle that */ if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) reset_device_cmd->command_trb = xhci->cmd_ring->enq_seg->next->trbs; list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); ret = xhci_queue_reset_device(xhci, slot_id); if (ret) { xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); list_del(&reset_device_cmd->cmd_list); spin_unlock_irqrestore(&xhci->lock, flags); goto command_cleanup; } xhci_ring_cmd_db(xhci); spin_unlock_irqrestore(&xhci->lock, flags); /* Wait for the Reset Device command to finish */ timeleft = wait_for_completion_interruptible_timeout( reset_device_cmd->completion, USB_CTRL_SET_TIMEOUT); if (timeleft <= 0) { xhci_warn(xhci, "%s while waiting for reset device command\n", timeleft == 0 ? "Timeout" : "Signal"); spin_lock_irqsave(&xhci->lock, flags); /* The timeout might have raced with the event ring handler, so * only delete from the list if the item isn't poisoned. */ if (reset_device_cmd->cmd_list.next != LIST_POISON1) list_del(&reset_device_cmd->cmd_list); spin_unlock_irqrestore(&xhci->lock, flags); ret = -ETIME; goto command_cleanup; } /* The Reset Device command can't fail, according to the 0.95/0.96 spec, * unless we tried to reset a slot ID that wasn't enabled, * or the device wasn't in the addressed or configured state. */ ret = reset_device_cmd->status; switch (ret) { case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ case COMP_CTX_STATE: /* 0.96 completion code for same thing */ xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", slot_id, xhci_get_slot_state(xhci, virt_dev->out_ctx)); xhci_info(xhci, "Not freeing device rings.\n"); /* Don't treat this as an error. May change my mind later. */ ret = 0; goto command_cleanup; case COMP_SUCCESS: xhci_dbg(xhci, "Successful reset device command.\n"); break; default: if (xhci_is_vendor_info_code(xhci, ret)) break; xhci_warn(xhci, "Unknown completion code %u for " "reset device command.\n", ret); ret = -EINVAL; goto command_cleanup; } /* Free up host controller endpoint resources */ if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { spin_lock_irqsave(&xhci->lock, flags); /* Don't delete the default control endpoint resources */ xhci_free_device_endpoint_resources(xhci, virt_dev, false); spin_unlock_irqrestore(&xhci->lock, flags); } /* Everything but endpoint 0 is disabled, so free or cache the rings. */ last_freed_endpoint = 1; for (i = 1; i < 31; ++i) { struct xhci_virt_ep *ep = &virt_dev->eps[i]; if (ep->ep_state & EP_HAS_STREAMS) { xhci_free_stream_info(xhci, ep->stream_info); ep->stream_info = NULL; ep->ep_state &= ~EP_HAS_STREAMS; } if (ep->ring) { xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); last_freed_endpoint = i; } if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) xhci_drop_ep_from_interval_table(xhci, &virt_dev->eps[i].bw_info, virt_dev->bw_table, udev, &virt_dev->eps[i], virt_dev->tt_info); xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); } /* If necessary, update the number of active TTs on this root port */ xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); ret = 0; command_cleanup: xhci_free_command(xhci, reset_device_cmd); return ret; } /* * At this point, the struct usb_device is about to go away, the device has * disconnected, and all traffic has been stopped and the endpoints have been * disabled. Free any HC data structures associated with that device. */ void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_virt_device *virt_dev; unsigned long flags; u32 state; int i, ret; ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); /* If the host is halted due to driver unload, we still need to free the * device. */ if (ret <= 0 && ret != -ENODEV) return; virt_dev = xhci->devs[udev->slot_id]; /* Stop any wayward timer functions (which may grab the lock) */ for (i = 0; i < 31; ++i) { virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); } if (udev->usb2_hw_lpm_enabled) { xhci_set_usb2_hardware_lpm(hcd, udev, 0); udev->usb2_hw_lpm_enabled = 0; } spin_lock_irqsave(&xhci->lock, flags); /* Don't disable the slot if the host controller is dead. */ state = xhci_readl(xhci, &xhci->op_regs->status); if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || (xhci->xhc_state & XHCI_STATE_HALTED)) { xhci_free_virt_device(xhci, udev->slot_id); spin_unlock_irqrestore(&xhci->lock, flags); return; } if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); return; } xhci_ring_cmd_db(xhci); spin_unlock_irqrestore(&xhci->lock, flags); /* * Event command completion handler will free any data structures * associated with the slot. XXX Can free sleep? */ } /* * Checks if we have enough host controller resources for the default control * endpoint. * * Must be called with xhci->lock held. */ static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) { if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { xhci_dbg(xhci, "Not enough ep ctxs: " "%u active, need to add 1, limit is %u.\n", xhci->num_active_eps, xhci->limit_active_eps); return -ENOMEM; } xhci->num_active_eps += 1; xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", xhci->num_active_eps); return 0; } /* * Returns 0 if the xHC ran out of device slots, the Enable Slot command * timed out, or allocating memory failed. Returns 1 on success. */ int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); unsigned long flags; int timeleft; int ret; union xhci_trb *cmd_trb; spin_lock_irqsave(&xhci->lock, flags); cmd_trb = xhci->cmd_ring->dequeue; ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); if (ret) { spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); return 0; } xhci_ring_cmd_db(xhci); spin_unlock_irqrestore(&xhci->lock, flags); /* XXX: how much time for xHC slot assignment? */ timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, XHCI_CMD_DEFAULT_TIMEOUT); if (timeleft <= 0) { xhci_warn(xhci, "%s while waiting for a slot\n", timeleft == 0 ? "Timeout" : "Signal"); /* cancel the enable slot request */ return xhci_cancel_cmd(xhci, NULL, cmd_trb); } if (!xhci->slot_id) { xhci_err(xhci, "Error while assigning device slot ID\n"); return 0; } if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { spin_lock_irqsave(&xhci->lock, flags); ret = xhci_reserve_host_control_ep_resources(xhci); if (ret) { spin_unlock_irqrestore(&xhci->lock, flags); xhci_warn(xhci, "Not enough host resources, " "active endpoint contexts = %u\n", xhci->num_active_eps); goto disable_slot; } spin_unlock_irqrestore(&xhci->lock, flags); } /* Use GFP_NOIO, since this function can be called from * xhci_discover_or_reset_device(), which may be called as part of * mass storage driver error handling. */ if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); goto disable_slot; } udev->slot_id = xhci->slot_id; /* Is this a LS or FS device under a HS hub? */ /* Hub or peripherial? */ return 1; disable_slot: /* Disable slot, if we can do it without mem alloc */ spin_lock_irqsave(&xhci->lock, flags); if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) xhci_ring_cmd_db(xhci); spin_unlock_irqrestore(&xhci->lock, flags); return 0; } /* * Issue an Address Device command (which will issue a SetAddress request to * the device). * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so * we should only issue and wait on one address command at the same time. * * We add one to the device address issued by the hardware because the USB core * uses address 1 for the root hubs (even though they're not really devices). */ int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) { unsigned long flags; int timeleft; struct xhci_virt_device *virt_dev; int ret = 0; struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_slot_ctx *slot_ctx; struct xhci_input_control_ctx *ctrl_ctx; u64 temp_64; union xhci_trb *cmd_trb; if (!udev->slot_id) { xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); return -EINVAL; } virt_dev = xhci->devs[udev->slot_id]; if (WARN_ON(!virt_dev)) { /* * In plug/unplug torture test with an NEC controller, * a zero-dereference was observed once due to virt_dev = 0. * Print useful debug rather than crash if it is observed again! */ xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", udev->slot_id); return -EINVAL; } slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); /* * If this is the first Set Address since device plug-in or * virt_device realloaction after a resume with an xHCI power loss, * then set up the slot context. */ if (!slot_ctx->dev_info) xhci_setup_addressable_virt_dev(xhci, udev); /* Otherwise, update the control endpoint ring enqueue pointer. */ else xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); ctrl_ctx->drop_flags = 0; xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); spin_lock_irqsave(&xhci->lock, flags); cmd_trb = xhci->cmd_ring->dequeue; ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, udev->slot_id); if (ret) { spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); return ret; } xhci_ring_cmd_db(xhci); spin_unlock_irqrestore(&xhci->lock, flags); /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, XHCI_CMD_DEFAULT_TIMEOUT); /* FIXME: From section 4.3.4: "Software shall be responsible for timing * the SetAddress() "recovery interval" required by USB and aborting the * command on a timeout. */ if (timeleft <= 0) { xhci_warn(xhci, "%s while waiting for address device command\n", timeleft == 0 ? "Timeout" : "Signal"); /* cancel the address device command */ ret = xhci_cancel_cmd(xhci, NULL, cmd_trb); if (ret < 0) return ret; return -ETIME; } switch (virt_dev->cmd_status) { case COMP_CTX_STATE: case COMP_EBADSLT: xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", udev->slot_id); ret = -EINVAL; break; case COMP_TX_ERR: dev_warn(&udev->dev, "Device not responding to set address.\n"); ret = -EPROTO; break; case COMP_DEV_ERR: dev_warn(&udev->dev, "ERROR: Incompatible device for address " "device command.\n"); ret = -ENODEV; break; case COMP_SUCCESS: xhci_dbg(xhci, "Successful Address Device command\n"); break; default: xhci_err(xhci, "ERROR: unexpected command completion " "code 0x%x.\n", virt_dev->cmd_status); xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); ret = -EINVAL; break; } if (ret) { return ret; } temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", udev->slot_id, &xhci->dcbaa->dev_context_ptrs[udev->slot_id], (unsigned long long) le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", (unsigned long long)virt_dev->out_ctx->dma); xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); /* * USB core uses address 1 for the roothubs, so we add one to the * address given back to us by the HC. */ slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); /* Use kernel assigned address for devices; store xHC assigned * address locally. */ virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) + 1; /* Zero the input context control for later use */ ctrl_ctx->add_flags = 0; ctrl_ctx->drop_flags = 0; xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); return 0; } /* * Transfer the port index into real index in the HW port status * registers. Caculate offset between the port's PORTSC register * and port status base. Divide the number of per port register * to get the real index. The raw port number bases 1. */ int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; __le32 __iomem *addr; int raw_port; if (hcd->speed != HCD_USB3) addr = xhci->usb2_ports[port1 - 1]; else addr = xhci->usb3_ports[port1 - 1]; raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; return raw_port; } #ifdef CONFIG_PM_RUNTIME /* BESL to HIRD Encoding array for USB2 LPM */ static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; /* Calculate HIRD/BESL for USB2 PORTPMSC*/ static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, struct usb_device *udev) { int u2del, besl, besl_host; int besl_device = 0; u32 field; u2del = HCS_U2_LATENCY(xhci->hcs_params3); field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); if (field & USB_BESL_SUPPORT) { for (besl_host = 0; besl_host < 16; besl_host++) { if (xhci_besl_encoding[besl_host] >= u2del) break; } /* Use baseline BESL value as default */ if (field & USB_BESL_BASELINE_VALID) besl_device = USB_GET_BESL_BASELINE(field); else if (field & USB_BESL_DEEP_VALID) besl_device = USB_GET_BESL_DEEP(field); } else { if (u2del <= 50) besl_host = 0; else besl_host = (u2del - 51) / 75 + 1; } besl = besl_host + besl_device; if (besl > 15) besl = 15; return besl; } static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, struct usb_device *udev) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct dev_info *dev_info; __le32 __iomem **port_array; __le32 __iomem *addr, *pm_addr; u32 temp, dev_id; unsigned int port_num; unsigned long flags; int hird; int ret; if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || !udev->lpm_capable) return -EINVAL; /* we only support lpm for non-hub device connected to root hub yet */ if (!udev->parent || udev->parent->parent || udev->descriptor.bDeviceClass == USB_CLASS_HUB) return -EINVAL; spin_lock_irqsave(&xhci->lock, flags); /* Look for devices in lpm_failed_devs list */ dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | le16_to_cpu(udev->descriptor.idProduct); list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { if (dev_info->dev_id == dev_id) { ret = -EINVAL; goto finish; } } port_array = xhci->usb2_ports; port_num = udev->portnum - 1; if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); ret = -EINVAL; goto finish; } /* * Test USB 2.0 software LPM. * FIXME: some xHCI 1.0 hosts may implement a new register to set up * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 * in the June 2011 errata release. */ xhci_dbg(xhci, "test port %d software LPM\n", port_num); /* * Set L1 Device Slot and HIRD/BESL. * Check device's USB 2.0 extension descriptor to determine whether * HIRD or BESL shoule be used. See USB2.0 LPM errata. */ pm_addr = port_array[port_num] + 1; hird = xhci_calculate_hird_besl(xhci, udev); temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); xhci_writel(xhci, temp, pm_addr); /* Set port link state to U2(L1) */ addr = port_array[port_num]; xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); /* wait for ACK */ spin_unlock_irqrestore(&xhci->lock, flags); msleep(10); spin_lock_irqsave(&xhci->lock, flags); /* Check L1 Status */ ret = xhci_handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); if (ret != -ETIMEDOUT) { /* enter L1 successfully */ temp = xhci_readl(xhci, addr); xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", port_num, temp); ret = 0; } else { temp = xhci_readl(xhci, pm_addr); xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", port_num, temp & PORT_L1S_MASK); ret = -EINVAL; } /* Resume the port */ xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); spin_unlock_irqrestore(&xhci->lock, flags); msleep(10); spin_lock_irqsave(&xhci->lock, flags); /* Clear PLC */ xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); /* Check PORTSC to make sure the device is in the right state */ if (!ret) { temp = xhci_readl(xhci, addr); xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || (temp & PORT_PLS_MASK) != XDEV_U0) { xhci_dbg(xhci, "port L1 resume fail\n"); ret = -EINVAL; } } if (ret) { /* Insert dev to lpm_failed_devs list */ xhci_warn(xhci, "device LPM test failed, may disconnect and " "re-enumerate\n"); dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); if (!dev_info) { ret = -ENOMEM; goto finish; } dev_info->dev_id = dev_id; INIT_LIST_HEAD(&dev_info->list); list_add(&dev_info->list, &xhci->lpm_failed_devs); } else { xhci_ring_device(xhci, udev->slot_id); } finish: spin_unlock_irqrestore(&xhci->lock, flags); return ret; } int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, struct usb_device *udev, int enable) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); __le32 __iomem **port_array; __le32 __iomem *pm_addr; u32 temp; unsigned int port_num; unsigned long flags; int hird; if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || !udev->lpm_capable) return -EPERM; if (!udev->parent || udev->parent->parent || udev->descriptor.bDeviceClass == USB_CLASS_HUB) return -EPERM; if (udev->usb2_hw_lpm_capable != 1) return -EPERM; spin_lock_irqsave(&xhci->lock, flags); port_array = xhci->usb2_ports; port_num = udev->portnum - 1; pm_addr = port_array[port_num] + 1; temp = xhci_readl(xhci, pm_addr); xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", enable ? "enable" : "disable", port_num); hird = xhci_calculate_hird_besl(xhci, udev); if (enable) { temp &= ~PORT_HIRD_MASK; temp |= PORT_HIRD(hird) | PORT_RWE; xhci_writel(xhci, temp, pm_addr); temp = xhci_readl(xhci, pm_addr); temp |= PORT_HLE; xhci_writel(xhci, temp, pm_addr); } else { temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); xhci_writel(xhci, temp, pm_addr); } spin_unlock_irqrestore(&xhci->lock, flags); return 0; } int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); int ret; ret = xhci_usb2_software_lpm_test(hcd, udev); if (!ret) { xhci_dbg(xhci, "software LPM test succeed\n"); if (xhci->hw_lpm_support == 1) { udev->usb2_hw_lpm_capable = 1; ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); if (!ret) udev->usb2_hw_lpm_enabled = 1; } } return 0; } #else int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, struct usb_device *udev, int enable) { return 0; } int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) { return 0; } #endif /* CONFIG_PM_RUNTIME */ /*---------------------- USB 3.0 Link PM functions ------------------------*/ #ifdef CONFIG_PM /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ static unsigned long long xhci_service_interval_to_ns( struct usb_endpoint_descriptor *desc) { return (1ULL << (desc->bInterval - 1)) * 125 * 1000; } static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, enum usb3_link_state state) { unsigned long long sel; unsigned long long pel; unsigned int max_sel_pel; char *state_name; switch (state) { case USB3_LPM_U1: /* Convert SEL and PEL stored in nanoseconds to microseconds */ sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; state_name = "U1"; break; case USB3_LPM_U2: sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; state_name = "U2"; break; default: dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", __func__); return USB3_LPM_DISABLED; } if (sel <= max_sel_pel && pel <= max_sel_pel) return USB3_LPM_DEVICE_INITIATED; if (sel > max_sel_pel) dev_dbg(&udev->dev, "Device-initiated %s disabled " "due to long SEL %llu ms\n", state_name, sel); else dev_dbg(&udev->dev, "Device-initiated %s disabled " "due to long PEL %llu\n ms", state_name, pel); return USB3_LPM_DISABLED; } /* Returns the hub-encoded U1 timeout value. * The U1 timeout should be the maximum of the following values: * - For control endpoints, U1 system exit latency (SEL) * 3 * - For bulk endpoints, U1 SEL * 5 * - For interrupt endpoints: * - Notification EPs, U1 SEL * 3 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) */ static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, struct usb_endpoint_descriptor *desc) { unsigned long long timeout_ns; int ep_type; int intr_type; ep_type = usb_endpoint_type(desc); switch (ep_type) { case USB_ENDPOINT_XFER_CONTROL: timeout_ns = udev->u1_params.sel * 3; break; case USB_ENDPOINT_XFER_BULK: timeout_ns = udev->u1_params.sel * 5; break; case USB_ENDPOINT_XFER_INT: intr_type = usb_endpoint_interrupt_type(desc); if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { timeout_ns = udev->u1_params.sel * 3; break; } /* Otherwise the calculation is the same as isoc eps */ case USB_ENDPOINT_XFER_ISOC: timeout_ns = xhci_service_interval_to_ns(desc); timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); if (timeout_ns < udev->u1_params.sel * 2) timeout_ns = udev->u1_params.sel * 2; break; default: return 0; } /* The U1 timeout is encoded in 1us intervals. */ timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ if (timeout_ns == USB3_LPM_DISABLED) timeout_ns++; /* If the necessary timeout value is bigger than what we can set in the * USB 3.0 hub, we have to disable hub-initiated U1. */ if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) return timeout_ns; dev_dbg(&udev->dev, "Hub-initiated U1 disabled " "due to long timeout %llu ms\n", timeout_ns); return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); } /* Returns the hub-encoded U2 timeout value. * The U2 timeout should be the maximum of: * - 10 ms (to avoid the bandwidth impact on the scheduler) * - largest bInterval of any active periodic endpoint (to avoid going * into lower power link states between intervals). * - the U2 Exit Latency of the device */ static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, struct usb_endpoint_descriptor *desc) { unsigned long long timeout_ns; unsigned long long u2_del_ns; timeout_ns = 10 * 1000 * 1000; if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && (xhci_service_interval_to_ns(desc) > timeout_ns)) timeout_ns = xhci_service_interval_to_ns(desc); u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; if (u2_del_ns > timeout_ns) timeout_ns = u2_del_ns; /* The U2 timeout is encoded in 256us intervals */ timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); /* If the necessary timeout value is bigger than what we can set in the * USB 3.0 hub, we have to disable hub-initiated U2. */ if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) return timeout_ns; dev_dbg(&udev->dev, "Hub-initiated U2 disabled " "due to long timeout %llu ms\n", timeout_ns); return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); } static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, struct usb_device *udev, struct usb_endpoint_descriptor *desc, enum usb3_link_state state, u16 *timeout) { if (state == USB3_LPM_U1) { if (xhci->quirks & XHCI_INTEL_HOST) return xhci_calculate_intel_u1_timeout(udev, desc); } else { if (xhci->quirks & XHCI_INTEL_HOST) return xhci_calculate_intel_u2_timeout(udev, desc); } return USB3_LPM_DISABLED; } static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, struct usb_device *udev, struct usb_endpoint_descriptor *desc, enum usb3_link_state state, u16 *timeout) { u16 alt_timeout; alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, desc, state, timeout); /* If we found we can't enable hub-initiated LPM, or * the U1 or U2 exit latency was too high to allow * device-initiated LPM as well, just stop searching. */ if (alt_timeout == USB3_LPM_DISABLED || alt_timeout == USB3_LPM_DEVICE_INITIATED) { *timeout = alt_timeout; return -E2BIG; } if (alt_timeout > *timeout) *timeout = alt_timeout; return 0; } static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, struct usb_device *udev, struct usb_host_interface *alt, enum usb3_link_state state, u16 *timeout) { int j; for (j = 0; j < alt->desc.bNumEndpoints; j++) { if (xhci_update_timeout_for_endpoint(xhci, udev, &alt->endpoint[j].desc, state, timeout)) return -E2BIG; continue; } return 0; } static int xhci_check_intel_tier_policy(struct usb_device *udev, enum usb3_link_state state) { struct usb_device *parent; unsigned int num_hubs; if (state == USB3_LPM_U2) return 0; /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ for (parent = udev->parent, num_hubs = 0; parent->parent; parent = parent->parent) num_hubs++; if (num_hubs < 2) return 0; dev_dbg(&udev->dev, "Disabling U1 link state for device" " below second-tier hub.\n"); dev_dbg(&udev->dev, "Plug device into first-tier hub " "to decrease power consumption.\n"); return -E2BIG; } static int xhci_check_tier_policy(struct xhci_hcd *xhci, struct usb_device *udev, enum usb3_link_state state) { if (xhci->quirks & XHCI_INTEL_HOST) return xhci_check_intel_tier_policy(udev, state); return -EINVAL; } /* Returns the U1 or U2 timeout that should be enabled. * If the tier check or timeout setting functions return with a non-zero exit * code, that means the timeout value has been finalized and we shouldn't look * at any more endpoints. */ static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, struct usb_device *udev, enum usb3_link_state state) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct usb_host_config *config; char *state_name; int i; u16 timeout = USB3_LPM_DISABLED; if (state == USB3_LPM_U1) state_name = "U1"; else if (state == USB3_LPM_U2) state_name = "U2"; else { dev_warn(&udev->dev, "Can't enable unknown link state %i\n", state); return timeout; } if (xhci_check_tier_policy(xhci, udev, state) < 0) return timeout; /* Gather some information about the currently installed configuration * and alternate interface settings. */ if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, state, &timeout)) return timeout; config = udev->actconfig; if (!config) return timeout; for (i = 0; i < USB_MAXINTERFACES; i++) { struct usb_driver *driver; struct usb_interface *intf = config->interface[i]; if (!intf) continue; /* Check if any currently bound drivers want hub-initiated LPM * disabled. */ if (intf->dev.driver) { driver = to_usb_driver(intf->dev.driver); if (driver && driver->disable_hub_initiated_lpm) { dev_dbg(&udev->dev, "Hub-initiated %s disabled " "at request of driver %s\n", state_name, driver->name); return xhci_get_timeout_no_hub_lpm(udev, state); } } /* Not sure how this could happen... */ if (!intf->cur_altsetting) continue; if (xhci_update_timeout_for_interface(xhci, udev, intf->cur_altsetting, state, &timeout)) return timeout; } return timeout; } /* * Issue an Evaluate Context command to change the Maximum Exit Latency in the * slot context. If that succeeds, store the new MEL in the xhci_virt_device. */ static int xhci_change_max_exit_latency(struct xhci_hcd *xhci, struct usb_device *udev, u16 max_exit_latency) { struct xhci_virt_device *virt_dev; struct xhci_command *command; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_slot_ctx *slot_ctx; unsigned long flags; int ret; spin_lock_irqsave(&xhci->lock, flags); if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { spin_unlock_irqrestore(&xhci->lock, flags); return 0; } /* Attempt to issue an Evaluate Context command to change the MEL. */ virt_dev = xhci->devs[udev->slot_id]; command = xhci->lpm_command; xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); spin_unlock_irqrestore(&xhci->lock, flags); ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n"); xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); xhci_dbg_ctx(xhci, command->in_ctx, 0); /* Issue and wait for the evaluate context command. */ ret = xhci_configure_endpoint(xhci, udev, command, true, true); xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); if (!ret) { spin_lock_irqsave(&xhci->lock, flags); virt_dev->current_mel = max_exit_latency; spin_unlock_irqrestore(&xhci->lock, flags); } return ret; } static int calculate_max_exit_latency(struct usb_device *udev, enum usb3_link_state state_changed, u16 hub_encoded_timeout) { unsigned long long u1_mel_us = 0; unsigned long long u2_mel_us = 0; unsigned long long mel_us = 0; bool disabling_u1; bool disabling_u2; bool enabling_u1; bool enabling_u2; disabling_u1 = (state_changed == USB3_LPM_U1 && hub_encoded_timeout == USB3_LPM_DISABLED); disabling_u2 = (state_changed == USB3_LPM_U2 && hub_encoded_timeout == USB3_LPM_DISABLED); enabling_u1 = (state_changed == USB3_LPM_U1 && hub_encoded_timeout != USB3_LPM_DISABLED); enabling_u2 = (state_changed == USB3_LPM_U2 && hub_encoded_timeout != USB3_LPM_DISABLED); /* If U1 was already enabled and we're not disabling it, * or we're going to enable U1, account for the U1 max exit latency. */ if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || enabling_u1) u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || enabling_u2) u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); if (u1_mel_us > u2_mel_us) mel_us = u1_mel_us; else mel_us = u2_mel_us; /* xHCI host controller max exit latency field is only 16 bits wide. */ if (mel_us > MAX_EXIT) { dev_warn(&udev->dev, "Link PM max exit latency of %lluus " "is too big.\n", mel_us); return -E2BIG; } return mel_us; } /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, struct usb_device *udev, enum usb3_link_state state) { struct xhci_hcd *xhci; u16 hub_encoded_timeout; int mel; int ret; xhci = hcd_to_xhci(hcd); /* The LPM timeout values are pretty host-controller specific, so don't * enable hub-initiated timeouts unless the vendor has provided * information about their timeout algorithm. */ if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || !xhci->devs[udev->slot_id]) return USB3_LPM_DISABLED; hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); if (mel < 0) { /* Max Exit Latency is too big, disable LPM. */ hub_encoded_timeout = USB3_LPM_DISABLED; mel = 0; } ret = xhci_change_max_exit_latency(xhci, udev, mel); if (ret) return ret; return hub_encoded_timeout; } int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, struct usb_device *udev, enum usb3_link_state state) { struct xhci_hcd *xhci; u16 mel; int ret; xhci = hcd_to_xhci(hcd); if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || !xhci->devs[udev->slot_id]) return 0; mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); ret = xhci_change_max_exit_latency(xhci, udev, mel); if (ret) return ret; return 0; } #else /* CONFIG_PM */ int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, struct usb_device *udev, enum usb3_link_state state) { return USB3_LPM_DISABLED; } int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, struct usb_device *udev, enum usb3_link_state state) { return 0; } #endif /* CONFIG_PM */ /*-------------------------------------------------------------------------*/ /* Once a hub descriptor is fetched for a device, we need to update the xHC's * internal data structures for the device. */ int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, struct usb_tt *tt, gfp_t mem_flags) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_virt_device *vdev; struct xhci_command *config_cmd; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_slot_ctx *slot_ctx; unsigned long flags; unsigned think_time; int ret; /* Ignore root hubs */ if (!hdev->parent) return 0; vdev = xhci->devs[hdev->slot_id]; if (!vdev) { xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); return -EINVAL; } config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); if (!config_cmd) { xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); return -ENOMEM; } spin_lock_irqsave(&xhci->lock, flags); if (hdev->speed == USB_SPEED_HIGH && xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); xhci_free_command(xhci, config_cmd); spin_unlock_irqrestore(&xhci->lock, flags); return -ENOMEM; } xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); if (tt->multi) slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); if (xhci->hci_version > 0x95) { xhci_dbg(xhci, "xHCI version %x needs hub " "TT think time and number of ports\n", (unsigned int) xhci->hci_version); slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); /* Set TT think time - convert from ns to FS bit times. * 0 = 8 FS bit times, 1 = 16 FS bit times, * 2 = 24 FS bit times, 3 = 32 FS bit times. * * xHCI 1.0: this field shall be 0 if the device is not a * High-spped hub. */ think_time = tt->think_time; if (think_time != 0) think_time = (think_time / 666) - 1; if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) slot_ctx->tt_info |= cpu_to_le32(TT_THINK_TIME(think_time)); } else { xhci_dbg(xhci, "xHCI version %x doesn't need hub " "TT think time or number of ports\n", (unsigned int) xhci->hci_version); } slot_ctx->dev_state = 0; spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg(xhci, "Set up %s for hub device.\n", (xhci->hci_version > 0x95) ? "configure endpoint" : "evaluate context"); xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); /* Issue and wait for the configure endpoint or * evaluate context command. */ if (xhci->hci_version > 0x95) ret = xhci_configure_endpoint(xhci, hdev, config_cmd, false, false); else ret = xhci_configure_endpoint(xhci, hdev, config_cmd, true, false); xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); xhci_dbg_ctx(xhci, vdev->out_ctx, 0); xhci_free_command(xhci, config_cmd); return ret; } int xhci_get_frame(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); /* EHCI mods by the periodic size. Why? */ return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; } int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) { struct xhci_hcd *xhci; struct device *dev = hcd->self.controller; int retval; u32 temp; /* Accept arbitrarily long scatter-gather lists */ hcd->self.sg_tablesize = ~0; /* XHCI controllers don't stop the ep queue on short packets :| */ hcd->self.no_stop_on_short = 1; if (usb_hcd_is_primary_hcd(hcd)) { xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); if (!xhci) return -ENOMEM; *((struct xhci_hcd **) hcd->hcd_priv) = xhci; xhci->main_hcd = hcd; /* Mark the first roothub as being USB 2.0. * The xHCI driver will register the USB 3.0 roothub. */ hcd->speed = HCD_USB2; hcd->self.root_hub->speed = USB_SPEED_HIGH; /* * USB 2.0 roothub under xHCI has an integrated TT, * (rate matching hub) as opposed to having an OHCI/UHCI * companion controller. */ hcd->has_tt = 1; } else { /* xHCI private pointer was set in xhci_pci_probe for the second * registered roothub. */ xhci = hcd_to_xhci(hcd); temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); if (HCC_64BIT_ADDR(temp)) { xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); } else { dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); } return 0; } xhci->cap_regs = hcd->regs; xhci->op_regs = hcd->regs + HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); xhci->run_regs = hcd->regs + (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); /* Cache read-only capability registers */ xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); xhci->hci_version = HC_VERSION(xhci->hcc_params); xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); xhci_print_registers(xhci); get_quirks(dev, xhci); /* Make sure the HC is halted. */ retval = xhci_halt(xhci); if (retval) goto error; xhci_dbg(xhci, "Resetting HCD\n"); /* Reset the internal HC memory state and registers. */ retval = xhci_reset(xhci); if (retval) goto error; xhci_dbg(xhci, "Reset complete\n"); temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); if (HCC_64BIT_ADDR(temp)) { xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); } else { dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); } xhci_dbg(xhci, "Calling HCD init\n"); /* Initialize HCD and host controller data structures. */ retval = xhci_init(hcd); if (retval) goto error; xhci_dbg(xhci, "Called HCD init\n"); return 0; error: kfree(xhci); return retval; } MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_LICENSE("GPL"); static int __init xhci_hcd_init(void) { int retval; retval = xhci_register_pci(); if (retval < 0) { printk(KERN_DEBUG "Problem registering PCI driver."); return retval; } retval = xhci_register_plat(); if (retval < 0) { printk(KERN_DEBUG "Problem registering platform driver."); goto unreg_pci; } /* * Check the compiler generated sizes of structures that must be laid * out in specific ways for hardware access. */ BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); /* xhci_device_control has eight fields, and also * embeds one xhci_slot_ctx and 31 xhci_ep_ctx */ BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); return 0; unreg_pci: xhci_unregister_pci(); return retval; } module_init(xhci_hcd_init); static void __exit xhci_hcd_cleanup(void) { xhci_unregister_pci(); xhci_unregister_plat(); } module_exit(xhci_hcd_cleanup);