/*
 * USB Gadget driver for LPC32xx
 *
 * Authors:
 *    Kevin Wells <kevin.wells@nxp.com>
 *    Mike James
 *    Roland Stigge <stigge@antcom.de>
 *
 * Copyright (C) 2006 Philips Semiconductors
 * Copyright (C) 2009 NXP Semiconductors
 * Copyright (C) 2012 Roland Stigge
 *
 * Note: This driver is based on original work done by Mike James for
 *       the LPC3180.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/proc_fs.h>
#include <linux/clk.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/i2c.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/workqueue.h>
#include <linux/of.h>
#include <linux/usb/isp1301.h>

#include <asm/byteorder.h>
#include <mach/hardware.h>
#include <linux/io.h>
#include <asm/irq.h>
#include <asm/system.h>

#include <mach/platform.h>
#include <mach/irqs.h>
#include <mach/board.h>
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif

/*
 * USB device configuration structure
 */
typedef void (*usc_chg_event)(int);
struct lpc32xx_usbd_cfg {
	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
	usc_chg_event conn_chgb; /* Connection change event (optional) */
	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
};

/*
 * controller driver data structures
 */

/* 16 endpoints (not to be confused with 32 hardware endpoints) */
#define	NUM_ENDPOINTS	16

/*
 * IRQ indices make reading the code a little easier
 */
#define IRQ_USB_LP	0
#define IRQ_USB_HP	1
#define IRQ_USB_DEVDMA	2
#define IRQ_USB_ATX	3

#define EP_OUT 0 /* RX (from host) */
#define EP_IN 1 /* TX (to host) */

/* Returns the interrupt mask for the selected hardware endpoint */
#define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))

#define EP_INT_TYPE 0
#define EP_ISO_TYPE 1
#define EP_BLK_TYPE 2
#define EP_CTL_TYPE 3

/* EP0 states */
#define WAIT_FOR_SETUP 0 /* Wait for setup packet */
#define DATA_IN        1 /* Expect dev->host transfer */
#define DATA_OUT       2 /* Expect host->dev transfer */

/* DD (DMA Descriptor) structure, requires word alignment, this is already
 * defined in the LPC32XX USB device header file, but this version is slightly
 * modified to tag some work data with each DMA descriptor. */
struct lpc32xx_usbd_dd_gad {
	u32 dd_next_phy;
	u32 dd_setup;
	u32 dd_buffer_addr;
	u32 dd_status;
	u32 dd_iso_ps_mem_addr;
	u32 this_dma;
	u32 iso_status[6]; /* 5 spare */
	u32 dd_next_v;
};

/*
 * Logical endpoint structure
 */
struct lpc32xx_ep {
	struct usb_ep		ep;
	struct list_head	queue;
	struct lpc32xx_udc	*udc;

	u32			hwep_num_base; /* Physical hardware EP */
	u32			hwep_num; /* Maps to hardware endpoint */
	u32			maxpacket;
	u32			lep;

	bool			is_in;
	bool			req_pending;
	u32			eptype;

	u32                     totalints;

	bool			wedge;
};

/*
 * Common UDC structure
 */
struct lpc32xx_udc {
	struct usb_gadget	gadget;
	struct usb_gadget_driver *driver;
	struct platform_device	*pdev;
	struct device		*dev;
	struct dentry		*pde;
	spinlock_t		lock;
	struct i2c_client	*isp1301_i2c_client;

	/* Board and device specific */
	struct lpc32xx_usbd_cfg	*board;
	u32			io_p_start;
	u32			io_p_size;
	void __iomem		*udp_baseaddr;
	int			udp_irq[4];
	struct clk		*usb_pll_clk;
	struct clk		*usb_slv_clk;
	struct clk		*usb_otg_clk;

	/* DMA support */
	u32			*udca_v_base;
	u32			udca_p_base;
	struct dma_pool		*dd_cache;

	/* Common EP and control data */
	u32			enabled_devints;
	u32			enabled_hwepints;
	u32			dev_status;
	u32			realized_eps;

	/* VBUS detection, pullup, and power flags */
	u8			vbus;
	u8			last_vbus;
	int			pullup;
	int			poweron;

	/* Work queues related to I2C support */
	struct work_struct	pullup_job;
	struct work_struct	vbus_job;
	struct work_struct	power_job;

	/* USB device peripheral - various */
	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
	bool			enabled;
	bool			clocked;
	bool			suspended;
	bool			selfpowered;
	int                     ep0state;
	atomic_t                enabled_ep_cnt;
	wait_queue_head_t       ep_disable_wait_queue;
};

/*
 * Endpoint request
 */
struct lpc32xx_request {
	struct usb_request	req;
	struct list_head	queue;
	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
	bool			mapped;
	bool			send_zlp;
};

static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
{
	return container_of(g, struct lpc32xx_udc, gadget);
}

#define ep_dbg(epp, fmt, arg...) \
	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
#define ep_err(epp, fmt, arg...) \
	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
#define ep_info(epp, fmt, arg...) \
	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
#define ep_warn(epp, fmt, arg...) \
	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)

#define UDCA_BUFF_SIZE (128)

/* TODO: When the clock framework is introduced in LPC32xx, IO_ADDRESS will
 * be replaced with an inremap()ed pointer
 * */
#define USB_CTRL		IO_ADDRESS(LPC32XX_CLK_PM_BASE + 0x64)

/* USB_CTRL bit defines */
#define USB_SLAVE_HCLK_EN	(1 << 24)
#define USB_HOST_NEED_CLK_EN	(1 << 21)
#define USB_DEV_NEED_CLK_EN	(1 << 22)

/**********************************************************************
 * USB device controller register offsets
 **********************************************************************/

#define USBD_DEVINTST(x)	((x) + 0x200)
#define USBD_DEVINTEN(x)	((x) + 0x204)
#define USBD_DEVINTCLR(x)	((x) + 0x208)
#define USBD_DEVINTSET(x)	((x) + 0x20C)
#define USBD_CMDCODE(x)		((x) + 0x210)
#define USBD_CMDDATA(x)		((x) + 0x214)
#define USBD_RXDATA(x)		((x) + 0x218)
#define USBD_TXDATA(x)		((x) + 0x21C)
#define USBD_RXPLEN(x)		((x) + 0x220)
#define USBD_TXPLEN(x)		((x) + 0x224)
#define USBD_CTRL(x)		((x) + 0x228)
#define USBD_DEVINTPRI(x)	((x) + 0x22C)
#define USBD_EPINTST(x)		((x) + 0x230)
#define USBD_EPINTEN(x)		((x) + 0x234)
#define USBD_EPINTCLR(x)	((x) + 0x238)
#define USBD_EPINTSET(x)	((x) + 0x23C)
#define USBD_EPINTPRI(x)	((x) + 0x240)
#define USBD_REEP(x)		((x) + 0x244)
#define USBD_EPIND(x)		((x) + 0x248)
#define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
/* DMA support registers only below */
/* Set, clear, or get enabled state of the DMA request status. If
 * enabled, an IN or OUT token will start a DMA transfer for the EP */
#define USBD_DMARST(x)		((x) + 0x250)
#define USBD_DMARCLR(x)		((x) + 0x254)
#define USBD_DMARSET(x)		((x) + 0x258)
/* DMA UDCA head pointer */
#define USBD_UDCAH(x)		((x) + 0x280)
/* EP DMA status, enable, and disable. This is used to specifically
 * enabled or disable DMA for a specific EP */
#define USBD_EPDMAST(x)		((x) + 0x284)
#define USBD_EPDMAEN(x)		((x) + 0x288)
#define USBD_EPDMADIS(x)	((x) + 0x28C)
/* DMA master interrupts enable and pending interrupts */
#define USBD_DMAINTST(x)	((x) + 0x290)
#define USBD_DMAINTEN(x)	((x) + 0x294)
/* DMA end of transfer interrupt enable, disable, status */
#define USBD_EOTINTST(x)	((x) + 0x2A0)
#define USBD_EOTINTCLR(x)	((x) + 0x2A4)
#define USBD_EOTINTSET(x)	((x) + 0x2A8)
/* New DD request interrupt enable, disable, status */
#define USBD_NDDRTINTST(x)	((x) + 0x2AC)
#define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
#define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
/* DMA error interrupt enable, disable, status */
#define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
#define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
#define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)

/**********************************************************************
 * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
 * USBD_DEVINTPRI register definitions
 **********************************************************************/
#define USBD_ERR_INT		(1 << 9)
#define USBD_EP_RLZED		(1 << 8)
#define USBD_TXENDPKT		(1 << 7)
#define USBD_RXENDPKT		(1 << 6)
#define USBD_CDFULL		(1 << 5)
#define USBD_CCEMPTY		(1 << 4)
#define USBD_DEV_STAT		(1 << 3)
#define USBD_EP_SLOW		(1 << 2)
#define USBD_EP_FAST		(1 << 1)
#define USBD_FRAME		(1 << 0)

/**********************************************************************
 * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
 * USBD_EPINTPRI register definitions
 **********************************************************************/
/* End point selection macro (RX) */
#define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))

/* End point selection macro (TX) */
#define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))

/**********************************************************************
 * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
 * USBD_EPDMAEN/USBD_EPDMADIS/
 * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
 * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
 * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
 * register definitions
 **********************************************************************/
/* Endpoint selection macro */
#define USBD_EP_SEL(e)		(1 << (e))

/**********************************************************************
 * SBD_DMAINTST/USBD_DMAINTEN
 **********************************************************************/
#define USBD_SYS_ERR_INT	(1 << 2)
#define USBD_NEW_DD_INT		(1 << 1)
#define USBD_EOT_INT		(1 << 0)

/**********************************************************************
 * USBD_RXPLEN register definitions
 **********************************************************************/
#define USBD_PKT_RDY		(1 << 11)
#define USBD_DV			(1 << 10)
#define USBD_PK_LEN_MASK	0x3FF

/**********************************************************************
 * USBD_CTRL register definitions
 **********************************************************************/
#define USBD_LOG_ENDPOINT(e)	((e) << 2)
#define USBD_WR_EN		(1 << 1)
#define USBD_RD_EN		(1 << 0)

/**********************************************************************
 * USBD_CMDCODE register definitions
 **********************************************************************/
#define USBD_CMD_CODE(c)	((c) << 16)
#define USBD_CMD_PHASE(p)	((p) << 8)

/**********************************************************************
 * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
 **********************************************************************/
#define USBD_DMAEP(e)		(1 << (e))

/* DD (DMA Descriptor) structure, requires word alignment */
struct lpc32xx_usbd_dd {
	u32 *dd_next;
	u32 dd_setup;
	u32 dd_buffer_addr;
	u32 dd_status;
	u32 dd_iso_ps_mem_addr;
};

/* dd_setup bit defines */
#define DD_SETUP_ATLE_DMA_MODE	0x01
#define DD_SETUP_NEXT_DD_VALID	0x04
#define DD_SETUP_ISO_EP		0x10
#define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
#define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)

/* dd_status bit defines */
#define DD_STATUS_DD_RETIRED	0x01
#define DD_STATUS_STS_MASK	0x1E
#define DD_STATUS_STS_NS	0x00 /* Not serviced */
#define DD_STATUS_STS_BS	0x02 /* Being serviced */
#define DD_STATUS_STS_NC	0x04 /* Normal completion */
#define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
#define DD_STATUS_STS_DOR	0x08 /* Data overrun */
#define DD_STATUS_STS_SE	0x12 /* System error */
#define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
#define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
#define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
#define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
#define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)

/*
 *
 * Protocol engine bits below
 *
 */
/* Device Interrupt Bit Definitions */
#define FRAME_INT		0x00000001
#define EP_FAST_INT		0x00000002
#define EP_SLOW_INT		0x00000004
#define DEV_STAT_INT		0x00000008
#define CCEMTY_INT		0x00000010
#define CDFULL_INT		0x00000020
#define RxENDPKT_INT		0x00000040
#define TxENDPKT_INT		0x00000080
#define EP_RLZED_INT		0x00000100
#define ERR_INT			0x00000200

/* Rx & Tx Packet Length Definitions */
#define PKT_LNGTH_MASK		0x000003FF
#define PKT_DV			0x00000400
#define PKT_RDY			0x00000800

/* USB Control Definitions */
#define CTRL_RD_EN		0x00000001
#define CTRL_WR_EN		0x00000002

/* Command Codes */
#define CMD_SET_ADDR		0x00D00500
#define CMD_CFG_DEV		0x00D80500
#define CMD_SET_MODE		0x00F30500
#define CMD_RD_FRAME		0x00F50500
#define DAT_RD_FRAME		0x00F50200
#define CMD_RD_TEST		0x00FD0500
#define DAT_RD_TEST		0x00FD0200
#define CMD_SET_DEV_STAT	0x00FE0500
#define CMD_GET_DEV_STAT	0x00FE0500
#define DAT_GET_DEV_STAT	0x00FE0200
#define CMD_GET_ERR_CODE	0x00FF0500
#define DAT_GET_ERR_CODE	0x00FF0200
#define CMD_RD_ERR_STAT		0x00FB0500
#define DAT_RD_ERR_STAT		0x00FB0200
#define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
#define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
#define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
#define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
#define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
#define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
#define CMD_CLR_BUF		0x00F20500
#define DAT_CLR_BUF		0x00F20200
#define CMD_VALID_BUF		0x00FA0500

/* Device Address Register Definitions */
#define DEV_ADDR_MASK		0x7F
#define DEV_EN			0x80

/* Device Configure Register Definitions */
#define CONF_DVICE		0x01

/* Device Mode Register Definitions */
#define AP_CLK			0x01
#define INAK_CI			0x02
#define INAK_CO			0x04
#define INAK_II			0x08
#define INAK_IO			0x10
#define INAK_BI			0x20
#define INAK_BO			0x40

/* Device Status Register Definitions */
#define DEV_CON			0x01
#define DEV_CON_CH		0x02
#define DEV_SUS			0x04
#define DEV_SUS_CH		0x08
#define DEV_RST			0x10

/* Error Code Register Definitions */
#define ERR_EC_MASK		0x0F
#define ERR_EA			0x10

/* Error Status Register Definitions */
#define ERR_PID			0x01
#define ERR_UEPKT		0x02
#define ERR_DCRC		0x04
#define ERR_TIMOUT		0x08
#define ERR_EOP			0x10
#define ERR_B_OVRN		0x20
#define ERR_BTSTF		0x40
#define ERR_TGL			0x80

/* Endpoint Select Register Definitions */
#define EP_SEL_F		0x01
#define EP_SEL_ST		0x02
#define EP_SEL_STP		0x04
#define EP_SEL_PO		0x08
#define EP_SEL_EPN		0x10
#define EP_SEL_B_1_FULL		0x20
#define EP_SEL_B_2_FULL		0x40

/* Endpoint Status Register Definitions */
#define EP_STAT_ST		0x01
#define EP_STAT_DA		0x20
#define EP_STAT_RF_MO		0x40
#define EP_STAT_CND_ST		0x80

/* Clear Buffer Register Definitions */
#define CLR_BUF_PO		0x01

/* DMA Interrupt Bit Definitions */
#define EOT_INT			0x01
#define NDD_REQ_INT		0x02
#define SYS_ERR_INT		0x04

#define	DRIVER_VERSION	"1.03"
static const char driver_name[] = "lpc32xx_udc";

/*
 *
 * proc interface support
 *
 */
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
static const char debug_filename[] = "driver/udc";

static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
{
	struct lpc32xx_request *req;

	seq_printf(s, "\n");
	seq_printf(s, "%12s, maxpacket %4d %3s",
			ep->ep.name, ep->ep.maxpacket,
			ep->is_in ? "in" : "out");
	seq_printf(s, " type %4s", epnames[ep->eptype]);
	seq_printf(s, " ints: %12d", ep->totalints);

	if (list_empty(&ep->queue))
		seq_printf(s, "\t(queue empty)\n");
	else {
		list_for_each_entry(req, &ep->queue, queue) {
			u32 length = req->req.actual;

			seq_printf(s, "\treq %p len %d/%d buf %p\n",
				   &req->req, length,
				   req->req.length, req->req.buf);
		}
	}
}

static int proc_udc_show(struct seq_file *s, void *unused)
{
	struct lpc32xx_udc *udc = s->private;
	struct lpc32xx_ep *ep;
	unsigned long flags;

	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);

	spin_lock_irqsave(&udc->lock, flags);

	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
		   udc->vbus ? "present" : "off",
		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
		   "disabled",
		   udc->selfpowered ? "self" : "VBUS",
		   udc->suspended ? ", suspended" : "",
		   udc->driver ? udc->driver->driver.name : "(none)");

	if (udc->enabled && udc->vbus) {
		proc_ep_show(s, &udc->ep[0]);
		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
			proc_ep_show(s, ep);
	}

	spin_unlock_irqrestore(&udc->lock, flags);

	return 0;
}

static int proc_udc_open(struct inode *inode, struct file *file)
{
	return single_open(file, proc_udc_show, PDE_DATA(inode));
}

static const struct file_operations proc_ops = {
	.owner		= THIS_MODULE,
	.open		= proc_udc_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void create_debug_file(struct lpc32xx_udc *udc)
{
	udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &proc_ops);
}

static void remove_debug_file(struct lpc32xx_udc *udc)
{
	if (udc->pde)
		debugfs_remove(udc->pde);
}

#else
static inline void create_debug_file(struct lpc32xx_udc *udc) {}
static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
#endif

/* Primary initialization sequence for the ISP1301 transceiver */
static void isp1301_udc_configure(struct lpc32xx_udc *udc)
{
	/* LPC32XX only supports DAT_SE0 USB mode */
	/* This sequence is important */

	/* Disable transparent UART mode first */
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
		MC1_UART_EN);

	/* Set full speed and SE0 mode */
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));

	/*
	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
	 */
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		ISP1301_I2C_MODE_CONTROL_2, (MC2_BI_DI | MC2_SPD_SUSP_CTRL));

	/* Driver VBUS_DRV high or low depending on board setup */
	if (udc->board->vbus_drv_pol != 0)
		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
	else
		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
			OTG1_VBUS_DRV);

	/* Bi-directional mode with suspend control
	 * Enable both pulldowns for now - the pullup will be enable when VBUS
	 * is detected */
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		ISP1301_I2C_OTG_CONTROL_1,
		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));

	/* Discharge VBUS (just in case) */
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
	msleep(1);
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
		OTG1_VBUS_DISCHRG);

	/* Clear and enable VBUS high edge interrupt */
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		ISP1301_I2C_INTERRUPT_FALLING, INT_VBUS_VLD);
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
		ISP1301_I2C_INTERRUPT_RISING, INT_VBUS_VLD);

	/* Enable usb_need_clk clock after transceiver is initialized */
	writel((readl(USB_CTRL) | USB_DEV_NEED_CLK_EN), USB_CTRL);

	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n",
		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00));
	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n",
		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02));
	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
}

/* Enables or disables the USB device pullup via the ISP1301 transceiver */
static void isp1301_pullup_set(struct lpc32xx_udc *udc)
{
	if (udc->pullup)
		/* Enable pullup for bus signalling */
		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
	else
		/* Enable pullup for bus signalling */
		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
			OTG1_DP_PULLUP);
}

static void pullup_work(struct work_struct *work)
{
	struct lpc32xx_udc *udc =
		container_of(work, struct lpc32xx_udc, pullup_job);

	isp1301_pullup_set(udc);
}

static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
				  int block)
{
	if (en_pullup == udc->pullup)
		return;

	udc->pullup = en_pullup;
	if (block)
		isp1301_pullup_set(udc);
	else
		/* defer slow i2c pull up setting */
		schedule_work(&udc->pullup_job);
}

#ifdef CONFIG_PM
/* Powers up or down the ISP1301 transceiver */
static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
{
	if (enable != 0)
		/* Power up ISP1301 - this ISP1301 will automatically wakeup
		   when VBUS is detected */
		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
			MC2_GLOBAL_PWR_DN);
	else
		/* Power down ISP1301 */
		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
}

static void power_work(struct work_struct *work)
{
	struct lpc32xx_udc *udc =
		container_of(work, struct lpc32xx_udc, power_job);

	isp1301_set_powerstate(udc, udc->poweron);
}
#endif

/*
 *
 * USB protocol engine command/data read/write helper functions
 *
 */
/* Issues a single command to the USB device state machine */
static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
{
	u32 pass = 0;
	int to;

	/* EP may lock on CLRI if this read isn't done */
	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
	(void) tmp;

	while (pass == 0) {
		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));

		/* Write command code */
		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
		to = 10000;
		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
			 USBD_CCEMPTY) == 0) && (to > 0)) {
			to--;
		}

		if (to > 0)
			pass = 1;

		cpu_relax();
	}
}

/* Issues 2 commands (or command and data) to the USB device state machine */
static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
					   u32 data)
{
	udc_protocol_cmd_w(udc, cmd);
	udc_protocol_cmd_w(udc, data);
}

/* Issues a single command to the USB device state machine and reads
 * response data */
static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
{
	u32 tmp;
	int to = 1000;

	/* Write a command and read data from the protocol engine */
	writel((USBD_CDFULL | USBD_CCEMPTY),
		     USBD_DEVINTCLR(udc->udp_baseaddr));

	/* Write command code */
	udc_protocol_cmd_w(udc, cmd);

	tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
	       && (to > 0))
		to--;
	if (!to)
		dev_dbg(udc->dev,
			"Protocol engine didn't receive response (CDFULL)\n");

	return readl(USBD_CMDDATA(udc->udp_baseaddr));
}

/*
 *
 * USB device interrupt mask support functions
 *
 */
/* Enable one or more USB device interrupts */
static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
{
	udc->enabled_devints |= devmask;
	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
}

/* Disable one or more USB device interrupts */
static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
{
	udc->enabled_devints &= ~mask;
	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
}

/* Clear one or more USB device interrupts */
static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
{
	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
}

/*
 *
 * Endpoint interrupt disable/enable functions
 *
 */
/* Enable one or more USB endpoint interrupts */
static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
{
	udc->enabled_hwepints |= (1 << hwep);
	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
}

/* Disable one or more USB endpoint interrupts */
static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
{
	udc->enabled_hwepints &= ~(1 << hwep);
	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
}

/* Clear one or more USB endpoint interrupts */
static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
{
	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
}

/* Enable DMA for the HW channel */
static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
{
	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
}

/* Disable DMA for the HW channel */
static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
{
	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
}

/*
 *
 * Endpoint realize/unrealize functions
 *
 */
/* Before an endpoint can be used, it needs to be realized
 * in the USB protocol engine - this realizes the endpoint.
 * The interrupt (FIFO or DMA) is not enabled with this function */
static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
			     u32 maxpacket)
{
	int to = 1000;

	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
	udc->realized_eps |= (1 << hwep);
	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));

	/* Wait until endpoint is realized in hardware */
	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
		  USBD_EP_RLZED)) && (to > 0))
		to--;
	if (!to)
		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");

	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
}

/* Unrealize an EP */
static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
	udc->realized_eps &= ~(1 << hwep);
	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
}

/*
 *
 * Endpoint support functions
 *
 */
/* Select and clear endpoint interrupt */
static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
{
	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
}

/* Disables the endpoint in the USB protocol engine */
static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
				DAT_WR_BYTE(EP_STAT_DA));
}

/* Stalls the endpoint - endpoint will return STALL */
static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
				DAT_WR_BYTE(EP_STAT_ST));
}

/* Clear stall or reset endpoint */
static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
				DAT_WR_BYTE(0));
}

/* Select an endpoint for endpoint status, clear, validate */
static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
}

/*
 *
 * Endpoint buffer management functions
 *
 */
/* Clear the current endpoint's buffer */
static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
	udc_select_hwep(udc, hwep);
	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
}

/* Validate the current endpoint's buffer */
static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
{
	udc_select_hwep(udc, hwep);
	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
}

static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
{
	/* Clear EP interrupt */
	uda_clear_hwepint(udc, hwep);
	return udc_selep_clrint(udc, hwep);
}

/*
 *
 * USB EP DMA support
 *
 */
/* Allocate a DMA Descriptor */
static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
{
	dma_addr_t			dma;
	struct lpc32xx_usbd_dd_gad	*dd;

	dd = (struct lpc32xx_usbd_dd_gad *) dma_pool_alloc(
			udc->dd_cache, (GFP_KERNEL | GFP_DMA), &dma);
	if (dd)
		dd->this_dma = dma;

	return dd;
}

/* Free a DMA Descriptor */
static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
{
	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
}

/*
 *
 * USB setup and shutdown functions
 *
 */
/* Enables or disables most of the USB system clocks when low power mode is
 * needed. Clocks are typically started on a connection event, and disabled
 * when a cable is disconnected */
static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
{
	if (enable != 0) {
		if (udc->clocked)
			return;

		udc->clocked = 1;

		/* 48MHz PLL up */
		clk_enable(udc->usb_pll_clk);

		/* Enable the USB device clock */
		writel(readl(USB_CTRL) | USB_DEV_NEED_CLK_EN,
			     USB_CTRL);

		clk_enable(udc->usb_otg_clk);
	} else {
		if (!udc->clocked)
			return;

		udc->clocked = 0;

		/* Never disable the USB_HCLK during normal operation */

		/* 48MHz PLL dpwn */
		clk_disable(udc->usb_pll_clk);

		/* Disable the USB device clock */
		writel(readl(USB_CTRL) & ~USB_DEV_NEED_CLK_EN,
			     USB_CTRL);

		clk_disable(udc->usb_otg_clk);
	}
}

/* Set/reset USB device address */
static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
{
	/* Address will be latched at the end of the status phase, or
	   latched immediately if function is called twice */
	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
				DAT_WR_BYTE(DEV_EN | addr));
}

/* Setup up a IN request for DMA transfer - this consists of determining the
 * list of DMA addresses for the transfer, allocating DMA Descriptors,
 * installing the DD into the UDCA, and then enabling the DMA for that EP */
static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
{
	struct lpc32xx_request *req;
	u32 hwep = ep->hwep_num;

	ep->req_pending = 1;

	/* There will always be a request waiting here */
	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);

	/* Place the DD Descriptor into the UDCA */
	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;

	/* Enable DMA and interrupt for the HW EP */
	udc_ep_dma_enable(udc, hwep);

	/* Clear ZLP if last packet is not of MAXP size */
	if (req->req.length % ep->ep.maxpacket)
		req->send_zlp = 0;

	return 0;
}

/* Setup up a OUT request for DMA transfer - this consists of determining the
 * list of DMA addresses for the transfer, allocating DMA Descriptors,
 * installing the DD into the UDCA, and then enabling the DMA for that EP */
static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
{
	struct lpc32xx_request *req;
	u32 hwep = ep->hwep_num;

	ep->req_pending = 1;

	/* There will always be a request waiting here */
	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);

	/* Place the DD Descriptor into the UDCA */
	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;

	/* Enable DMA and interrupt for the HW EP */
	udc_ep_dma_enable(udc, hwep);
	return 0;
}

static void udc_disable(struct lpc32xx_udc *udc)
{
	u32 i;

	/* Disable device */
	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));

	/* Disable all device interrupts (including EP0) */
	uda_disable_devint(udc, 0x3FF);

	/* Disable and reset all endpoint interrupts */
	for (i = 0; i < 32; i++) {
		uda_disable_hwepint(udc, i);
		uda_clear_hwepint(udc, i);
		udc_disable_hwep(udc, i);
		udc_unrealize_hwep(udc, i);
		udc->udca_v_base[i] = 0;

		/* Disable and clear all interrupts and DMA */
		udc_ep_dma_disable(udc, i);
		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
	}

	/* Disable DMA interrupts */
	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));

	writel(0, USBD_UDCAH(udc->udp_baseaddr));
}

static void udc_enable(struct lpc32xx_udc *udc)
{
	u32 i;
	struct lpc32xx_ep *ep = &udc->ep[0];

	/* Start with known state */
	udc_disable(udc);

	/* Enable device */
	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));

	/* EP interrupts on high priority, FRAME interrupt on low priority */
	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));

	/* Clear any pending device interrupts */
	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));

	/* Setup UDCA - not yet used (DMA) */
	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));

	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
	for (i = 0; i <= 1; i++) {
		udc_realize_hwep(udc, i, ep->ep.maxpacket);
		uda_enable_hwepint(udc, i);
		udc_select_hwep(udc, i);
		udc_clrstall_hwep(udc, i);
		udc_clr_buffer_hwep(udc, i);
	}

	/* Device interrupt setup */
	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
			       USBD_EP_FAST));
	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
				USBD_EP_FAST));

	/* Set device address to 0 - called twice to force a latch in the USB
	   engine without the need of a setup packet status closure */
	udc_set_address(udc, 0);
	udc_set_address(udc, 0);

	/* Enable master DMA interrupts */
	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
		     USBD_DMAINTEN(udc->udp_baseaddr));

	udc->dev_status = 0;
}

/*
 *
 * USB device board specific events handled via callbacks
 *
 */
/* Connection change event - notify board function of change */
static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
{
	/* Just notify of a connection change event (optional) */
	if (udc->board->conn_chgb != NULL)
		udc->board->conn_chgb(conn);
}

/* Suspend/resume event - notify board function of change */
static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
{
	/* Just notify of a Suspend/resume change event (optional) */
	if (udc->board->susp_chgb != NULL)
		udc->board->susp_chgb(conn);

	if (conn)
		udc->suspended = 0;
	else
		udc->suspended = 1;
}

/* Remote wakeup enable/disable - notify board function of change */
static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
{
	if (udc->board->rmwk_chgb != NULL)
		udc->board->rmwk_chgb(udc->dev_status &
				      (1 << USB_DEVICE_REMOTE_WAKEUP));
}

/* Reads data from FIFO, adjusts for alignment and data size */
static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
{
	int n, i, bl;
	u16 *p16;
	u32 *p32, tmp, cbytes;

	/* Use optimal data transfer method based on source address and size */
	switch (((u32) data) & 0x3) {
	case 0: /* 32-bit aligned */
		p32 = (u32 *) data;
		cbytes = (bytes & ~0x3);

		/* Copy 32-bit aligned data first */
		for (n = 0; n < cbytes; n += 4)
			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));

		/* Handle any remaining bytes */
		bl = bytes - cbytes;
		if (bl) {
			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
			for (n = 0; n < bl; n++)
				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);

		}
		break;

	case 1: /* 8-bit aligned */
	case 3:
		/* Each byte has to be handled independently */
		for (n = 0; n < bytes; n += 4) {
			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));

			bl = bytes - n;
			if (bl > 3)
				bl = 3;

			for (i = 0; i < bl; i++)
				data[n + i] = (u8) ((tmp >> (n * 8)) & 0xFF);
		}
		break;

	case 2: /* 16-bit aligned */
		p16 = (u16 *) data;
		cbytes = (bytes & ~0x3);

		/* Copy 32-bit sized objects first with 16-bit alignment */
		for (n = 0; n < cbytes; n += 4) {
			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
			*p16++ = (u16)(tmp & 0xFFFF);
			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
		}

		/* Handle any remaining bytes */
		bl = bytes - cbytes;
		if (bl) {
			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
			for (n = 0; n < bl; n++)
				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
		}
		break;
	}
}

/* Read data from the FIFO for an endpoint. This function is for endpoints (such
 * as EP0) that don't use DMA. This function should only be called if a packet
 * is known to be ready to read for the endpoint. Note that the endpoint must
 * be selected in the protocol engine prior to this call. */
static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
			 u32 bytes)
{
	u32 tmpv;
	int to = 1000;
	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;

	/* Setup read of endpoint */
	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));

	/* Wait until packet is ready */
	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
		 PKT_RDY) == 0)	&& (to > 0))
		to--;
	if (!to)
		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");

	/* Mask out count */
	tmp = tmpv & PKT_LNGTH_MASK;
	if (bytes < tmp)
		tmp = bytes;

	if ((tmp > 0) && (data != NULL))
		udc_pop_fifo(udc, (u8 *) data, tmp);

	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));

	/* Clear the buffer */
	udc_clr_buffer_hwep(udc, hwep);

	return tmp;
}

/* Stuffs data into the FIFO, adjusts for alignment and data size */
static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
{
	int n, i, bl;
	u16 *p16;
	u32 *p32, tmp, cbytes;

	/* Use optimal data transfer method based on source address and size */
	switch (((u32) data) & 0x3) {
	case 0: /* 32-bit aligned */
		p32 = (u32 *) data;
		cbytes = (bytes & ~0x3);

		/* Copy 32-bit aligned data first */
		for (n = 0; n < cbytes; n += 4)
			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));

		/* Handle any remaining bytes */
		bl = bytes - cbytes;
		if (bl) {
			tmp = 0;
			for (n = 0; n < bl; n++)
				tmp |= data[cbytes + n] << (n * 8);

			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
		}
		break;

	case 1: /* 8-bit aligned */
	case 3:
		/* Each byte has to be handled independently */
		for (n = 0; n < bytes; n += 4) {
			bl = bytes - n;
			if (bl > 4)
				bl = 4;

			tmp = 0;
			for (i = 0; i < bl; i++)
				tmp |= data[n + i] << (i * 8);

			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
		}
		break;

	case 2: /* 16-bit aligned */
		p16 = (u16 *) data;
		cbytes = (bytes & ~0x3);

		/* Copy 32-bit aligned data first */
		for (n = 0; n < cbytes; n += 4) {
			tmp = *p16++ & 0xFFFF;
			tmp |= (*p16++ & 0xFFFF) << 16;
			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
		}

		/* Handle any remaining bytes */
		bl = bytes - cbytes;
		if (bl) {
			tmp = 0;
			for (n = 0; n < bl; n++)
				tmp |= data[cbytes + n] << (n * 8);

			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
		}
		break;
	}
}

/* Write data to the FIFO for an endpoint. This function is for endpoints (such
 * as EP0) that don't use DMA. Note that the endpoint must be selected in the
 * protocol engine prior to this call. */
static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
			   u32 bytes)
{
	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;

	if ((bytes > 0) && (data == NULL))
		return;

	/* Setup write of endpoint */
	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));

	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));

	/* Need at least 1 byte to trigger TX */
	if (bytes == 0)
		writel(0, USBD_TXDATA(udc->udp_baseaddr));
	else
		udc_stuff_fifo(udc, (u8 *) data, bytes);

	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));

	udc_val_buffer_hwep(udc, hwep);
}

/* USB device reset - resets USB to a default state with just EP0
   enabled */
static void uda_usb_reset(struct lpc32xx_udc *udc)
{
	u32 i = 0;
	/* Re-init device controller and EP0 */
	udc_enable(udc);
	udc->gadget.speed = USB_SPEED_FULL;

	for (i = 1; i < NUM_ENDPOINTS; i++) {
		struct lpc32xx_ep *ep = &udc->ep[i];
		ep->req_pending = 0;
	}
}

/* Send a ZLP on EP0 */
static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
{
	udc_write_hwep(udc, EP_IN, NULL, 0);
}

/* Get current frame number */
static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
{
	u16 flo, fhi;

	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);

	return (fhi << 8) | flo;
}

/* Set the device as configured - enables all endpoints */
static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
{
	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
}

/* Set the device as unconfigured - disables all endpoints */
static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
{
	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
}

/* reinit == restore initial software state */
static void udc_reinit(struct lpc32xx_udc *udc)
{
	u32 i;

	INIT_LIST_HEAD(&udc->gadget.ep_list);
	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);

	for (i = 0; i < NUM_ENDPOINTS; i++) {
		struct lpc32xx_ep *ep = &udc->ep[i];

		if (i != 0)
			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
		ep->ep.maxpacket = ep->maxpacket;
		INIT_LIST_HEAD(&ep->queue);
		ep->req_pending = 0;
	}

	udc->ep0state = WAIT_FOR_SETUP;
}

/* Must be called with lock */
static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
{
	struct lpc32xx_udc *udc = ep->udc;

	list_del_init(&req->queue);
	if (req->req.status == -EINPROGRESS)
		req->req.status = status;
	else
		status = req->req.status;

	if (ep->lep) {
		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);

		/* Free DDs */
		udc_dd_free(udc, req->dd_desc_ptr);
	}

	if (status && status != -ESHUTDOWN)
		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);

	ep->req_pending = 0;
	spin_unlock(&udc->lock);
	req->req.complete(&ep->ep, &req->req);
	spin_lock(&udc->lock);
}

/* Must be called with lock */
static void nuke(struct lpc32xx_ep *ep, int status)
{
	struct lpc32xx_request *req;

	while (!list_empty(&ep->queue)) {
		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
		done(ep, req, status);
	}

	if (status == -ESHUTDOWN) {
		uda_disable_hwepint(ep->udc, ep->hwep_num);
		udc_disable_hwep(ep->udc, ep->hwep_num);
	}
}

/* IN endpoint 0 transfer */
static int udc_ep0_in_req(struct lpc32xx_udc *udc)
{
	struct lpc32xx_request *req;
	struct lpc32xx_ep *ep0 = &udc->ep[0];
	u32 tsend, ts = 0;

	if (list_empty(&ep0->queue))
		/* Nothing to send */
		return 0;
	else
		req = list_entry(ep0->queue.next, struct lpc32xx_request,
				 queue);

	tsend = ts = req->req.length - req->req.actual;
	if (ts == 0) {
		/* Send a ZLP */
		udc_ep0_send_zlp(udc);
		done(ep0, req, 0);
		return 1;
	} else if (ts > ep0->ep.maxpacket)
		ts = ep0->ep.maxpacket; /* Just send what we can */

	/* Write data to the EP0 FIFO and start transfer */
	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);

	/* Increment data pointer */
	req->req.actual += ts;

	if (tsend >= ep0->ep.maxpacket)
		return 0; /* Stay in data transfer state */

	/* Transfer request is complete */
	udc->ep0state = WAIT_FOR_SETUP;
	done(ep0, req, 0);
	return 1;
}

/* OUT endpoint 0 transfer */
static int udc_ep0_out_req(struct lpc32xx_udc *udc)
{
	struct lpc32xx_request *req;
	struct lpc32xx_ep *ep0 = &udc->ep[0];
	u32 tr, bufferspace;

	if (list_empty(&ep0->queue))
		return 0;
	else
		req = list_entry(ep0->queue.next, struct lpc32xx_request,
				 queue);

	if (req) {
		if (req->req.length == 0) {
			/* Just dequeue request */
			done(ep0, req, 0);
			udc->ep0state = WAIT_FOR_SETUP;
			return 1;
		}

		/* Get data from FIFO */
		bufferspace = req->req.length - req->req.actual;
		if (bufferspace > ep0->ep.maxpacket)
			bufferspace = ep0->ep.maxpacket;

		/* Copy data to buffer */
		prefetchw(req->req.buf + req->req.actual);
		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
				   bufferspace);
		req->req.actual += bufferspace;

		if (tr < ep0->ep.maxpacket) {
			/* This is the last packet */
			done(ep0, req, 0);
			udc->ep0state = WAIT_FOR_SETUP;
			return 1;
		}
	}

	return 0;
}

/* Must be called with lock */
static void stop_activity(struct lpc32xx_udc *udc)
{
	struct usb_gadget_driver *driver = udc->driver;
	int i;

	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
		driver = NULL;

	udc->gadget.speed = USB_SPEED_UNKNOWN;
	udc->suspended = 0;

	for (i = 0; i < NUM_ENDPOINTS; i++) {
		struct lpc32xx_ep *ep = &udc->ep[i];
		nuke(ep, -ESHUTDOWN);
	}
	if (driver) {
		spin_unlock(&udc->lock);
		driver->disconnect(&udc->gadget);
		spin_lock(&udc->lock);
	}

	isp1301_pullup_enable(udc, 0, 0);
	udc_disable(udc);
	udc_reinit(udc);
}

/*
 * Activate or kill host pullup
 * Can be called with or without lock
 */
static void pullup(struct lpc32xx_udc *udc, int is_on)
{
	if (!udc->clocked)
		return;

	if (!udc->enabled || !udc->vbus)
		is_on = 0;

	if (is_on != udc->pullup)
		isp1301_pullup_enable(udc, is_on, 0);
}

/* Must be called without lock */
static int lpc32xx_ep_disable(struct usb_ep *_ep)
{
	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
	struct lpc32xx_udc *udc = ep->udc;
	unsigned long	flags;

	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
		return -EINVAL;
	spin_lock_irqsave(&udc->lock, flags);

	nuke(ep, -ESHUTDOWN);

	/* Clear all DMA statuses for this EP */
	udc_ep_dma_disable(udc, ep->hwep_num);
	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));

	/* Remove the DD pointer in the UDCA */
	udc->udca_v_base[ep->hwep_num] = 0;

	/* Disable and reset endpoint and interrupt */
	uda_clear_hwepint(udc, ep->hwep_num);
	udc_unrealize_hwep(udc, ep->hwep_num);

	ep->hwep_num = 0;

	spin_unlock_irqrestore(&udc->lock, flags);

	atomic_dec(&udc->enabled_ep_cnt);
	wake_up(&udc->ep_disable_wait_queue);

	return 0;
}

/* Must be called without lock */
static int lpc32xx_ep_enable(struct usb_ep *_ep,
			     const struct usb_endpoint_descriptor *desc)
{
	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
	struct lpc32xx_udc *udc = ep->udc;
	u16 maxpacket;
	u32 tmp;
	unsigned long flags;

	/* Verify EP data */
	if ((!_ep) || (!ep) || (!desc) ||
	    (desc->bDescriptorType != USB_DT_ENDPOINT)) {
		dev_dbg(udc->dev, "bad ep or descriptor\n");
		return -EINVAL;
	}
	maxpacket = usb_endpoint_maxp(desc);
	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
		return -EINVAL;
	}

	/* Don't touch EP0 */
	if (ep->hwep_num_base == 0) {
		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
		return -EINVAL;
	}

	/* Is driver ready? */
	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
		dev_dbg(udc->dev, "bogus device state\n");
		return -ESHUTDOWN;
	}

	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
	switch (tmp) {
	case USB_ENDPOINT_XFER_CONTROL:
		return -EINVAL;

	case USB_ENDPOINT_XFER_INT:
		if (maxpacket > ep->maxpacket) {
			dev_dbg(udc->dev,
				"Bad INT endpoint maxpacket %d\n", maxpacket);
			return -EINVAL;
		}
		break;

	case USB_ENDPOINT_XFER_BULK:
		switch (maxpacket) {
		case 8:
		case 16:
		case 32:
		case 64:
			break;

		default:
			dev_dbg(udc->dev,
				"Bad BULK endpoint maxpacket %d\n", maxpacket);
			return -EINVAL;
		}
		break;

	case USB_ENDPOINT_XFER_ISOC:
		break;
	}
	spin_lock_irqsave(&udc->lock, flags);

	/* Initialize endpoint to match the selected descriptor */
	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
	ep->ep.maxpacket = maxpacket;

	/* Map hardware endpoint from base and direction */
	if (ep->is_in)
		/* IN endpoints are offset 1 from the OUT endpoint */
		ep->hwep_num = ep->hwep_num_base + EP_IN;
	else
		ep->hwep_num = ep->hwep_num_base;

	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
	       ep->hwep_num, maxpacket, (ep->is_in == 1));

	/* Realize the endpoint, interrupt is enabled later when
	 * buffers are queued, IN EPs will NAK until buffers are ready */
	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
	udc_clr_buffer_hwep(udc, ep->hwep_num);
	uda_disable_hwepint(udc, ep->hwep_num);
	udc_clrstall_hwep(udc, ep->hwep_num);

	/* Clear all DMA statuses for this EP */
	udc_ep_dma_disable(udc, ep->hwep_num);
	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));

	spin_unlock_irqrestore(&udc->lock, flags);

	atomic_inc(&udc->enabled_ep_cnt);
	return 0;
}

/*
 * Allocate a USB request list
 * Can be called with or without lock
 */
static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
						    gfp_t gfp_flags)
{
	struct lpc32xx_request *req;

	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);
	return &req->req;
}

/*
 * De-allocate a USB request list
 * Can be called with or without lock
 */
static void lpc32xx_ep_free_request(struct usb_ep *_ep,
				    struct usb_request *_req)
{
	struct lpc32xx_request *req;

	req = container_of(_req, struct lpc32xx_request, req);
	BUG_ON(!list_empty(&req->queue));
	kfree(req);
}

/* Must be called without lock */
static int lpc32xx_ep_queue(struct usb_ep *_ep,
			    struct usb_request *_req, gfp_t gfp_flags)
{
	struct lpc32xx_request *req;
	struct lpc32xx_ep *ep;
	struct lpc32xx_udc *udc;
	unsigned long flags;
	int status = 0;

	req = container_of(_req, struct lpc32xx_request, req);
	ep = container_of(_ep, struct lpc32xx_ep, ep);

	if (!_req || !_req->complete || !_req->buf ||
	    !list_empty(&req->queue))
		return -EINVAL;

	udc = ep->udc;

	if (!_ep) {
		dev_dbg(udc->dev, "invalid ep\n");
		return -EINVAL;
	}


	if ((!udc) || (!udc->driver) ||
	    (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
		dev_dbg(udc->dev, "invalid device\n");
		return -EINVAL;
	}

	if (ep->lep) {
		struct lpc32xx_usbd_dd_gad *dd;

		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
		if (status)
			return status;

		/* For the request, build a list of DDs */
		dd = udc_dd_alloc(udc);
		if (!dd) {
			/* Error allocating DD */
			return -ENOMEM;
		}
		req->dd_desc_ptr = dd;

		/* Setup the DMA descriptor */
		dd->dd_next_phy = dd->dd_next_v = 0;
		dd->dd_buffer_addr = req->req.dma;
		dd->dd_status = 0;

		/* Special handling for ISO EPs */
		if (ep->eptype == EP_ISO_TYPE) {
			dd->dd_setup = DD_SETUP_ISO_EP |
				DD_SETUP_PACKETLEN(0) |
				DD_SETUP_DMALENBYTES(1);
			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
			if (ep->is_in)
				dd->iso_status[0] = req->req.length;
			else
				dd->iso_status[0] = 0;
		} else
			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
				DD_SETUP_DMALENBYTES(req->req.length);
	}

	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
	       _req, _req->length, _req->buf, ep->is_in, _req->zero);

	spin_lock_irqsave(&udc->lock, flags);

	_req->status = -EINPROGRESS;
	_req->actual = 0;
	req->send_zlp = _req->zero;

	/* Kickstart empty queues */
	if (list_empty(&ep->queue)) {
		list_add_tail(&req->queue, &ep->queue);

		if (ep->hwep_num_base == 0) {
			/* Handle expected data direction */
			if (ep->is_in) {
				/* IN packet to host */
				udc->ep0state = DATA_IN;
				status = udc_ep0_in_req(udc);
			} else {
				/* OUT packet from host */
				udc->ep0state = DATA_OUT;
				status = udc_ep0_out_req(udc);
			}
		} else if (ep->is_in) {
			/* IN packet to host and kick off transfer */
			if (!ep->req_pending)
				udc_ep_in_req_dma(udc, ep);
		} else
			/* OUT packet from host and kick off list */
			if (!ep->req_pending)
				udc_ep_out_req_dma(udc, ep);
	} else
		list_add_tail(&req->queue, &ep->queue);

	spin_unlock_irqrestore(&udc->lock, flags);

	return (status < 0) ? status : 0;
}

/* Must be called without lock */
static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
	struct lpc32xx_ep *ep;
	struct lpc32xx_request *req;
	unsigned long flags;

	ep = container_of(_ep, struct lpc32xx_ep, ep);
	if (!_ep || ep->hwep_num_base == 0)
		return -EINVAL;

	spin_lock_irqsave(&ep->udc->lock, flags);

	/* make sure it's actually queued on this endpoint */
	list_for_each_entry(req, &ep->queue, queue) {
		if (&req->req == _req)
			break;
	}
	if (&req->req != _req) {
		spin_unlock_irqrestore(&ep->udc->lock, flags);
		return -EINVAL;
	}

	done(ep, req, -ECONNRESET);

	spin_unlock_irqrestore(&ep->udc->lock, flags);

	return 0;
}

/* Must be called without lock */
static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
{
	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
	struct lpc32xx_udc *udc = ep->udc;
	unsigned long flags;

	if ((!ep) || (ep->hwep_num <= 1))
		return -EINVAL;

	/* Don't halt an IN EP */
	if (ep->is_in)
		return -EAGAIN;

	spin_lock_irqsave(&udc->lock, flags);

	if (value == 1) {
		/* stall */
		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
					DAT_WR_BYTE(EP_STAT_ST));
	} else {
		/* End stall */
		ep->wedge = 0;
		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
					DAT_WR_BYTE(0));
	}

	spin_unlock_irqrestore(&udc->lock, flags);

	return 0;
}

/* set the halt feature and ignores clear requests */
static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
{
	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);

	if (!_ep || !ep->udc)
		return -EINVAL;

	ep->wedge = 1;

	return usb_ep_set_halt(_ep);
}

static const struct usb_ep_ops lpc32xx_ep_ops = {
	.enable		= lpc32xx_ep_enable,
	.disable	= lpc32xx_ep_disable,
	.alloc_request	= lpc32xx_ep_alloc_request,
	.free_request	= lpc32xx_ep_free_request,
	.queue		= lpc32xx_ep_queue,
	.dequeue	= lpc32xx_ep_dequeue,
	.set_halt	= lpc32xx_ep_set_halt,
	.set_wedge	= lpc32xx_ep_set_wedge,
};

/* Send a ZLP on a non-0 IN EP */
void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
{
	/* Clear EP status */
	udc_clearep_getsts(udc, ep->hwep_num);

	/* Send ZLP via FIFO mechanism */
	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
}

/*
 * Handle EP completion for ZLP
 * This function will only be called when a delayed ZLP needs to be sent out
 * after a DMA transfer has filled both buffers.
 */
void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
{
	u32 epstatus;
	struct lpc32xx_request *req;

	if (ep->hwep_num <= 0)
		return;

	uda_clear_hwepint(udc, ep->hwep_num);

	/* If this interrupt isn't enabled, return now */
	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
		return;

	/* Get endpoint status */
	epstatus = udc_clearep_getsts(udc, ep->hwep_num);

	/*
	 * This should never happen, but protect against writing to the
	 * buffer when full.
	 */
	if (epstatus & EP_SEL_F)
		return;

	if (ep->is_in) {
		udc_send_in_zlp(udc, ep);
		uda_disable_hwepint(udc, ep->hwep_num);
	} else
		return;

	/* If there isn't a request waiting, something went wrong */
	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
	if (req) {
		done(ep, req, 0);

		/* Start another request if ready */
		if (!list_empty(&ep->queue)) {
			if (ep->is_in)
				udc_ep_in_req_dma(udc, ep);
			else
				udc_ep_out_req_dma(udc, ep);
		} else
			ep->req_pending = 0;
	}
}


/* DMA end of transfer completion */
static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
{
	u32 status, epstatus;
	struct lpc32xx_request *req;
	struct lpc32xx_usbd_dd_gad *dd;

#ifdef CONFIG_USB_GADGET_DEBUG_FILES
	ep->totalints++;
#endif

	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
	if (!req) {
		ep_err(ep, "DMA interrupt on no req!\n");
		return;
	}
	dd = req->dd_desc_ptr;

	/* DMA descriptor should always be retired for this call */
	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
		ep_warn(ep, "DMA descriptor did not retire\n");

	/* Disable DMA */
	udc_ep_dma_disable(udc, ep->hwep_num);
	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));

	/* System error? */
	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
	    (1 << ep->hwep_num)) {
		writel((1 << ep->hwep_num),
			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
		ep_err(ep, "AHB critical error!\n");
		ep->req_pending = 0;

		/* The error could have occurred on a packet of a multipacket
		 * transfer, so recovering the transfer is not possible. Close
		 * the request with an error */
		done(ep, req, -ECONNABORTED);
		return;
	}

	/* Handle the current DD's status */
	status = dd->dd_status;
	switch (status & DD_STATUS_STS_MASK) {
	case DD_STATUS_STS_NS:
		/* DD not serviced? This shouldn't happen! */
		ep->req_pending = 0;
		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
		       status);

		done(ep, req, -ECONNABORTED);
		return;

	case DD_STATUS_STS_BS:
		/* Interrupt only fires on EOT - This shouldn't happen! */
		ep->req_pending = 0;
		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
		       status);
		done(ep, req, -ECONNABORTED);
		return;

	case DD_STATUS_STS_NC:
	case DD_STATUS_STS_DUR:
		/* Really just a short packet, not an underrun */
		/* This is a good status and what we expect */
		break;

	default:
		/* Data overrun, system error, or unknown */
		ep->req_pending = 0;
		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
		       status);
		done(ep, req, -ECONNABORTED);
		return;
	}

	/* ISO endpoints are handled differently */
	if (ep->eptype == EP_ISO_TYPE) {
		if (ep->is_in)
			req->req.actual = req->req.length;
		else
			req->req.actual = dd->iso_status[0] & 0xFFFF;
	} else
		req->req.actual += DD_STATUS_CURDMACNT(status);

	/* Send a ZLP if necessary. This will be done for non-int
	 * packets which have a size that is a divisor of MAXP */
	if (req->send_zlp) {
		/*
		 * If at least 1 buffer is available, send the ZLP now.
		 * Otherwise, the ZLP send needs to be deferred until a
		 * buffer is available.
		 */
		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
			udc_clearep_getsts(udc, ep->hwep_num);
			uda_enable_hwepint(udc, ep->hwep_num);
			epstatus = udc_clearep_getsts(udc, ep->hwep_num);

			/* Let the EP interrupt handle the ZLP */
			return;
		} else
			udc_send_in_zlp(udc, ep);
	}

	/* Transfer request is complete */
	done(ep, req, 0);

	/* Start another request if ready */
	udc_clearep_getsts(udc, ep->hwep_num);
	if (!list_empty((&ep->queue))) {
		if (ep->is_in)
			udc_ep_in_req_dma(udc, ep);
		else
			udc_ep_out_req_dma(udc, ep);
	} else
		ep->req_pending = 0;

}

/*
 *
 * Endpoint 0 functions
 *
 */
static void udc_handle_dev(struct lpc32xx_udc *udc)
{
	u32 tmp;

	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);

	if (tmp & DEV_RST)
		uda_usb_reset(udc);
	else if (tmp & DEV_CON_CH)
		uda_power_event(udc, (tmp & DEV_CON));
	else if (tmp & DEV_SUS_CH) {
		if (tmp & DEV_SUS) {
			if (udc->vbus == 0)
				stop_activity(udc);
			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
				 udc->driver) {
				/* Power down transceiver */
				udc->poweron = 0;
				schedule_work(&udc->pullup_job);
				uda_resm_susp_event(udc, 1);
			}
		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
			   udc->driver && udc->vbus) {
			uda_resm_susp_event(udc, 0);
			/* Power up transceiver */
			udc->poweron = 1;
			schedule_work(&udc->pullup_job);
		}
	}
}

static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
{
	struct lpc32xx_ep *ep;
	u32 ep0buff = 0, tmp;

	switch (reqtype & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
		break; /* Not supported */

	case USB_RECIP_DEVICE:
		ep0buff = (udc->selfpowered << USB_DEVICE_SELF_POWERED);
		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
		break;

	case USB_RECIP_ENDPOINT:
		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
		ep = &udc->ep[tmp];
		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
			return -EOPNOTSUPP;

		if (wIndex & USB_DIR_IN) {
			if (!ep->is_in)
				return -EOPNOTSUPP; /* Something's wrong */
		} else if (ep->is_in)
			return -EOPNOTSUPP; /* Not an IN endpoint */

		/* Get status of the endpoint */
		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));

		if (tmp & EP_SEL_ST)
			ep0buff = (1 << USB_ENDPOINT_HALT);
		else
			ep0buff = 0;
		break;

	default:
		break;
	}

	/* Return data */
	udc_write_hwep(udc, EP_IN, &ep0buff, 2);

	return 0;
}

static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
{
	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
	struct usb_ctrlrequest ctrlpkt;
	int i, bytes;
	u16 wIndex, wValue, wLength, reqtype, req, tmp;

	/* Nuke previous transfers */
	nuke(ep0, -EPROTO);

	/* Get setup packet */
	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
	if (bytes != 8) {
		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
			bytes);
		return;
	}

	/* Native endianness */
	wIndex = le16_to_cpu(ctrlpkt.wIndex);
	wValue = le16_to_cpu(ctrlpkt.wValue);
	wLength = le16_to_cpu(ctrlpkt.wLength);
	reqtype = le16_to_cpu(ctrlpkt.bRequestType);

	/* Set direction of EP0 */
	if (likely(reqtype & USB_DIR_IN))
		ep0->is_in = 1;
	else
		ep0->is_in = 0;

	/* Handle SETUP packet */
	req = le16_to_cpu(ctrlpkt.bRequest);
	switch (req) {
	case USB_REQ_CLEAR_FEATURE:
	case USB_REQ_SET_FEATURE:
		switch (reqtype) {
		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
				goto stall; /* Nothing else handled */

			/* Tell board about event */
			if (req == USB_REQ_CLEAR_FEATURE)
				udc->dev_status &=
					~(1 << USB_DEVICE_REMOTE_WAKEUP);
			else
				udc->dev_status |=
					(1 << USB_DEVICE_REMOTE_WAKEUP);
			uda_remwkp_cgh(udc);
			goto zlp_send;

		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
			if ((wValue != USB_ENDPOINT_HALT) ||
			    (tmp >= NUM_ENDPOINTS))
				break;

			/* Find hardware endpoint from logical endpoint */
			ep = &udc->ep[tmp];
			tmp = ep->hwep_num;
			if (tmp == 0)
				break;

			if (req == USB_REQ_SET_FEATURE)
				udc_stall_hwep(udc, tmp);
			else if (!ep->wedge)
				udc_clrstall_hwep(udc, tmp);

			goto zlp_send;

		default:
			break;
		}


	case USB_REQ_SET_ADDRESS:
		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
			udc_set_address(udc, wValue);
			goto zlp_send;
		}
		break;

	case USB_REQ_GET_STATUS:
		udc_get_status(udc, reqtype, wIndex);
		return;

	default:
		break; /* Let GadgetFS handle the descriptor instead */
	}

	if (likely(udc->driver)) {
		/* device-2-host (IN) or no data setup command, process
		 * immediately */
		spin_unlock(&udc->lock);
		i = udc->driver->setup(&udc->gadget, &ctrlpkt);

		spin_lock(&udc->lock);
		if (req == USB_REQ_SET_CONFIGURATION) {
			/* Configuration is set after endpoints are realized */
			if (wValue) {
				/* Set configuration */
				udc_set_device_configured(udc);

				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
							DAT_WR_BYTE(AP_CLK |
							INAK_BI | INAK_II));
			} else {
				/* Clear configuration */
				udc_set_device_unconfigured(udc);

				/* Disable NAK interrupts */
				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
							DAT_WR_BYTE(AP_CLK));
			}
		}

		if (i < 0) {
			/* setup processing failed, force stall */
			dev_dbg(udc->dev,
				"req %02x.%02x protocol STALL; stat %d\n",
				reqtype, req, i);
			udc->ep0state = WAIT_FOR_SETUP;
			goto stall;
		}
	}

	if (!ep0->is_in)
		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */

	return;

stall:
	udc_stall_hwep(udc, EP_IN);
	return;

zlp_send:
	udc_ep0_send_zlp(udc);
	return;
}

/* IN endpoint 0 transfer */
static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
{
	struct lpc32xx_ep *ep0 = &udc->ep[0];
	u32 epstatus;

	/* Clear EP interrupt */
	epstatus = udc_clearep_getsts(udc, EP_IN);

#ifdef CONFIG_USB_GADGET_DEBUG_FILES
	ep0->totalints++;
#endif

	/* Stalled? Clear stall and reset buffers */
	if (epstatus & EP_SEL_ST) {
		udc_clrstall_hwep(udc, EP_IN);
		nuke(ep0, -ECONNABORTED);
		udc->ep0state = WAIT_FOR_SETUP;
		return;
	}

	/* Is a buffer available? */
	if (!(epstatus & EP_SEL_F)) {
		/* Handle based on current state */
		if (udc->ep0state == DATA_IN)
			udc_ep0_in_req(udc);
		else {
			/* Unknown state for EP0 oe end of DATA IN phase */
			nuke(ep0, -ECONNABORTED);
			udc->ep0state = WAIT_FOR_SETUP;
		}
	}
}

/* OUT endpoint 0 transfer */
static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
{
	struct lpc32xx_ep *ep0 = &udc->ep[0];
	u32 epstatus;

	/* Clear EP interrupt */
	epstatus = udc_clearep_getsts(udc, EP_OUT);


#ifdef CONFIG_USB_GADGET_DEBUG_FILES
	ep0->totalints++;
#endif

	/* Stalled? */
	if (epstatus & EP_SEL_ST) {
		udc_clrstall_hwep(udc, EP_OUT);
		nuke(ep0, -ECONNABORTED);
		udc->ep0state = WAIT_FOR_SETUP;
		return;
	}

	/* A NAK may occur if a packet couldn't be received yet */
	if (epstatus & EP_SEL_EPN)
		return;
	/* Setup packet incoming? */
	if (epstatus & EP_SEL_STP) {
		nuke(ep0, 0);
		udc->ep0state = WAIT_FOR_SETUP;
	}

	/* Data available? */
	if (epstatus & EP_SEL_F)
		/* Handle based on current state */
		switch (udc->ep0state) {
		case WAIT_FOR_SETUP:
			udc_handle_ep0_setup(udc);
			break;

		case DATA_OUT:
			udc_ep0_out_req(udc);
			break;

		default:
			/* Unknown state for EP0 */
			nuke(ep0, -ECONNABORTED);
			udc->ep0state = WAIT_FOR_SETUP;
		}
}

/* Must be called without lock */
static int lpc32xx_get_frame(struct usb_gadget *gadget)
{
	int frame;
	unsigned long flags;
	struct lpc32xx_udc *udc = to_udc(gadget);

	if (!udc->clocked)
		return -EINVAL;

	spin_lock_irqsave(&udc->lock, flags);

	frame = (int) udc_get_current_frame(udc);

	spin_unlock_irqrestore(&udc->lock, flags);

	return frame;
}

static int lpc32xx_wakeup(struct usb_gadget *gadget)
{
	return -ENOTSUPP;
}

static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
{
	struct lpc32xx_udc *udc = to_udc(gadget);

	/* Always self-powered */
	udc->selfpowered = (is_on != 0);

	return 0;
}

/*
 * vbus is here!  turn everything on that's ready
 * Must be called without lock
 */
static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
{
	unsigned long flags;
	struct lpc32xx_udc *udc = to_udc(gadget);

	spin_lock_irqsave(&udc->lock, flags);

	/* Doesn't need lock */
	if (udc->driver) {
		udc_clk_set(udc, 1);
		udc_enable(udc);
		pullup(udc, is_active);
	} else {
		stop_activity(udc);
		pullup(udc, 0);

		spin_unlock_irqrestore(&udc->lock, flags);
		/*
		 *  Wait for all the endpoints to disable,
		 *  before disabling clocks. Don't wait if
		 *  endpoints are not enabled.
		 */
		if (atomic_read(&udc->enabled_ep_cnt))
			wait_event_interruptible(udc->ep_disable_wait_queue,
				 (atomic_read(&udc->enabled_ep_cnt) == 0));

		spin_lock_irqsave(&udc->lock, flags);

		udc_clk_set(udc, 0);
	}

	spin_unlock_irqrestore(&udc->lock, flags);

	return 0;
}

/* Can be called with or without lock */
static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
{
	struct lpc32xx_udc *udc = to_udc(gadget);

	/* Doesn't need lock */
	pullup(udc, is_on);

	return 0;
}

static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
static int lpc32xx_stop(struct usb_gadget *, struct usb_gadget_driver *);

static const struct usb_gadget_ops lpc32xx_udc_ops = {
	.get_frame		= lpc32xx_get_frame,
	.wakeup			= lpc32xx_wakeup,
	.set_selfpowered	= lpc32xx_set_selfpowered,
	.vbus_session		= lpc32xx_vbus_session,
	.pullup			= lpc32xx_pullup,
	.udc_start		= lpc32xx_start,
	.udc_stop		= lpc32xx_stop,
};

static void nop_release(struct device *dev)
{
	/* nothing to free */
}

static const struct lpc32xx_udc controller_template = {
	.gadget = {
		.ops	= &lpc32xx_udc_ops,
		.name	= driver_name,
		.dev	= {
			.init_name = "gadget",
			.release = nop_release,
		}
	},
	.ep[0] = {
		.ep = {
			.name	= "ep0",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 64,
		.hwep_num_base	= 0,
		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
		.lep		= 0,
		.eptype		= EP_CTL_TYPE,
	},
	.ep[1] = {
		.ep = {
			.name	= "ep1-int",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 64,
		.hwep_num_base	= 2,
		.hwep_num	= 0, /* 2 or 3, will be set later */
		.lep		= 1,
		.eptype		= EP_INT_TYPE,
	},
	.ep[2] = {
		.ep = {
			.name	= "ep2-bulk",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 64,
		.hwep_num_base	= 4,
		.hwep_num	= 0, /* 4 or 5, will be set later */
		.lep		= 2,
		.eptype		= EP_BLK_TYPE,
	},
	.ep[3] = {
		.ep = {
			.name	= "ep3-iso",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 1023,
		.hwep_num_base	= 6,
		.hwep_num	= 0, /* 6 or 7, will be set later */
		.lep		= 3,
		.eptype		= EP_ISO_TYPE,
	},
	.ep[4] = {
		.ep = {
			.name	= "ep4-int",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 64,
		.hwep_num_base	= 8,
		.hwep_num	= 0, /* 8 or 9, will be set later */
		.lep		= 4,
		.eptype		= EP_INT_TYPE,
	},
	.ep[5] = {
		.ep = {
			.name	= "ep5-bulk",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 64,
		.hwep_num_base	= 10,
		.hwep_num	= 0, /* 10 or 11, will be set later */
		.lep		= 5,
		.eptype		= EP_BLK_TYPE,
	},
	.ep[6] = {
		.ep = {
			.name	= "ep6-iso",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 1023,
		.hwep_num_base	= 12,
		.hwep_num	= 0, /* 12 or 13, will be set later */
		.lep		= 6,
		.eptype		= EP_ISO_TYPE,
	},
	.ep[7] = {
		.ep = {
			.name	= "ep7-int",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 64,
		.hwep_num_base	= 14,
		.hwep_num	= 0,
		.lep		= 7,
		.eptype		= EP_INT_TYPE,
	},
	.ep[8] = {
		.ep = {
			.name	= "ep8-bulk",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 64,
		.hwep_num_base	= 16,
		.hwep_num	= 0,
		.lep		= 8,
		.eptype		= EP_BLK_TYPE,
	},
	.ep[9] = {
		.ep = {
			.name	= "ep9-iso",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 1023,
		.hwep_num_base	= 18,
		.hwep_num	= 0,
		.lep		= 9,
		.eptype		= EP_ISO_TYPE,
	},
	.ep[10] = {
		.ep = {
			.name	= "ep10-int",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 64,
		.hwep_num_base	= 20,
		.hwep_num	= 0,
		.lep		= 10,
		.eptype		= EP_INT_TYPE,
	},
	.ep[11] = {
		.ep = {
			.name	= "ep11-bulk",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 64,
		.hwep_num_base	= 22,
		.hwep_num	= 0,
		.lep		= 11,
		.eptype		= EP_BLK_TYPE,
	},
	.ep[12] = {
		.ep = {
			.name	= "ep12-iso",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 1023,
		.hwep_num_base	= 24,
		.hwep_num	= 0,
		.lep		= 12,
		.eptype		= EP_ISO_TYPE,
	},
	.ep[13] = {
		.ep = {
			.name	= "ep13-int",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 64,
		.hwep_num_base	= 26,
		.hwep_num	= 0,
		.lep		= 13,
		.eptype		= EP_INT_TYPE,
	},
	.ep[14] = {
		.ep = {
			.name	= "ep14-bulk",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 64,
		.hwep_num_base	= 28,
		.hwep_num	= 0,
		.lep		= 14,
		.eptype		= EP_BLK_TYPE,
	},
	.ep[15] = {
		.ep = {
			.name	= "ep15-bulk",
			.ops	= &lpc32xx_ep_ops,
		},
		.maxpacket	= 1023,
		.hwep_num_base	= 30,
		.hwep_num	= 0,
		.lep		= 15,
		.eptype		= EP_BLK_TYPE,
	},
};

/* ISO and status interrupts */
static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
{
	u32 tmp, devstat;
	struct lpc32xx_udc *udc = _udc;

	spin_lock(&udc->lock);

	/* Read the device status register */
	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));

	devstat &= ~USBD_EP_FAST;
	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
	devstat = devstat & udc->enabled_devints;

	/* Device specific handling needed? */
	if (devstat & USBD_DEV_STAT)
		udc_handle_dev(udc);

	/* Start of frame? (devstat & FRAME_INT):
	 * The frame interrupt isn't really needed for ISO support,
	 * as the driver will queue the necessary packets */

	/* Error? */
	if (devstat & ERR_INT) {
		/* All types of errors, from cable removal during transfer to
		 * misc protocol and bit errors. These are mostly for just info,
		 * as the USB hardware will work around these. If these errors
		 * happen alot, something is wrong. */
		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
	}

	spin_unlock(&udc->lock);

	return IRQ_HANDLED;
}

/* EP interrupts */
static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
{
	u32 tmp;
	struct lpc32xx_udc *udc = _udc;

	spin_lock(&udc->lock);

	/* Read the device status register */
	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));

	/* Endpoints */
	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));

	/* Special handling for EP0 */
	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
		/* Handle EP0 IN */
		if (tmp & (EP_MASK_SEL(0, EP_IN)))
			udc_handle_ep0_in(udc);

		/* Handle EP0 OUT */
		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
			udc_handle_ep0_out(udc);
	}

	/* All other EPs */
	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
		int i;

		/* Handle other EP interrupts */
		for (i = 1; i < NUM_ENDPOINTS; i++) {
			if (tmp & (1 << udc->ep[i].hwep_num))
				udc_handle_eps(udc, &udc->ep[i]);
		}
	}

	spin_unlock(&udc->lock);

	return IRQ_HANDLED;
}

static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
{
	struct lpc32xx_udc *udc = _udc;

	int i;
	u32 tmp;

	spin_lock(&udc->lock);

	/* Handle EP DMA EOT interrupts */
	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
	for (i = 1; i < NUM_ENDPOINTS; i++) {
		if (tmp & (1 << udc->ep[i].hwep_num))
			udc_handle_dma_ep(udc, &udc->ep[i]);
	}

	spin_unlock(&udc->lock);

	return IRQ_HANDLED;
}

/*
 *
 * VBUS detection, pullup handler, and Gadget cable state notification
 *
 */
static void vbus_work(struct work_struct *work)
{
	u8 value;
	struct lpc32xx_udc *udc = container_of(work, struct lpc32xx_udc,
					       vbus_job);

	if (udc->enabled != 0) {
		/* Discharge VBUS real quick */
		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);

		/* Give VBUS some time (100mS) to discharge */
		msleep(100);

		/* Disable VBUS discharge resistor */
		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
			OTG1_VBUS_DISCHRG);

		/* Clear interrupt */
		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
			ISP1301_I2C_INTERRUPT_LATCH |
			ISP1301_I2C_REG_CLEAR_ADDR, ~0);

		/* Get the VBUS status from the transceiver */
		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
						 ISP1301_I2C_INTERRUPT_SOURCE);

		/* VBUS on or off? */
		if (value & INT_SESS_VLD)
			udc->vbus = 1;
		else
			udc->vbus = 0;

		/* VBUS changed? */
		if (udc->last_vbus != udc->vbus) {
			udc->last_vbus = udc->vbus;
			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
		}
	}

	/* Re-enable after completion */
	enable_irq(udc->udp_irq[IRQ_USB_ATX]);
}

static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
{
	struct lpc32xx_udc *udc = _udc;

	/* Defer handling of VBUS IRQ to work queue */
	disable_irq_nosync(udc->udp_irq[IRQ_USB_ATX]);
	schedule_work(&udc->vbus_job);

	return IRQ_HANDLED;
}

static int lpc32xx_start(struct usb_gadget *gadget,
			 struct usb_gadget_driver *driver)
{
	struct lpc32xx_udc *udc = to_udc(gadget);
	int i;

	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
		dev_err(udc->dev, "bad parameter.\n");
		return -EINVAL;
	}

	if (udc->driver) {
		dev_err(udc->dev, "UDC already has a gadget driver\n");
		return -EBUSY;
	}

	udc->driver = driver;
	udc->gadget.dev.of_node = udc->dev->of_node;
	udc->enabled = 1;
	udc->selfpowered = 1;
	udc->vbus = 0;

	/* Force VBUS process once to check for cable insertion */
	udc->last_vbus = udc->vbus = 0;
	schedule_work(&udc->vbus_job);

	/* Do not re-enable ATX IRQ (3) */
	for (i = IRQ_USB_LP; i < IRQ_USB_ATX; i++)
		enable_irq(udc->udp_irq[i]);

	return 0;
}

static int lpc32xx_stop(struct usb_gadget *gadget,
			struct usb_gadget_driver *driver)
{
	int i;
	struct lpc32xx_udc *udc = to_udc(gadget);

	if (!driver || driver != udc->driver)
		return -EINVAL;

	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
		disable_irq(udc->udp_irq[i]);

	if (udc->clocked) {
		spin_lock(&udc->lock);
		stop_activity(udc);
		spin_unlock(&udc->lock);

		/*
		 *  Wait for all the endpoints to disable,
		 *  before disabling clocks. Don't wait if
		 *  endpoints are not enabled.
		 */
		if (atomic_read(&udc->enabled_ep_cnt))
			wait_event_interruptible(udc->ep_disable_wait_queue,
				(atomic_read(&udc->enabled_ep_cnt) == 0));

		spin_lock(&udc->lock);
		udc_clk_set(udc, 0);
		spin_unlock(&udc->lock);
	}

	udc->enabled = 0;
	udc->driver = NULL;

	return 0;
}

static void lpc32xx_udc_shutdown(struct platform_device *dev)
{
	/* Force disconnect on reboot */
	struct lpc32xx_udc *udc = platform_get_drvdata(dev);

	pullup(udc, 0);
}

/*
 * Callbacks to be overridden by options passed via OF (TODO)
 */

static void lpc32xx_usbd_conn_chg(int conn)
{
	/* Do nothing, it might be nice to enable an LED
	 * based on conn state being !0 */
}

static void lpc32xx_usbd_susp_chg(int susp)
{
	/* Device suspend if susp != 0 */
}

static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
{
	/* Enable or disable USB remote wakeup */
}

struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
	.vbus_drv_pol = 0,
	.conn_chgb = &lpc32xx_usbd_conn_chg,
	.susp_chgb = &lpc32xx_usbd_susp_chg,
	.rmwk_chgb = &lpc32xx_rmwkup_chg,
};


static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;

static int __init lpc32xx_udc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct lpc32xx_udc *udc;
	int retval, i;
	struct resource *res;
	dma_addr_t dma_handle;
	struct device_node *isp1301_node;

	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
	if (!udc)
		return -ENOMEM;

	memcpy(udc, &controller_template, sizeof(*udc));
	for (i = 0; i <= 15; i++)
		udc->ep[i].udc = udc;
	udc->gadget.ep0 = &udc->ep[0].ep;

	/* init software state */
	udc->gadget.dev.parent = dev;
	udc->pdev = pdev;
	udc->dev = &pdev->dev;
	udc->enabled = 0;

	if (pdev->dev.of_node) {
		isp1301_node = of_parse_phandle(pdev->dev.of_node,
						"transceiver", 0);
	} else {
		isp1301_node = NULL;
	}

	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
	if (!udc->isp1301_i2c_client) {
		retval = -EPROBE_DEFER;
		goto phy_fail;
	}

	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
		 udc->isp1301_i2c_client->addr);

	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
	pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);

	udc->board = &lpc32xx_usbddata;

	/*
	 * Resources are mapped as follows:
	 *  IORESOURCE_MEM, base address and size of USB space
	 *  IORESOURCE_IRQ, USB device low priority interrupt number
	 *  IORESOURCE_IRQ, USB device high priority interrupt number
	 *  IORESOURCE_IRQ, USB device interrupt number
	 *  IORESOURCE_IRQ, USB transceiver interrupt number
	 */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		retval = -ENXIO;
		goto resource_fail;
	}

	spin_lock_init(&udc->lock);

	/* Get IRQs */
	for (i = 0; i < 4; i++) {
		udc->udp_irq[i] = platform_get_irq(pdev, i);
		if (udc->udp_irq[i] < 0) {
			dev_err(udc->dev,
				"irq resource %d not available!\n", i);
			retval = udc->udp_irq[i];
			goto irq_fail;
		}
	}

	udc->io_p_start = res->start;
	udc->io_p_size = resource_size(res);
	if (!request_mem_region(udc->io_p_start, udc->io_p_size, driver_name)) {
		dev_err(udc->dev, "someone's using UDC memory\n");
		retval = -EBUSY;
		goto request_mem_region_fail;
	}

	udc->udp_baseaddr = ioremap(udc->io_p_start, udc->io_p_size);
	if (!udc->udp_baseaddr) {
		retval = -ENOMEM;
		dev_err(udc->dev, "IO map failure\n");
		goto io_map_fail;
	}

	/* Enable AHB slave USB clock, needed for further USB clock control */
	writel(USB_SLAVE_HCLK_EN | (1 << 19), USB_CTRL);

	/* Get required clocks */
	udc->usb_pll_clk = clk_get(&pdev->dev, "ck_pll5");
	if (IS_ERR(udc->usb_pll_clk)) {
		dev_err(udc->dev, "failed to acquire USB PLL\n");
		retval = PTR_ERR(udc->usb_pll_clk);
		goto pll_get_fail;
	}
	udc->usb_slv_clk = clk_get(&pdev->dev, "ck_usbd");
	if (IS_ERR(udc->usb_slv_clk)) {
		dev_err(udc->dev, "failed to acquire USB device clock\n");
		retval = PTR_ERR(udc->usb_slv_clk);
		goto usb_clk_get_fail;
	}
	udc->usb_otg_clk = clk_get(&pdev->dev, "ck_usb_otg");
	if (IS_ERR(udc->usb_otg_clk)) {
		dev_err(udc->dev, "failed to acquire USB otg clock\n");
		retval = PTR_ERR(udc->usb_otg_clk);
		goto usb_otg_clk_get_fail;
	}

	/* Setup PLL clock to 48MHz */
	retval = clk_enable(udc->usb_pll_clk);
	if (retval < 0) {
		dev_err(udc->dev, "failed to start USB PLL\n");
		goto pll_enable_fail;
	}

	retval = clk_set_rate(udc->usb_pll_clk, 48000);
	if (retval < 0) {
		dev_err(udc->dev, "failed to set USB clock rate\n");
		goto pll_set_fail;
	}

	writel(readl(USB_CTRL) | USB_DEV_NEED_CLK_EN, USB_CTRL);

	/* Enable USB device clock */
	retval = clk_enable(udc->usb_slv_clk);
	if (retval < 0) {
		dev_err(udc->dev, "failed to start USB device clock\n");
		goto usb_clk_enable_fail;
	}

	/* Enable USB OTG clock */
	retval = clk_enable(udc->usb_otg_clk);
	if (retval < 0) {
		dev_err(udc->dev, "failed to start USB otg clock\n");
		goto usb_otg_clk_enable_fail;
	}

	/* Setup deferred workqueue data */
	udc->poweron = udc->pullup = 0;
	INIT_WORK(&udc->pullup_job, pullup_work);
	INIT_WORK(&udc->vbus_job, vbus_work);
#ifdef CONFIG_PM
	INIT_WORK(&udc->power_job, power_work);
#endif

	/* All clocks are now on */
	udc->clocked = 1;

	isp1301_udc_configure(udc);
	/* Allocate memory for the UDCA */
	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
					      &dma_handle,
					      (GFP_KERNEL | GFP_DMA));
	if (!udc->udca_v_base) {
		dev_err(udc->dev, "error getting UDCA region\n");
		retval = -ENOMEM;
		goto i2c_fail;
	}
	udc->udca_p_base = dma_handle;
	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);

	/* Setup the DD DMA memory pool */
	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
					sizeof(struct lpc32xx_usbd_dd_gad),
					sizeof(u32), 0);
	if (!udc->dd_cache) {
		dev_err(udc->dev, "error getting DD DMA region\n");
		retval = -ENOMEM;
		goto dma_alloc_fail;
	}

	/* Clear USB peripheral and initialize gadget endpoints */
	udc_disable(udc);
	udc_reinit(udc);

	/* Request IRQs - low and high priority USB device IRQs are routed to
	 * the same handler, while the DMA interrupt is routed elsewhere */
	retval = request_irq(udc->udp_irq[IRQ_USB_LP], lpc32xx_usb_lp_irq,
			     0, "udc_lp", udc);
	if (retval < 0) {
		dev_err(udc->dev, "LP request irq %d failed\n",
			udc->udp_irq[IRQ_USB_LP]);
		goto irq_lp_fail;
	}
	retval = request_irq(udc->udp_irq[IRQ_USB_HP], lpc32xx_usb_hp_irq,
			     0, "udc_hp", udc);
	if (retval < 0) {
		dev_err(udc->dev, "HP request irq %d failed\n",
			udc->udp_irq[IRQ_USB_HP]);
		goto irq_hp_fail;
	}

	retval = request_irq(udc->udp_irq[IRQ_USB_DEVDMA],
			     lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
	if (retval < 0) {
		dev_err(udc->dev, "DEV request irq %d failed\n",
			udc->udp_irq[IRQ_USB_DEVDMA]);
		goto irq_dev_fail;
	}

	/* The transceiver interrupt is used for VBUS detection and will
	   kick off the VBUS handler function */
	retval = request_irq(udc->udp_irq[IRQ_USB_ATX], lpc32xx_usb_vbus_irq,
			     0, "udc_otg", udc);
	if (retval < 0) {
		dev_err(udc->dev, "VBUS request irq %d failed\n",
			udc->udp_irq[IRQ_USB_ATX]);
		goto irq_xcvr_fail;
	}

	/* Initialize wait queue */
	init_waitqueue_head(&udc->ep_disable_wait_queue);
	atomic_set(&udc->enabled_ep_cnt, 0);

	/* Keep all IRQs disabled until GadgetFS starts up */
	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
		disable_irq(udc->udp_irq[i]);

	retval = usb_add_gadget_udc(dev, &udc->gadget);
	if (retval < 0)
		goto add_gadget_fail;

	dev_set_drvdata(dev, udc);
	device_init_wakeup(dev, 1);
	create_debug_file(udc);

	/* Disable clocks for now */
	udc_clk_set(udc, 0);

	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
	return 0;

add_gadget_fail:
	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
irq_xcvr_fail:
	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
irq_dev_fail:
	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
irq_hp_fail:
	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
irq_lp_fail:
	dma_pool_destroy(udc->dd_cache);
dma_alloc_fail:
	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
			  udc->udca_v_base, udc->udca_p_base);
i2c_fail:
	clk_disable(udc->usb_otg_clk);
usb_otg_clk_enable_fail:
	clk_disable(udc->usb_slv_clk);
usb_clk_enable_fail:
pll_set_fail:
	clk_disable(udc->usb_pll_clk);
pll_enable_fail:
	clk_put(udc->usb_slv_clk);
usb_otg_clk_get_fail:
	clk_put(udc->usb_otg_clk);
usb_clk_get_fail:
	clk_put(udc->usb_pll_clk);
pll_get_fail:
	iounmap(udc->udp_baseaddr);
io_map_fail:
	release_mem_region(udc->io_p_start, udc->io_p_size);
	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
request_mem_region_fail:
irq_fail:
resource_fail:
phy_fail:
	kfree(udc);
	return retval;
}

static int lpc32xx_udc_remove(struct platform_device *pdev)
{
	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);

	usb_del_gadget_udc(&udc->gadget);
	if (udc->driver)
		return -EBUSY;

	udc_clk_set(udc, 1);
	udc_disable(udc);
	pullup(udc, 0);

	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);

	device_init_wakeup(&pdev->dev, 0);
	remove_debug_file(udc);

	dma_pool_destroy(udc->dd_cache);
	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
			  udc->udca_v_base, udc->udca_p_base);
	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
	free_irq(udc->udp_irq[IRQ_USB_LP], udc);

	clk_disable(udc->usb_otg_clk);
	clk_put(udc->usb_otg_clk);
	clk_disable(udc->usb_slv_clk);
	clk_put(udc->usb_slv_clk);
	clk_disable(udc->usb_pll_clk);
	clk_put(udc->usb_pll_clk);
	iounmap(udc->udp_baseaddr);
	release_mem_region(udc->io_p_start, udc->io_p_size);
	kfree(udc);

	return 0;
}

#ifdef CONFIG_PM
static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
{
	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);

	if (udc->clocked) {
		/* Power down ISP */
		udc->poweron = 0;
		isp1301_set_powerstate(udc, 0);

		/* Disable clocking */
		udc_clk_set(udc, 0);

		/* Keep clock flag on, so we know to re-enable clocks
		   on resume */
		udc->clocked = 1;

		/* Kill global USB clock */
		clk_disable(udc->usb_slv_clk);
	}

	return 0;
}

static int lpc32xx_udc_resume(struct platform_device *pdev)
{
	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);

	if (udc->clocked) {
		/* Enable global USB clock */
		clk_enable(udc->usb_slv_clk);

		/* Enable clocking */
		udc_clk_set(udc, 1);

		/* ISP back to normal power mode */
		udc->poweron = 1;
		isp1301_set_powerstate(udc, 1);
	}

	return 0;
}
#else
#define	lpc32xx_udc_suspend	NULL
#define	lpc32xx_udc_resume	NULL
#endif

#ifdef CONFIG_OF
static struct of_device_id lpc32xx_udc_of_match[] = {
	{ .compatible = "nxp,lpc3220-udc", },
	{ },
};
MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
#endif

static struct platform_driver lpc32xx_udc_driver = {
	.remove		= lpc32xx_udc_remove,
	.shutdown	= lpc32xx_udc_shutdown,
	.suspend	= lpc32xx_udc_suspend,
	.resume		= lpc32xx_udc_resume,
	.driver		= {
		.name	= (char *) driver_name,
		.owner	= THIS_MODULE,
		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
	},
};

module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);

MODULE_DESCRIPTION("LPC32XX udc driver");
MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:lpc32xx_udc");