/* * Aic94xx SAS/SATA driver access to shared data structures and memory * maps. * * Copyright (C) 2005 Adaptec, Inc. All rights reserved. * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> * * This file is licensed under GPLv2. * * This file is part of the aic94xx driver. * * The aic94xx driver is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of the * License. * * The aic94xx driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with the aic94xx driver; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #include <linux/pci.h> #include <linux/slab.h> #include <linux/delay.h> #include "aic94xx.h" #include "aic94xx_reg.h" #include "aic94xx_sds.h" /* ---------- OCM stuff ---------- */ struct asd_ocm_dir_ent { u8 type; u8 offs[3]; u8 _r1; u8 size[3]; } __attribute__ ((packed)); struct asd_ocm_dir { char sig[2]; u8 _r1[2]; u8 major; /* 0 */ u8 minor; /* 0 */ u8 _r2; u8 num_de; struct asd_ocm_dir_ent entry[15]; } __attribute__ ((packed)); #define OCM_DE_OCM_DIR 0x00 #define OCM_DE_WIN_DRVR 0x01 #define OCM_DE_BIOS_CHIM 0x02 #define OCM_DE_RAID_ENGN 0x03 #define OCM_DE_BIOS_INTL 0x04 #define OCM_DE_BIOS_CHIM_OSM 0x05 #define OCM_DE_BIOS_CHIM_DYNAMIC 0x06 #define OCM_DE_ADDC2C_RES0 0x07 #define OCM_DE_ADDC2C_RES1 0x08 #define OCM_DE_ADDC2C_RES2 0x09 #define OCM_DE_ADDC2C_RES3 0x0A #define OCM_INIT_DIR_ENTRIES 5 /*************************************************************************** * OCM directory default ***************************************************************************/ static struct asd_ocm_dir OCMDirInit = { .sig = {0x4D, 0x4F}, /* signature */ .num_de = OCM_INIT_DIR_ENTRIES, /* no. of directory entries */ }; /*************************************************************************** * OCM directory Entries default ***************************************************************************/ static struct asd_ocm_dir_ent OCMDirEntriesInit[OCM_INIT_DIR_ENTRIES] = { { .type = (OCM_DE_ADDC2C_RES0), /* Entry type */ .offs = {128}, /* Offset */ .size = {0, 4}, /* size */ }, { .type = (OCM_DE_ADDC2C_RES1), /* Entry type */ .offs = {128, 4}, /* Offset */ .size = {0, 4}, /* size */ }, { .type = (OCM_DE_ADDC2C_RES2), /* Entry type */ .offs = {128, 8}, /* Offset */ .size = {0, 4}, /* size */ }, { .type = (OCM_DE_ADDC2C_RES3), /* Entry type */ .offs = {128, 12}, /* Offset */ .size = {0, 4}, /* size */ }, { .type = (OCM_DE_WIN_DRVR), /* Entry type */ .offs = {128, 16}, /* Offset */ .size = {128, 235, 1}, /* size */ }, }; struct asd_bios_chim_struct { char sig[4]; u8 major; /* 1 */ u8 minor; /* 0 */ u8 bios_major; u8 bios_minor; __le32 bios_build; u8 flags; u8 pci_slot; __le16 ue_num; __le16 ue_size; u8 _r[14]; /* The unit element array is right here. */ } __attribute__ ((packed)); /** * asd_read_ocm_seg - read an on chip memory (OCM) segment * @asd_ha: pointer to the host adapter structure * @buffer: where to write the read data * @offs: offset into OCM where to read from * @size: how many bytes to read * * Return the number of bytes not read. Return 0 on success. */ static int asd_read_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer, u32 offs, int size) { u8 *p = buffer; if (unlikely(asd_ha->iospace)) asd_read_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size); else { for ( ; size > 0; size--, offs++, p++) *p = asd_read_ocm_byte(asd_ha, offs); } return size; } static int asd_read_ocm_dir(struct asd_ha_struct *asd_ha, struct asd_ocm_dir *dir, u32 offs) { int err = asd_read_ocm_seg(asd_ha, dir, offs, sizeof(*dir)); if (err) { ASD_DPRINTK("couldn't read ocm segment\n"); return err; } if (dir->sig[0] != 'M' || dir->sig[1] != 'O') { ASD_DPRINTK("no valid dir signature(%c%c) at start of OCM\n", dir->sig[0], dir->sig[1]); return -ENOENT; } if (dir->major != 0) { asd_printk("unsupported major version of ocm dir:0x%x\n", dir->major); return -ENOENT; } dir->num_de &= 0xf; return 0; } /** * asd_write_ocm_seg - write an on chip memory (OCM) segment * @asd_ha: pointer to the host adapter structure * @buffer: where to read the write data * @offs: offset into OCM to write to * @size: how many bytes to write * * Return the number of bytes not written. Return 0 on success. */ static void asd_write_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer, u32 offs, int size) { u8 *p = buffer; if (unlikely(asd_ha->iospace)) asd_write_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size); else { for ( ; size > 0; size--, offs++, p++) asd_write_ocm_byte(asd_ha, offs, *p); } return; } #define THREE_TO_NUM(X) ((X)[0] | ((X)[1] << 8) | ((X)[2] << 16)) static int asd_find_dir_entry(struct asd_ocm_dir *dir, u8 type, u32 *offs, u32 *size) { int i; struct asd_ocm_dir_ent *ent; for (i = 0; i < dir->num_de; i++) { if (dir->entry[i].type == type) break; } if (i >= dir->num_de) return -ENOENT; ent = &dir->entry[i]; *offs = (u32) THREE_TO_NUM(ent->offs); *size = (u32) THREE_TO_NUM(ent->size); return 0; } #define OCM_BIOS_CHIM_DE 2 #define BC_BIOS_PRESENT 1 static int asd_get_bios_chim(struct asd_ha_struct *asd_ha, struct asd_ocm_dir *dir) { int err; struct asd_bios_chim_struct *bc_struct; u32 offs, size; err = asd_find_dir_entry(dir, OCM_BIOS_CHIM_DE, &offs, &size); if (err) { ASD_DPRINTK("couldn't find BIOS_CHIM dir ent\n"); goto out; } err = -ENOMEM; bc_struct = kmalloc(sizeof(*bc_struct), GFP_KERNEL); if (!bc_struct) { asd_printk("no memory for bios_chim struct\n"); goto out; } err = asd_read_ocm_seg(asd_ha, (void *)bc_struct, offs, sizeof(*bc_struct)); if (err) { ASD_DPRINTK("couldn't read ocm segment\n"); goto out2; } if (strncmp(bc_struct->sig, "SOIB", 4) && strncmp(bc_struct->sig, "IPSA", 4)) { ASD_DPRINTK("BIOS_CHIM entry has no valid sig(%c%c%c%c)\n", bc_struct->sig[0], bc_struct->sig[1], bc_struct->sig[2], bc_struct->sig[3]); err = -ENOENT; goto out2; } if (bc_struct->major != 1) { asd_printk("BIOS_CHIM unsupported major version:0x%x\n", bc_struct->major); err = -ENOENT; goto out2; } if (bc_struct->flags & BC_BIOS_PRESENT) { asd_ha->hw_prof.bios.present = 1; asd_ha->hw_prof.bios.maj = bc_struct->bios_major; asd_ha->hw_prof.bios.min = bc_struct->bios_minor; asd_ha->hw_prof.bios.bld = le32_to_cpu(bc_struct->bios_build); ASD_DPRINTK("BIOS present (%d,%d), %d\n", asd_ha->hw_prof.bios.maj, asd_ha->hw_prof.bios.min, asd_ha->hw_prof.bios.bld); } asd_ha->hw_prof.ue.num = le16_to_cpu(bc_struct->ue_num); asd_ha->hw_prof.ue.size= le16_to_cpu(bc_struct->ue_size); ASD_DPRINTK("ue num:%d, ue size:%d\n", asd_ha->hw_prof.ue.num, asd_ha->hw_prof.ue.size); size = asd_ha->hw_prof.ue.num * asd_ha->hw_prof.ue.size; if (size > 0) { err = -ENOMEM; asd_ha->hw_prof.ue.area = kmalloc(size, GFP_KERNEL); if (!asd_ha->hw_prof.ue.area) goto out2; err = asd_read_ocm_seg(asd_ha, (void *)asd_ha->hw_prof.ue.area, offs + sizeof(*bc_struct), size); if (err) { kfree(asd_ha->hw_prof.ue.area); asd_ha->hw_prof.ue.area = NULL; asd_ha->hw_prof.ue.num = 0; asd_ha->hw_prof.ue.size = 0; ASD_DPRINTK("couldn't read ue entries(%d)\n", err); } } out2: kfree(bc_struct); out: return err; } static void asd_hwi_initialize_ocm_dir (struct asd_ha_struct *asd_ha) { int i; /* Zero OCM */ for (i = 0; i < OCM_MAX_SIZE; i += 4) asd_write_ocm_dword(asd_ha, i, 0); /* Write Dir */ asd_write_ocm_seg(asd_ha, &OCMDirInit, 0, sizeof(struct asd_ocm_dir)); /* Write Dir Entries */ for (i = 0; i < OCM_INIT_DIR_ENTRIES; i++) asd_write_ocm_seg(asd_ha, &OCMDirEntriesInit[i], sizeof(struct asd_ocm_dir) + (i * sizeof(struct asd_ocm_dir_ent)) , sizeof(struct asd_ocm_dir_ent)); } static int asd_hwi_check_ocm_access (struct asd_ha_struct *asd_ha) { struct pci_dev *pcidev = asd_ha->pcidev; u32 reg; int err = 0; u32 v; /* check if OCM has been initialized by BIOS */ reg = asd_read_reg_dword(asd_ha, EXSICNFGR); if (!(reg & OCMINITIALIZED)) { err = pci_read_config_dword(pcidev, PCIC_INTRPT_STAT, &v); if (err) { asd_printk("couldn't access PCIC_INTRPT_STAT of %s\n", pci_name(pcidev)); goto out; } printk(KERN_INFO "OCM is not initialized by BIOS," "reinitialize it and ignore it, current IntrptStatus" "is 0x%x\n", v); if (v) err = pci_write_config_dword(pcidev, PCIC_INTRPT_STAT, v); if (err) { asd_printk("couldn't write PCIC_INTRPT_STAT of %s\n", pci_name(pcidev)); goto out; } asd_hwi_initialize_ocm_dir(asd_ha); } out: return err; } /** * asd_read_ocm - read on chip memory (OCM) * @asd_ha: pointer to the host adapter structure */ int asd_read_ocm(struct asd_ha_struct *asd_ha) { int err; struct asd_ocm_dir *dir; if (asd_hwi_check_ocm_access(asd_ha)) return -1; dir = kmalloc(sizeof(*dir), GFP_KERNEL); if (!dir) { asd_printk("no memory for ocm dir\n"); return -ENOMEM; } err = asd_read_ocm_dir(asd_ha, dir, 0); if (err) goto out; err = asd_get_bios_chim(asd_ha, dir); out: kfree(dir); return err; } /* ---------- FLASH stuff ---------- */ #define FLASH_RESET 0xF0 #define ASD_FLASH_SIZE 0x200000 #define FLASH_DIR_COOKIE "*** ADAPTEC FLASH DIRECTORY *** " #define FLASH_NEXT_ENTRY_OFFS 0x2000 #define FLASH_MAX_DIR_ENTRIES 32 #define FLASH_DE_TYPE_MASK 0x3FFFFFFF #define FLASH_DE_MS 0x120 #define FLASH_DE_CTRL_A_USER 0xE0 struct asd_flash_de { __le32 type; __le32 offs; __le32 pad_size; __le32 image_size; __le32 chksum; u8 _r[12]; u8 version[32]; } __attribute__ ((packed)); struct asd_flash_dir { u8 cookie[32]; __le32 rev; /* 2 */ __le32 chksum; __le32 chksum_antidote; __le32 bld; u8 bld_id[32]; /* build id data */ u8 ver_data[32]; /* date and time of build */ __le32 ae_mask; __le32 v_mask; __le32 oc_mask; u8 _r[20]; struct asd_flash_de dir_entry[FLASH_MAX_DIR_ENTRIES]; } __attribute__ ((packed)); struct asd_manuf_sec { char sig[2]; /* 'S', 'M' */ u16 offs_next; u8 maj; /* 0 */ u8 min; /* 0 */ u16 chksum; u16 size; u8 _r[6]; u8 sas_addr[SAS_ADDR_SIZE]; u8 pcba_sn[ASD_PCBA_SN_SIZE]; /* Here start the other segments */ u8 linked_list[0]; } __attribute__ ((packed)); struct asd_manuf_phy_desc { u8 state; /* low 4 bits */ #define MS_PHY_STATE_ENABLED 0 #define MS_PHY_STATE_REPORTED 1 #define MS_PHY_STATE_HIDDEN 2 u8 phy_id; u16 _r; u8 phy_control_0; /* mode 5 reg 0x160 */ u8 phy_control_1; /* mode 5 reg 0x161 */ u8 phy_control_2; /* mode 5 reg 0x162 */ u8 phy_control_3; /* mode 5 reg 0x163 */ } __attribute__ ((packed)); struct asd_manuf_phy_param { char sig[2]; /* 'P', 'M' */ u16 next; u8 maj; /* 0 */ u8 min; /* 2 */ u8 num_phy_desc; /* 8 */ u8 phy_desc_size; /* 8 */ u8 _r[3]; u8 usage_model_id; u32 _r2; struct asd_manuf_phy_desc phy_desc[ASD_MAX_PHYS]; } __attribute__ ((packed)); #if 0 static const char *asd_sb_type[] = { "unknown", "SGPIO", [2 ... 0x7F] = "unknown", [0x80] = "ADPT_I2C", [0x81 ... 0xFF] = "VENDOR_UNIQUExx" }; #endif struct asd_ms_sb_desc { u8 type; u8 node_desc_index; u8 conn_desc_index; u8 _recvd[0]; } __attribute__ ((packed)); #if 0 static const char *asd_conn_type[] = { [0 ... 7] = "unknown", "SFF8470", "SFF8482", "SFF8484", [0x80] = "PCIX_DAUGHTER0", [0x81] = "SAS_DAUGHTER0", [0x82 ... 0xFF] = "VENDOR_UNIQUExx" }; static const char *asd_conn_location[] = { "unknown", "internal", "external", "board_to_board", }; #endif struct asd_ms_conn_desc { u8 type; u8 location; u8 num_sideband_desc; u8 size_sideband_desc; u32 _resvd; u8 name[16]; struct asd_ms_sb_desc sb_desc[0]; } __attribute__ ((packed)); struct asd_nd_phy_desc { u8 vp_attch_type; u8 attch_specific[0]; } __attribute__ ((packed)); #if 0 static const char *asd_node_type[] = { "IOP", "IO_CONTROLLER", "EXPANDER", "PORT_MULTIPLIER", "PORT_MULTIPLEXER", "MULTI_DROP_I2C_BUS", }; #endif struct asd_ms_node_desc { u8 type; u8 num_phy_desc; u8 size_phy_desc; u8 _resvd; u8 name[16]; struct asd_nd_phy_desc phy_desc[0]; } __attribute__ ((packed)); struct asd_ms_conn_map { char sig[2]; /* 'M', 'C' */ __le16 next; u8 maj; /* 0 */ u8 min; /* 0 */ __le16 cm_size; /* size of this struct */ u8 num_conn; u8 conn_size; u8 num_nodes; u8 usage_model_id; u32 _resvd; struct asd_ms_conn_desc conn_desc[0]; struct asd_ms_node_desc node_desc[0]; } __attribute__ ((packed)); struct asd_ctrla_phy_entry { u8 sas_addr[SAS_ADDR_SIZE]; u8 sas_link_rates; /* max in hi bits, min in low bits */ u8 flags; u8 sata_link_rates; u8 _r[5]; } __attribute__ ((packed)); struct asd_ctrla_phy_settings { u8 id0; /* P'h'y */ u8 _r; u16 next; u8 num_phys; /* number of PHYs in the PCI function */ u8 _r2[3]; struct asd_ctrla_phy_entry phy_ent[ASD_MAX_PHYS]; } __attribute__ ((packed)); struct asd_ll_el { u8 id0; u8 id1; __le16 next; u8 something_here[0]; } __attribute__ ((packed)); static int asd_poll_flash(struct asd_ha_struct *asd_ha) { int c; u8 d; for (c = 5000; c > 0; c--) { d = asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar); d ^= asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar); if (!d) return 0; udelay(5); } return -ENOENT; } static int asd_reset_flash(struct asd_ha_struct *asd_ha) { int err; err = asd_poll_flash(asd_ha); if (err) return err; asd_write_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar, FLASH_RESET); err = asd_poll_flash(asd_ha); return err; } static int asd_read_flash_seg(struct asd_ha_struct *asd_ha, void *buffer, u32 offs, int size) { asd_read_reg_string(asd_ha, buffer, asd_ha->hw_prof.flash.bar+offs, size); return 0; } /** * asd_find_flash_dir - finds and reads the flash directory * @asd_ha: pointer to the host adapter structure * @flash_dir: pointer to flash directory structure * * If found, the flash directory segment will be copied to * @flash_dir. Return 1 if found, 0 if not. */ static int asd_find_flash_dir(struct asd_ha_struct *asd_ha, struct asd_flash_dir *flash_dir) { u32 v; for (v = 0; v < ASD_FLASH_SIZE; v += FLASH_NEXT_ENTRY_OFFS) { asd_read_flash_seg(asd_ha, flash_dir, v, sizeof(FLASH_DIR_COOKIE)-1); if (memcmp(flash_dir->cookie, FLASH_DIR_COOKIE, sizeof(FLASH_DIR_COOKIE)-1) == 0) { asd_ha->hw_prof.flash.dir_offs = v; asd_read_flash_seg(asd_ha, flash_dir, v, sizeof(*flash_dir)); return 1; } } return 0; } static int asd_flash_getid(struct asd_ha_struct *asd_ha) { int err = 0; u32 reg; reg = asd_read_reg_dword(asd_ha, EXSICNFGR); if (pci_read_config_dword(asd_ha->pcidev, PCI_CONF_FLSH_BAR, &asd_ha->hw_prof.flash.bar)) { asd_printk("couldn't read PCI_CONF_FLSH_BAR of %s\n", pci_name(asd_ha->pcidev)); return -ENOENT; } asd_ha->hw_prof.flash.present = 1; asd_ha->hw_prof.flash.wide = reg & FLASHW ? 1 : 0; err = asd_reset_flash(asd_ha); if (err) { ASD_DPRINTK("couldn't reset flash(%d)\n", err); return err; } return 0; } static u16 asd_calc_flash_chksum(u16 *p, int size) { u16 chksum = 0; while (size-- > 0) chksum += *p++; return chksum; } static int asd_find_flash_de(struct asd_flash_dir *flash_dir, u32 entry_type, u32 *offs, u32 *size) { int i; struct asd_flash_de *de; for (i = 0; i < FLASH_MAX_DIR_ENTRIES; i++) { u32 type = le32_to_cpu(flash_dir->dir_entry[i].type); type &= FLASH_DE_TYPE_MASK; if (type == entry_type) break; } if (i >= FLASH_MAX_DIR_ENTRIES) return -ENOENT; de = &flash_dir->dir_entry[i]; *offs = le32_to_cpu(de->offs); *size = le32_to_cpu(de->pad_size); return 0; } static int asd_validate_ms(struct asd_manuf_sec *ms) { if (ms->sig[0] != 'S' || ms->sig[1] != 'M') { ASD_DPRINTK("manuf sec: no valid sig(%c%c)\n", ms->sig[0], ms->sig[1]); return -ENOENT; } if (ms->maj != 0) { asd_printk("unsupported manuf. sector. major version:%x\n", ms->maj); return -ENOENT; } ms->offs_next = le16_to_cpu((__force __le16) ms->offs_next); ms->chksum = le16_to_cpu((__force __le16) ms->chksum); ms->size = le16_to_cpu((__force __le16) ms->size); if (asd_calc_flash_chksum((u16 *)ms, ms->size/2)) { asd_printk("failed manuf sector checksum\n"); } return 0; } static int asd_ms_get_sas_addr(struct asd_ha_struct *asd_ha, struct asd_manuf_sec *ms) { memcpy(asd_ha->hw_prof.sas_addr, ms->sas_addr, SAS_ADDR_SIZE); return 0; } static int asd_ms_get_pcba_sn(struct asd_ha_struct *asd_ha, struct asd_manuf_sec *ms) { memcpy(asd_ha->hw_prof.pcba_sn, ms->pcba_sn, ASD_PCBA_SN_SIZE); asd_ha->hw_prof.pcba_sn[ASD_PCBA_SN_SIZE] = '\0'; return 0; } /** * asd_find_ll_by_id - find a linked list entry by its id * @start: void pointer to the first element in the linked list * @id0: the first byte of the id (offs 0) * @id1: the second byte of the id (offs 1) * * @start has to be the _base_ element start, since the * linked list entries's offset is from this pointer. * Some linked list entries use only the first id, in which case * you can pass 0xFF for the second. */ static void *asd_find_ll_by_id(void * const start, const u8 id0, const u8 id1) { struct asd_ll_el *el = start; do { switch (id1) { default: if (el->id1 == id1) case 0xFF: if (el->id0 == id0) return el; } el = start + le16_to_cpu(el->next); } while (el != start); return NULL; } /** * asd_ms_get_phy_params - get phy parameters from the manufacturing sector * @asd_ha: pointer to the host adapter structure * @manuf_sec: pointer to the manufacturing sector * * The manufacturing sector contans also the linked list of sub-segments, * since when it was read, its size was taken from the flash directory, * not from the structure size. * * HIDDEN phys do not count in the total count. REPORTED phys cannot * be enabled but are reported and counted towards the total. * ENABLED phys are enabled by default and count towards the total. * The absolute total phy number is ASD_MAX_PHYS. hw_prof->num_phys * merely specifies the number of phys the host adapter decided to * report. E.g., it is possible for phys 0, 1 and 2 to be HIDDEN, * phys 3, 4 and 5 to be REPORTED and phys 6 and 7 to be ENABLED. * In this case ASD_MAX_PHYS is 8, hw_prof->num_phys is 5, and only 2 * are actually enabled (enabled by default, max number of phys * enableable in this case). */ static int asd_ms_get_phy_params(struct asd_ha_struct *asd_ha, struct asd_manuf_sec *manuf_sec) { int i; int en_phys = 0; int rep_phys = 0; struct asd_manuf_phy_param *phy_param; struct asd_manuf_phy_param dflt_phy_param; phy_param = asd_find_ll_by_id(manuf_sec, 'P', 'M'); if (!phy_param) { ASD_DPRINTK("ms: no phy parameters found\n"); ASD_DPRINTK("ms: Creating default phy parameters\n"); dflt_phy_param.sig[0] = 'P'; dflt_phy_param.sig[1] = 'M'; dflt_phy_param.maj = 0; dflt_phy_param.min = 2; dflt_phy_param.num_phy_desc = 8; dflt_phy_param.phy_desc_size = sizeof(struct asd_manuf_phy_desc); for (i =0; i < ASD_MAX_PHYS; i++) { dflt_phy_param.phy_desc[i].state = 0; dflt_phy_param.phy_desc[i].phy_id = i; dflt_phy_param.phy_desc[i].phy_control_0 = 0xf6; dflt_phy_param.phy_desc[i].phy_control_1 = 0x10; dflt_phy_param.phy_desc[i].phy_control_2 = 0x43; dflt_phy_param.phy_desc[i].phy_control_3 = 0xeb; } phy_param = &dflt_phy_param; } if (phy_param->maj != 0) { asd_printk("unsupported manuf. phy param major version:0x%x\n", phy_param->maj); return -ENOENT; } ASD_DPRINTK("ms: num_phy_desc: %d\n", phy_param->num_phy_desc); asd_ha->hw_prof.enabled_phys = 0; for (i = 0; i < phy_param->num_phy_desc; i++) { struct asd_manuf_phy_desc *pd = &phy_param->phy_desc[i]; switch (pd->state & 0xF) { case MS_PHY_STATE_HIDDEN: ASD_DPRINTK("ms: phy%d: HIDDEN\n", i); continue; case MS_PHY_STATE_REPORTED: ASD_DPRINTK("ms: phy%d: REPORTED\n", i); asd_ha->hw_prof.enabled_phys &= ~(1 << i); rep_phys++; continue; case MS_PHY_STATE_ENABLED: ASD_DPRINTK("ms: phy%d: ENABLED\n", i); asd_ha->hw_prof.enabled_phys |= (1 << i); en_phys++; break; } asd_ha->hw_prof.phy_desc[i].phy_control_0 = pd->phy_control_0; asd_ha->hw_prof.phy_desc[i].phy_control_1 = pd->phy_control_1; asd_ha->hw_prof.phy_desc[i].phy_control_2 = pd->phy_control_2; asd_ha->hw_prof.phy_desc[i].phy_control_3 = pd->phy_control_3; } asd_ha->hw_prof.max_phys = rep_phys + en_phys; asd_ha->hw_prof.num_phys = en_phys; ASD_DPRINTK("ms: max_phys:0x%x, num_phys:0x%x\n", asd_ha->hw_prof.max_phys, asd_ha->hw_prof.num_phys); ASD_DPRINTK("ms: enabled_phys:0x%x\n", asd_ha->hw_prof.enabled_phys); return 0; } static int asd_ms_get_connector_map(struct asd_ha_struct *asd_ha, struct asd_manuf_sec *manuf_sec) { struct asd_ms_conn_map *cm; cm = asd_find_ll_by_id(manuf_sec, 'M', 'C'); if (!cm) { ASD_DPRINTK("ms: no connector map found\n"); return 0; } if (cm->maj != 0) { ASD_DPRINTK("ms: unsupported: connector map major version 0x%x" "\n", cm->maj); return -ENOENT; } /* XXX */ return 0; } /** * asd_process_ms - find and extract information from the manufacturing sector * @asd_ha: pointer to the host adapter structure * @flash_dir: pointer to the flash directory */ static int asd_process_ms(struct asd_ha_struct *asd_ha, struct asd_flash_dir *flash_dir) { int err; struct asd_manuf_sec *manuf_sec; u32 offs, size; err = asd_find_flash_de(flash_dir, FLASH_DE_MS, &offs, &size); if (err) { ASD_DPRINTK("Couldn't find the manuf. sector\n"); goto out; } if (size == 0) goto out; err = -ENOMEM; manuf_sec = kmalloc(size, GFP_KERNEL); if (!manuf_sec) { ASD_DPRINTK("no mem for manuf sector\n"); goto out; } err = asd_read_flash_seg(asd_ha, (void *)manuf_sec, offs, size); if (err) { ASD_DPRINTK("couldn't read manuf sector at 0x%x, size 0x%x\n", offs, size); goto out2; } err = asd_validate_ms(manuf_sec); if (err) { ASD_DPRINTK("couldn't validate manuf sector\n"); goto out2; } err = asd_ms_get_sas_addr(asd_ha, manuf_sec); if (err) { ASD_DPRINTK("couldn't read the SAS_ADDR\n"); goto out2; } ASD_DPRINTK("manuf sect SAS_ADDR %llx\n", SAS_ADDR(asd_ha->hw_prof.sas_addr)); err = asd_ms_get_pcba_sn(asd_ha, manuf_sec); if (err) { ASD_DPRINTK("couldn't read the PCBA SN\n"); goto out2; } ASD_DPRINTK("manuf sect PCBA SN %s\n", asd_ha->hw_prof.pcba_sn); err = asd_ms_get_phy_params(asd_ha, manuf_sec); if (err) { ASD_DPRINTK("ms: couldn't get phy parameters\n"); goto out2; } err = asd_ms_get_connector_map(asd_ha, manuf_sec); if (err) { ASD_DPRINTK("ms: couldn't get connector map\n"); goto out2; } out2: kfree(manuf_sec); out: return err; } static int asd_process_ctrla_phy_settings(struct asd_ha_struct *asd_ha, struct asd_ctrla_phy_settings *ps) { int i; for (i = 0; i < ps->num_phys; i++) { struct asd_ctrla_phy_entry *pe = &ps->phy_ent[i]; if (!PHY_ENABLED(asd_ha, i)) continue; if (*(u64 *)pe->sas_addr == 0) { asd_ha->hw_prof.enabled_phys &= ~(1 << i); continue; } /* This is the SAS address which should be sent in IDENTIFY. */ memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr, pe->sas_addr, SAS_ADDR_SIZE); asd_ha->hw_prof.phy_desc[i].max_sas_lrate = (pe->sas_link_rates & 0xF0) >> 4; asd_ha->hw_prof.phy_desc[i].min_sas_lrate = (pe->sas_link_rates & 0x0F); asd_ha->hw_prof.phy_desc[i].max_sata_lrate = (pe->sata_link_rates & 0xF0) >> 4; asd_ha->hw_prof.phy_desc[i].min_sata_lrate = (pe->sata_link_rates & 0x0F); asd_ha->hw_prof.phy_desc[i].flags = pe->flags; ASD_DPRINTK("ctrla: phy%d: sas_addr: %llx, sas rate:0x%x-0x%x," " sata rate:0x%x-0x%x, flags:0x%x\n", i, SAS_ADDR(asd_ha->hw_prof.phy_desc[i].sas_addr), asd_ha->hw_prof.phy_desc[i].max_sas_lrate, asd_ha->hw_prof.phy_desc[i].min_sas_lrate, asd_ha->hw_prof.phy_desc[i].max_sata_lrate, asd_ha->hw_prof.phy_desc[i].min_sata_lrate, asd_ha->hw_prof.phy_desc[i].flags); } return 0; } /** * asd_process_ctrl_a_user - process CTRL-A user settings * @asd_ha: pointer to the host adapter structure * @flash_dir: pointer to the flash directory */ static int asd_process_ctrl_a_user(struct asd_ha_struct *asd_ha, struct asd_flash_dir *flash_dir) { int err, i; u32 offs, size; struct asd_ll_el *el; struct asd_ctrla_phy_settings *ps; struct asd_ctrla_phy_settings dflt_ps; err = asd_find_flash_de(flash_dir, FLASH_DE_CTRL_A_USER, &offs, &size); if (err) { ASD_DPRINTK("couldn't find CTRL-A user settings section\n"); ASD_DPRINTK("Creating default CTRL-A user settings section\n"); dflt_ps.id0 = 'h'; dflt_ps.num_phys = 8; for (i =0; i < ASD_MAX_PHYS; i++) { memcpy(dflt_ps.phy_ent[i].sas_addr, asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE); dflt_ps.phy_ent[i].sas_link_rates = 0x98; dflt_ps.phy_ent[i].flags = 0x0; dflt_ps.phy_ent[i].sata_link_rates = 0x0; } size = sizeof(struct asd_ctrla_phy_settings); ps = &dflt_ps; } if (size == 0) goto out; err = -ENOMEM; el = kmalloc(size, GFP_KERNEL); if (!el) { ASD_DPRINTK("no mem for ctrla user settings section\n"); goto out; } err = asd_read_flash_seg(asd_ha, (void *)el, offs, size); if (err) { ASD_DPRINTK("couldn't read ctrla phy settings section\n"); goto out2; } err = -ENOENT; ps = asd_find_ll_by_id(el, 'h', 0xFF); if (!ps) { ASD_DPRINTK("couldn't find ctrla phy settings struct\n"); goto out2; } err = asd_process_ctrla_phy_settings(asd_ha, ps); if (err) { ASD_DPRINTK("couldn't process ctrla phy settings\n"); goto out2; } out2: kfree(el); out: return err; } /** * asd_read_flash - read flash memory * @asd_ha: pointer to the host adapter structure */ int asd_read_flash(struct asd_ha_struct *asd_ha) { int err; struct asd_flash_dir *flash_dir; err = asd_flash_getid(asd_ha); if (err) return err; flash_dir = kmalloc(sizeof(*flash_dir), GFP_KERNEL); if (!flash_dir) return -ENOMEM; err = -ENOENT; if (!asd_find_flash_dir(asd_ha, flash_dir)) { ASD_DPRINTK("couldn't find flash directory\n"); goto out; } if (le32_to_cpu(flash_dir->rev) != 2) { asd_printk("unsupported flash dir version:0x%x\n", le32_to_cpu(flash_dir->rev)); goto out; } err = asd_process_ms(asd_ha, flash_dir); if (err) { ASD_DPRINTK("couldn't process manuf sector settings\n"); goto out; } err = asd_process_ctrl_a_user(asd_ha, flash_dir); if (err) { ASD_DPRINTK("couldn't process CTRL-A user settings\n"); goto out; } out: kfree(flash_dir); return err; } /** * asd_verify_flash_seg - verify data with flash memory * @asd_ha: pointer to the host adapter structure * @src: pointer to the source data to be verified * @dest_offset: offset from flash memory * @bytes_to_verify: total bytes to verify */ int asd_verify_flash_seg(struct asd_ha_struct *asd_ha, const void *src, u32 dest_offset, u32 bytes_to_verify) { const u8 *src_buf; u8 flash_char; int err; u32 nv_offset, reg, i; reg = asd_ha->hw_prof.flash.bar; src_buf = NULL; err = FLASH_OK; nv_offset = dest_offset; src_buf = (const u8 *)src; for (i = 0; i < bytes_to_verify; i++) { flash_char = asd_read_reg_byte(asd_ha, reg + nv_offset + i); if (flash_char != src_buf[i]) { err = FAIL_VERIFY; break; } } return err; } /** * asd_write_flash_seg - write data into flash memory * @asd_ha: pointer to the host adapter structure * @src: pointer to the source data to be written * @dest_offset: offset from flash memory * @bytes_to_write: total bytes to write */ int asd_write_flash_seg(struct asd_ha_struct *asd_ha, const void *src, u32 dest_offset, u32 bytes_to_write) { const u8 *src_buf; u32 nv_offset, reg, i; int err; reg = asd_ha->hw_prof.flash.bar; src_buf = NULL; err = asd_check_flash_type(asd_ha); if (err) { ASD_DPRINTK("couldn't find the type of flash. err=%d\n", err); return err; } nv_offset = dest_offset; err = asd_erase_nv_sector(asd_ha, nv_offset, bytes_to_write); if (err) { ASD_DPRINTK("Erase failed at offset:0x%x\n", nv_offset); return err; } err = asd_reset_flash(asd_ha); if (err) { ASD_DPRINTK("couldn't reset flash. err=%d\n", err); return err; } src_buf = (const u8 *)src; for (i = 0; i < bytes_to_write; i++) { /* Setup program command sequence */ switch (asd_ha->hw_prof.flash.method) { case FLASH_METHOD_A: { asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA); asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55); asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xA0); asd_write_reg_byte(asd_ha, (reg + nv_offset + i), (*(src_buf + i))); break; } case FLASH_METHOD_B: { asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA); asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55); asd_write_reg_byte(asd_ha, (reg + 0x555), 0xA0); asd_write_reg_byte(asd_ha, (reg + nv_offset + i), (*(src_buf + i))); break; } default: break; } if (asd_chk_write_status(asd_ha, (nv_offset + i), 0) != 0) { ASD_DPRINTK("aicx: Write failed at offset:0x%x\n", reg + nv_offset + i); return FAIL_WRITE_FLASH; } } err = asd_reset_flash(asd_ha); if (err) { ASD_DPRINTK("couldn't reset flash. err=%d\n", err); return err; } return 0; } int asd_chk_write_status(struct asd_ha_struct *asd_ha, u32 sector_addr, u8 erase_flag) { u32 reg; u32 loop_cnt; u8 nv_data1, nv_data2; u8 toggle_bit1; /* * Read from DQ2 requires sector address * while it's dont care for DQ6 */ reg = asd_ha->hw_prof.flash.bar; for (loop_cnt = 0; loop_cnt < 50000; loop_cnt++) { nv_data1 = asd_read_reg_byte(asd_ha, reg); nv_data2 = asd_read_reg_byte(asd_ha, reg); toggle_bit1 = ((nv_data1 & FLASH_STATUS_BIT_MASK_DQ6) ^ (nv_data2 & FLASH_STATUS_BIT_MASK_DQ6)); if (toggle_bit1 == 0) { return 0; } else { if (nv_data2 & FLASH_STATUS_BIT_MASK_DQ5) { nv_data1 = asd_read_reg_byte(asd_ha, reg); nv_data2 = asd_read_reg_byte(asd_ha, reg); toggle_bit1 = ((nv_data1 & FLASH_STATUS_BIT_MASK_DQ6) ^ (nv_data2 & FLASH_STATUS_BIT_MASK_DQ6)); if (toggle_bit1 == 0) return 0; } } /* * ERASE is a sector-by-sector operation and requires * more time to finish while WRITE is byte-byte-byte * operation and takes lesser time to finish. * * For some strange reason a reduced ERASE delay gives different * behaviour across different spirit boards. Hence we set * a optimum balance of 50mus for ERASE which works well * across all boards. */ if (erase_flag) { udelay(FLASH_STATUS_ERASE_DELAY_COUNT); } else { udelay(FLASH_STATUS_WRITE_DELAY_COUNT); } } return -1; } /** * asd_hwi_erase_nv_sector - Erase the flash memory sectors. * @asd_ha: pointer to the host adapter structure * @flash_addr: pointer to offset from flash memory * @size: total bytes to erase. */ int asd_erase_nv_sector(struct asd_ha_struct *asd_ha, u32 flash_addr, u32 size) { u32 reg; u32 sector_addr; reg = asd_ha->hw_prof.flash.bar; /* sector staring address */ sector_addr = flash_addr & FLASH_SECTOR_SIZE_MASK; /* * Erasing an flash sector needs to be done in six consecutive * write cyles. */ while (sector_addr < flash_addr+size) { switch (asd_ha->hw_prof.flash.method) { case FLASH_METHOD_A: asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA); asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55); asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0x80); asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA); asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55); asd_write_reg_byte(asd_ha, (reg + sector_addr), 0x30); break; case FLASH_METHOD_B: asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA); asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55); asd_write_reg_byte(asd_ha, (reg + 0x555), 0x80); asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA); asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55); asd_write_reg_byte(asd_ha, (reg + sector_addr), 0x30); break; default: break; } if (asd_chk_write_status(asd_ha, sector_addr, 1) != 0) return FAIL_ERASE_FLASH; sector_addr += FLASH_SECTOR_SIZE; } return 0; } int asd_check_flash_type(struct asd_ha_struct *asd_ha) { u8 manuf_id; u8 dev_id; u8 sec_prot; u32 inc; u32 reg; int err; /* get Flash memory base address */ reg = asd_ha->hw_prof.flash.bar; /* Determine flash info */ err = asd_reset_flash(asd_ha); if (err) { ASD_DPRINTK("couldn't reset flash. err=%d\n", err); return err; } asd_ha->hw_prof.flash.method = FLASH_METHOD_UNKNOWN; asd_ha->hw_prof.flash.manuf = FLASH_MANUF_ID_UNKNOWN; asd_ha->hw_prof.flash.dev_id = FLASH_DEV_ID_UNKNOWN; /* Get flash info. This would most likely be AMD Am29LV family flash. * First try the sequence for word mode. It is the same as for * 008B (byte mode only), 160B (word mode) and 800D (word mode). */ inc = asd_ha->hw_prof.flash.wide ? 2 : 1; asd_write_reg_byte(asd_ha, reg + 0xAAA, 0xAA); asd_write_reg_byte(asd_ha, reg + 0x555, 0x55); asd_write_reg_byte(asd_ha, reg + 0xAAA, 0x90); manuf_id = asd_read_reg_byte(asd_ha, reg); dev_id = asd_read_reg_byte(asd_ha, reg + inc); sec_prot = asd_read_reg_byte(asd_ha, reg + inc + inc); /* Get out of autoselect mode. */ err = asd_reset_flash(asd_ha); if (err) { ASD_DPRINTK("couldn't reset flash. err=%d\n", err); return err; } ASD_DPRINTK("Flash MethodA manuf_id(0x%x) dev_id(0x%x) " "sec_prot(0x%x)\n", manuf_id, dev_id, sec_prot); err = asd_reset_flash(asd_ha); if (err != 0) return err; switch (manuf_id) { case FLASH_MANUF_ID_AMD: switch (sec_prot) { case FLASH_DEV_ID_AM29LV800DT: case FLASH_DEV_ID_AM29LV640MT: case FLASH_DEV_ID_AM29F800B: asd_ha->hw_prof.flash.method = FLASH_METHOD_A; break; default: break; } break; case FLASH_MANUF_ID_ST: switch (sec_prot) { case FLASH_DEV_ID_STM29W800DT: case FLASH_DEV_ID_STM29LV640: asd_ha->hw_prof.flash.method = FLASH_METHOD_A; break; default: break; } break; case FLASH_MANUF_ID_FUJITSU: switch (sec_prot) { case FLASH_DEV_ID_MBM29LV800TE: case FLASH_DEV_ID_MBM29DL800TA: asd_ha->hw_prof.flash.method = FLASH_METHOD_A; break; } break; case FLASH_MANUF_ID_MACRONIX: switch (sec_prot) { case FLASH_DEV_ID_MX29LV800BT: asd_ha->hw_prof.flash.method = FLASH_METHOD_A; break; } break; } if (asd_ha->hw_prof.flash.method == FLASH_METHOD_UNKNOWN) { err = asd_reset_flash(asd_ha); if (err) { ASD_DPRINTK("couldn't reset flash. err=%d\n", err); return err; } /* Issue Unlock sequence for AM29LV008BT */ asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA); asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55); asd_write_reg_byte(asd_ha, (reg + 0x555), 0x90); manuf_id = asd_read_reg_byte(asd_ha, reg); dev_id = asd_read_reg_byte(asd_ha, reg + inc); sec_prot = asd_read_reg_byte(asd_ha, reg + inc + inc); ASD_DPRINTK("Flash MethodB manuf_id(0x%x) dev_id(0x%x) sec_prot" "(0x%x)\n", manuf_id, dev_id, sec_prot); err = asd_reset_flash(asd_ha); if (err != 0) { ASD_DPRINTK("couldn't reset flash. err=%d\n", err); return err; } switch (manuf_id) { case FLASH_MANUF_ID_AMD: switch (dev_id) { case FLASH_DEV_ID_AM29LV008BT: asd_ha->hw_prof.flash.method = FLASH_METHOD_B; break; default: break; } break; case FLASH_MANUF_ID_ST: switch (dev_id) { case FLASH_DEV_ID_STM29008: asd_ha->hw_prof.flash.method = FLASH_METHOD_B; break; default: break; } break; case FLASH_MANUF_ID_FUJITSU: switch (dev_id) { case FLASH_DEV_ID_MBM29LV008TA: asd_ha->hw_prof.flash.method = FLASH_METHOD_B; break; } break; case FLASH_MANUF_ID_INTEL: switch (dev_id) { case FLASH_DEV_ID_I28LV00TAT: asd_ha->hw_prof.flash.method = FLASH_METHOD_B; break; } break; case FLASH_MANUF_ID_MACRONIX: switch (dev_id) { case FLASH_DEV_ID_I28LV00TAT: asd_ha->hw_prof.flash.method = FLASH_METHOD_B; break; } break; default: return FAIL_FIND_FLASH_ID; } } if (asd_ha->hw_prof.flash.method == FLASH_METHOD_UNKNOWN) return FAIL_FIND_FLASH_ID; asd_ha->hw_prof.flash.manuf = manuf_id; asd_ha->hw_prof.flash.dev_id = dev_id; asd_ha->hw_prof.flash.sec_prot = sec_prot; return 0; }