/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2012 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * BSD LICENSE * * Copyright(c) 2012 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copy * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Intel PCIe NTB Linux driver * * Contact Information: * Jon Mason <jon.mason@intel.com> */ #include <linux/debugfs.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/slab.h> #include "ntb_hw.h" #include "ntb_regs.h" #define NTB_NAME "Intel(R) PCI-E Non-Transparent Bridge Driver" #define NTB_VER "0.25" MODULE_DESCRIPTION(NTB_NAME); MODULE_VERSION(NTB_VER); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Intel Corporation"); enum { NTB_CONN_CLASSIC = 0, NTB_CONN_B2B, NTB_CONN_RP, }; enum { NTB_DEV_USD = 0, NTB_DEV_DSD, }; enum { SNB_HW = 0, BWD_HW, }; /* Translate memory window 0,1 to BAR 2,4 */ #define MW_TO_BAR(mw) (mw * 2 + 2) static DEFINE_PCI_DEVICE_TABLE(ntb_pci_tbl) = { {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_BWD)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_CLASSIC_JSF)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_RP_JSF)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_RP_SNB)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_CLASSIC_SNB)}, {0} }; MODULE_DEVICE_TABLE(pci, ntb_pci_tbl); /** * ntb_register_event_callback() - register event callback * @ndev: pointer to ntb_device instance * @func: callback function to register * * This function registers a callback for any HW driver events such as link * up/down, power management notices and etc. * * RETURNS: An appropriate -ERRNO error value on error, or zero for success. */ int ntb_register_event_callback(struct ntb_device *ndev, void (*func)(void *handle, enum ntb_hw_event event)) { if (ndev->event_cb) return -EINVAL; ndev->event_cb = func; return 0; } /** * ntb_unregister_event_callback() - unregisters the event callback * @ndev: pointer to ntb_device instance * * This function unregisters the existing callback from transport */ void ntb_unregister_event_callback(struct ntb_device *ndev) { ndev->event_cb = NULL; } /** * ntb_register_db_callback() - register a callback for doorbell interrupt * @ndev: pointer to ntb_device instance * @idx: doorbell index to register callback, zero based * @func: callback function to register * * This function registers a callback function for the doorbell interrupt * on the primary side. The function will unmask the doorbell as well to * allow interrupt. * * RETURNS: An appropriate -ERRNO error value on error, or zero for success. */ int ntb_register_db_callback(struct ntb_device *ndev, unsigned int idx, void *data, void (*func)(void *data, int db_num)) { unsigned long mask; if (idx >= ndev->max_cbs || ndev->db_cb[idx].callback) { dev_warn(&ndev->pdev->dev, "Invalid Index.\n"); return -EINVAL; } ndev->db_cb[idx].callback = func; ndev->db_cb[idx].data = data; /* unmask interrupt */ mask = readw(ndev->reg_ofs.pdb_mask); clear_bit(idx * ndev->bits_per_vector, &mask); writew(mask, ndev->reg_ofs.pdb_mask); return 0; } /** * ntb_unregister_db_callback() - unregister a callback for doorbell interrupt * @ndev: pointer to ntb_device instance * @idx: doorbell index to register callback, zero based * * This function unregisters a callback function for the doorbell interrupt * on the primary side. The function will also mask the said doorbell. */ void ntb_unregister_db_callback(struct ntb_device *ndev, unsigned int idx) { unsigned long mask; if (idx >= ndev->max_cbs || !ndev->db_cb[idx].callback) return; mask = readw(ndev->reg_ofs.pdb_mask); set_bit(idx * ndev->bits_per_vector, &mask); writew(mask, ndev->reg_ofs.pdb_mask); ndev->db_cb[idx].callback = NULL; } /** * ntb_find_transport() - find the transport pointer * @transport: pointer to pci device * * Given the pci device pointer, return the transport pointer passed in when * the transport attached when it was inited. * * RETURNS: pointer to transport. */ void *ntb_find_transport(struct pci_dev *pdev) { struct ntb_device *ndev = pci_get_drvdata(pdev); return ndev->ntb_transport; } /** * ntb_register_transport() - Register NTB transport with NTB HW driver * @transport: transport identifier * * This function allows a transport to reserve the hardware driver for * NTB usage. * * RETURNS: pointer to ntb_device, NULL on error. */ struct ntb_device *ntb_register_transport(struct pci_dev *pdev, void *transport) { struct ntb_device *ndev = pci_get_drvdata(pdev); if (ndev->ntb_transport) return NULL; ndev->ntb_transport = transport; return ndev; } /** * ntb_unregister_transport() - Unregister the transport with the NTB HW driver * @ndev - ntb_device of the transport to be freed * * This function unregisters the transport from the HW driver and performs any * necessary cleanups. */ void ntb_unregister_transport(struct ntb_device *ndev) { int i; if (!ndev->ntb_transport) return; for (i = 0; i < ndev->max_cbs; i++) ntb_unregister_db_callback(ndev, i); ntb_unregister_event_callback(ndev); ndev->ntb_transport = NULL; } /** * ntb_write_local_spad() - write to the secondary scratchpad register * @ndev: pointer to ntb_device instance * @idx: index to the scratchpad register, 0 based * @val: the data value to put into the register * * This function allows writing of a 32bit value to the indexed scratchpad * register. This writes over the data mirrored to the local scratchpad register * by the remote system. * * RETURNS: An appropriate -ERRNO error value on error, or zero for success. */ int ntb_write_local_spad(struct ntb_device *ndev, unsigned int idx, u32 val) { if (idx >= ndev->limits.max_spads) return -EINVAL; dev_dbg(&ndev->pdev->dev, "Writing %x to local scratch pad index %d\n", val, idx); writel(val, ndev->reg_ofs.spad_read + idx * 4); return 0; } /** * ntb_read_local_spad() - read from the primary scratchpad register * @ndev: pointer to ntb_device instance * @idx: index to scratchpad register, 0 based * @val: pointer to 32bit integer for storing the register value * * This function allows reading of the 32bit scratchpad register on * the primary (internal) side. This allows the local system to read data * written and mirrored to the scratchpad register by the remote system. * * RETURNS: An appropriate -ERRNO error value on error, or zero for success. */ int ntb_read_local_spad(struct ntb_device *ndev, unsigned int idx, u32 *val) { if (idx >= ndev->limits.max_spads) return -EINVAL; *val = readl(ndev->reg_ofs.spad_write + idx * 4); dev_dbg(&ndev->pdev->dev, "Reading %x from local scratch pad index %d\n", *val, idx); return 0; } /** * ntb_write_remote_spad() - write to the secondary scratchpad register * @ndev: pointer to ntb_device instance * @idx: index to the scratchpad register, 0 based * @val: the data value to put into the register * * This function allows writing of a 32bit value to the indexed scratchpad * register. The register resides on the secondary (external) side. This allows * the local system to write data to be mirrored to the remote systems * scratchpad register. * * RETURNS: An appropriate -ERRNO error value on error, or zero for success. */ int ntb_write_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 val) { if (idx >= ndev->limits.max_spads) return -EINVAL; dev_dbg(&ndev->pdev->dev, "Writing %x to remote scratch pad index %d\n", val, idx); writel(val, ndev->reg_ofs.spad_write + idx * 4); return 0; } /** * ntb_read_remote_spad() - read from the primary scratchpad register * @ndev: pointer to ntb_device instance * @idx: index to scratchpad register, 0 based * @val: pointer to 32bit integer for storing the register value * * This function allows reading of the 32bit scratchpad register on * the primary (internal) side. This alloows the local system to read the data * it wrote to be mirrored on the remote system. * * RETURNS: An appropriate -ERRNO error value on error, or zero for success. */ int ntb_read_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 *val) { if (idx >= ndev->limits.max_spads) return -EINVAL; *val = readl(ndev->reg_ofs.spad_read + idx * 4); dev_dbg(&ndev->pdev->dev, "Reading %x from remote scratch pad index %d\n", *val, idx); return 0; } /** * ntb_get_mw_vbase() - get virtual addr for the NTB memory window * @ndev: pointer to ntb_device instance * @mw: memory window number * * This function provides the base virtual address of the memory window * specified. * * RETURNS: pointer to virtual address, or NULL on error. */ void __iomem *ntb_get_mw_vbase(struct ntb_device *ndev, unsigned int mw) { if (mw >= NTB_NUM_MW) return NULL; return ndev->mw[mw].vbase; } /** * ntb_get_mw_size() - return size of NTB memory window * @ndev: pointer to ntb_device instance * @mw: memory window number * * This function provides the physical size of the memory window specified * * RETURNS: the size of the memory window or zero on error */ resource_size_t ntb_get_mw_size(struct ntb_device *ndev, unsigned int mw) { if (mw >= NTB_NUM_MW) return 0; return ndev->mw[mw].bar_sz; } /** * ntb_set_mw_addr - set the memory window address * @ndev: pointer to ntb_device instance * @mw: memory window number * @addr: base address for data * * This function sets the base physical address of the memory window. This * memory address is where data from the remote system will be transfered into * or out of depending on how the transport is configured. */ void ntb_set_mw_addr(struct ntb_device *ndev, unsigned int mw, u64 addr) { if (mw >= NTB_NUM_MW) return; dev_dbg(&ndev->pdev->dev, "Writing addr %Lx to BAR %d\n", addr, MW_TO_BAR(mw)); ndev->mw[mw].phys_addr = addr; switch (MW_TO_BAR(mw)) { case NTB_BAR_23: writeq(addr, ndev->reg_ofs.sbar2_xlat); break; case NTB_BAR_45: writeq(addr, ndev->reg_ofs.sbar4_xlat); break; } } /** * ntb_ring_sdb() - Set the doorbell on the secondary/external side * @ndev: pointer to ntb_device instance * @db: doorbell to ring * * This function allows triggering of a doorbell on the secondary/external * side that will initiate an interrupt on the remote host * * RETURNS: An appropriate -ERRNO error value on error, or zero for success. */ void ntb_ring_sdb(struct ntb_device *ndev, unsigned int db) { dev_dbg(&ndev->pdev->dev, "%s: ringing doorbell %d\n", __func__, db); if (ndev->hw_type == BWD_HW) writeq((u64) 1 << db, ndev->reg_ofs.sdb); else writew(((1 << ndev->bits_per_vector) - 1) << (db * ndev->bits_per_vector), ndev->reg_ofs.sdb); } static void ntb_link_event(struct ntb_device *ndev, int link_state) { unsigned int event; if (ndev->link_status == link_state) return; if (link_state == NTB_LINK_UP) { u16 status; dev_info(&ndev->pdev->dev, "Link Up\n"); ndev->link_status = NTB_LINK_UP; event = NTB_EVENT_HW_LINK_UP; if (ndev->hw_type == BWD_HW) status = readw(ndev->reg_ofs.lnk_stat); else { int rc = pci_read_config_word(ndev->pdev, SNB_LINK_STATUS_OFFSET, &status); if (rc) return; } dev_info(&ndev->pdev->dev, "Link Width %d, Link Speed %d\n", (status & NTB_LINK_WIDTH_MASK) >> 4, (status & NTB_LINK_SPEED_MASK)); } else { dev_info(&ndev->pdev->dev, "Link Down\n"); ndev->link_status = NTB_LINK_DOWN; event = NTB_EVENT_HW_LINK_DOWN; } /* notify the upper layer if we have an event change */ if (ndev->event_cb) ndev->event_cb(ndev->ntb_transport, event); } static int ntb_link_status(struct ntb_device *ndev) { int link_state; if (ndev->hw_type == BWD_HW) { u32 ntb_cntl; ntb_cntl = readl(ndev->reg_ofs.lnk_cntl); if (ntb_cntl & BWD_CNTL_LINK_DOWN) link_state = NTB_LINK_DOWN; else link_state = NTB_LINK_UP; } else { u16 status; int rc; rc = pci_read_config_word(ndev->pdev, SNB_LINK_STATUS_OFFSET, &status); if (rc) return rc; if (status & NTB_LINK_STATUS_ACTIVE) link_state = NTB_LINK_UP; else link_state = NTB_LINK_DOWN; } ntb_link_event(ndev, link_state); return 0; } /* BWD doesn't have link status interrupt, poll on that platform */ static void bwd_link_poll(struct work_struct *work) { struct ntb_device *ndev = container_of(work, struct ntb_device, hb_timer.work); unsigned long ts = jiffies; /* If we haven't gotten an interrupt in a while, check the BWD link * status bit */ if (ts > ndev->last_ts + NTB_HB_TIMEOUT) { int rc = ntb_link_status(ndev); if (rc) dev_err(&ndev->pdev->dev, "Error determining link status\n"); } schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT); } static int ntb_xeon_setup(struct ntb_device *ndev) { int rc; u8 val; ndev->hw_type = SNB_HW; rc = pci_read_config_byte(ndev->pdev, NTB_PPD_OFFSET, &val); if (rc) return rc; switch (val & SNB_PPD_CONN_TYPE) { case NTB_CONN_B2B: ndev->conn_type = NTB_CONN_B2B; break; case NTB_CONN_CLASSIC: case NTB_CONN_RP: default: dev_err(&ndev->pdev->dev, "Only B2B supported at this time\n"); return -EINVAL; } if (val & SNB_PPD_DEV_TYPE) ndev->dev_type = NTB_DEV_DSD; else ndev->dev_type = NTB_DEV_USD; ndev->reg_ofs.pdb = ndev->reg_base + SNB_PDOORBELL_OFFSET; ndev->reg_ofs.pdb_mask = ndev->reg_base + SNB_PDBMSK_OFFSET; ndev->reg_ofs.sbar2_xlat = ndev->reg_base + SNB_SBAR2XLAT_OFFSET; ndev->reg_ofs.sbar4_xlat = ndev->reg_base + SNB_SBAR4XLAT_OFFSET; ndev->reg_ofs.lnk_cntl = ndev->reg_base + SNB_NTBCNTL_OFFSET; ndev->reg_ofs.lnk_stat = ndev->reg_base + SNB_LINK_STATUS_OFFSET; ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET; ndev->reg_ofs.spci_cmd = ndev->reg_base + SNB_PCICMD_OFFSET; if (ndev->conn_type == NTB_CONN_B2B) { ndev->reg_ofs.sdb = ndev->reg_base + SNB_B2B_DOORBELL_OFFSET; ndev->reg_ofs.spad_write = ndev->reg_base + SNB_B2B_SPAD_OFFSET; ndev->limits.max_spads = SNB_MAX_SPADS; } else { ndev->reg_ofs.sdb = ndev->reg_base + SNB_SDOORBELL_OFFSET; ndev->reg_ofs.spad_write = ndev->reg_base + SNB_SPAD_OFFSET; ndev->limits.max_spads = SNB_MAX_COMPAT_SPADS; } ndev->limits.max_db_bits = SNB_MAX_DB_BITS; ndev->limits.msix_cnt = SNB_MSIX_CNT; ndev->bits_per_vector = SNB_DB_BITS_PER_VEC; return 0; } static int ntb_bwd_setup(struct ntb_device *ndev) { int rc; u32 val; ndev->hw_type = BWD_HW; rc = pci_read_config_dword(ndev->pdev, NTB_PPD_OFFSET, &val); if (rc) return rc; switch ((val & BWD_PPD_CONN_TYPE) >> 8) { case NTB_CONN_B2B: ndev->conn_type = NTB_CONN_B2B; break; case NTB_CONN_RP: default: dev_err(&ndev->pdev->dev, "Only B2B supported at this time\n"); return -EINVAL; } if (val & BWD_PPD_DEV_TYPE) ndev->dev_type = NTB_DEV_DSD; else ndev->dev_type = NTB_DEV_USD; /* Initiate PCI-E link training */ rc = pci_write_config_dword(ndev->pdev, NTB_PPD_OFFSET, val | BWD_PPD_INIT_LINK); if (rc) return rc; ndev->reg_ofs.pdb = ndev->reg_base + BWD_PDOORBELL_OFFSET; ndev->reg_ofs.pdb_mask = ndev->reg_base + BWD_PDBMSK_OFFSET; ndev->reg_ofs.sbar2_xlat = ndev->reg_base + BWD_SBAR2XLAT_OFFSET; ndev->reg_ofs.sbar4_xlat = ndev->reg_base + BWD_SBAR4XLAT_OFFSET; ndev->reg_ofs.lnk_cntl = ndev->reg_base + BWD_NTBCNTL_OFFSET; ndev->reg_ofs.lnk_stat = ndev->reg_base + BWD_LINK_STATUS_OFFSET; ndev->reg_ofs.spad_read = ndev->reg_base + BWD_SPAD_OFFSET; ndev->reg_ofs.spci_cmd = ndev->reg_base + BWD_PCICMD_OFFSET; if (ndev->conn_type == NTB_CONN_B2B) { ndev->reg_ofs.sdb = ndev->reg_base + BWD_B2B_DOORBELL_OFFSET; ndev->reg_ofs.spad_write = ndev->reg_base + BWD_B2B_SPAD_OFFSET; ndev->limits.max_spads = BWD_MAX_SPADS; } else { ndev->reg_ofs.sdb = ndev->reg_base + BWD_PDOORBELL_OFFSET; ndev->reg_ofs.spad_write = ndev->reg_base + BWD_SPAD_OFFSET; ndev->limits.max_spads = BWD_MAX_COMPAT_SPADS; } ndev->limits.max_db_bits = BWD_MAX_DB_BITS; ndev->limits.msix_cnt = BWD_MSIX_CNT; ndev->bits_per_vector = BWD_DB_BITS_PER_VEC; /* Since bwd doesn't have a link interrupt, setup a poll timer */ INIT_DELAYED_WORK(&ndev->hb_timer, bwd_link_poll); schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT); return 0; } static int ntb_device_setup(struct ntb_device *ndev) { int rc; switch (ndev->pdev->device) { case PCI_DEVICE_ID_INTEL_NTB_2ND_SNB: case PCI_DEVICE_ID_INTEL_NTB_RP_JSF: case PCI_DEVICE_ID_INTEL_NTB_RP_SNB: case PCI_DEVICE_ID_INTEL_NTB_CLASSIC_JSF: case PCI_DEVICE_ID_INTEL_NTB_CLASSIC_SNB: case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF: case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB: rc = ntb_xeon_setup(ndev); break; case PCI_DEVICE_ID_INTEL_NTB_B2B_BWD: rc = ntb_bwd_setup(ndev); break; default: rc = -ENODEV; } /* Enable Bus Master and Memory Space on the secondary side */ writew(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER, ndev->reg_ofs.spci_cmd); return rc; } static void ntb_device_free(struct ntb_device *ndev) { if (ndev->hw_type == BWD_HW) cancel_delayed_work_sync(&ndev->hb_timer); } static irqreturn_t bwd_callback_msix_irq(int irq, void *data) { struct ntb_db_cb *db_cb = data; struct ntb_device *ndev = db_cb->ndev; dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq, db_cb->db_num); if (db_cb->callback) db_cb->callback(db_cb->data, db_cb->db_num); /* No need to check for the specific HB irq, any interrupt means * we're connected. */ ndev->last_ts = jiffies; writeq((u64) 1 << db_cb->db_num, ndev->reg_ofs.pdb); return IRQ_HANDLED; } static irqreturn_t xeon_callback_msix_irq(int irq, void *data) { struct ntb_db_cb *db_cb = data; struct ntb_device *ndev = db_cb->ndev; dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq, db_cb->db_num); if (db_cb->callback) db_cb->callback(db_cb->data, db_cb->db_num); /* On Sandybridge, there are 16 bits in the interrupt register * but only 4 vectors. So, 5 bits are assigned to the first 3 * vectors, with the 4th having a single bit for link * interrupts. */ writew(((1 << ndev->bits_per_vector) - 1) << (db_cb->db_num * ndev->bits_per_vector), ndev->reg_ofs.pdb); return IRQ_HANDLED; } /* Since we do not have a HW doorbell in BWD, this is only used in JF/JT */ static irqreturn_t xeon_event_msix_irq(int irq, void *dev) { struct ntb_device *ndev = dev; int rc; dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for Events\n", irq); rc = ntb_link_status(ndev); if (rc) dev_err(&ndev->pdev->dev, "Error determining link status\n"); /* bit 15 is always the link bit */ writew(1 << ndev->limits.max_db_bits, ndev->reg_ofs.pdb); return IRQ_HANDLED; } static irqreturn_t ntb_interrupt(int irq, void *dev) { struct ntb_device *ndev = dev; unsigned int i = 0; if (ndev->hw_type == BWD_HW) { u64 pdb = readq(ndev->reg_ofs.pdb); dev_dbg(&ndev->pdev->dev, "irq %d - pdb = %Lx\n", irq, pdb); while (pdb) { i = __ffs(pdb); pdb &= pdb - 1; bwd_callback_msix_irq(irq, &ndev->db_cb[i]); } } else { u16 pdb = readw(ndev->reg_ofs.pdb); dev_dbg(&ndev->pdev->dev, "irq %d - pdb = %x sdb %x\n", irq, pdb, readw(ndev->reg_ofs.sdb)); if (pdb & SNB_DB_HW_LINK) { xeon_event_msix_irq(irq, dev); pdb &= ~SNB_DB_HW_LINK; } while (pdb) { i = __ffs(pdb); pdb &= pdb - 1; xeon_callback_msix_irq(irq, &ndev->db_cb[i]); } } return IRQ_HANDLED; } static int ntb_setup_msix(struct ntb_device *ndev) { struct pci_dev *pdev = ndev->pdev; struct msix_entry *msix; int msix_entries; int rc, i, pos; u16 val; pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); if (!pos) { rc = -EIO; goto err; } rc = pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS, &val); if (rc) goto err; msix_entries = msix_table_size(val); if (msix_entries > ndev->limits.msix_cnt) { rc = -EINVAL; goto err; } ndev->msix_entries = kmalloc(sizeof(struct msix_entry) * msix_entries, GFP_KERNEL); if (!ndev->msix_entries) { rc = -ENOMEM; goto err; } for (i = 0; i < msix_entries; i++) ndev->msix_entries[i].entry = i; rc = pci_enable_msix(pdev, ndev->msix_entries, msix_entries); if (rc < 0) goto err1; if (rc > 0) { /* On SNB, the link interrupt is always tied to 4th vector. If * we can't get all 4, then we can't use MSI-X. */ if (ndev->hw_type != BWD_HW) { rc = -EIO; goto err1; } dev_warn(&pdev->dev, "Only %d MSI-X vectors. Limiting the number of queues to that number.\n", rc); msix_entries = rc; } for (i = 0; i < msix_entries; i++) { msix = &ndev->msix_entries[i]; WARN_ON(!msix->vector); /* Use the last MSI-X vector for Link status */ if (ndev->hw_type == BWD_HW) { rc = request_irq(msix->vector, bwd_callback_msix_irq, 0, "ntb-callback-msix", &ndev->db_cb[i]); if (rc) goto err2; } else { if (i == msix_entries - 1) { rc = request_irq(msix->vector, xeon_event_msix_irq, 0, "ntb-event-msix", ndev); if (rc) goto err2; } else { rc = request_irq(msix->vector, xeon_callback_msix_irq, 0, "ntb-callback-msix", &ndev->db_cb[i]); if (rc) goto err2; } } } ndev->num_msix = msix_entries; if (ndev->hw_type == BWD_HW) ndev->max_cbs = msix_entries; else ndev->max_cbs = msix_entries - 1; return 0; err2: while (--i >= 0) { msix = &ndev->msix_entries[i]; if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1) free_irq(msix->vector, ndev); else free_irq(msix->vector, &ndev->db_cb[i]); } pci_disable_msix(pdev); err1: kfree(ndev->msix_entries); dev_err(&pdev->dev, "Error allocating MSI-X interrupt\n"); err: ndev->num_msix = 0; return rc; } static int ntb_setup_msi(struct ntb_device *ndev) { struct pci_dev *pdev = ndev->pdev; int rc; rc = pci_enable_msi(pdev); if (rc) return rc; rc = request_irq(pdev->irq, ntb_interrupt, 0, "ntb-msi", ndev); if (rc) { pci_disable_msi(pdev); dev_err(&pdev->dev, "Error allocating MSI interrupt\n"); return rc; } return 0; } static int ntb_setup_intx(struct ntb_device *ndev) { struct pci_dev *pdev = ndev->pdev; int rc; pci_msi_off(pdev); /* Verify intx is enabled */ pci_intx(pdev, 1); rc = request_irq(pdev->irq, ntb_interrupt, IRQF_SHARED, "ntb-intx", ndev); if (rc) return rc; return 0; } static int ntb_setup_interrupts(struct ntb_device *ndev) { int rc; /* On BWD, disable all interrupts. On SNB, disable all but Link * Interrupt. The rest will be unmasked as callbacks are registered. */ if (ndev->hw_type == BWD_HW) writeq(~0, ndev->reg_ofs.pdb_mask); else writew(~(1 << ndev->limits.max_db_bits), ndev->reg_ofs.pdb_mask); rc = ntb_setup_msix(ndev); if (!rc) goto done; ndev->bits_per_vector = 1; ndev->max_cbs = ndev->limits.max_db_bits; rc = ntb_setup_msi(ndev); if (!rc) goto done; rc = ntb_setup_intx(ndev); if (rc) { dev_err(&ndev->pdev->dev, "no usable interrupts\n"); return rc; } done: return 0; } static void ntb_free_interrupts(struct ntb_device *ndev) { struct pci_dev *pdev = ndev->pdev; /* mask interrupts */ if (ndev->hw_type == BWD_HW) writeq(~0, ndev->reg_ofs.pdb_mask); else writew(~0, ndev->reg_ofs.pdb_mask); if (ndev->num_msix) { struct msix_entry *msix; u32 i; for (i = 0; i < ndev->num_msix; i++) { msix = &ndev->msix_entries[i]; if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1) free_irq(msix->vector, ndev); else free_irq(msix->vector, &ndev->db_cb[i]); } pci_disable_msix(pdev); } else { free_irq(pdev->irq, ndev); if (pci_dev_msi_enabled(pdev)) pci_disable_msi(pdev); } } static int ntb_create_callbacks(struct ntb_device *ndev) { int i; /* Checken-egg issue. We won't know how many callbacks are necessary * until we see how many MSI-X vectors we get, but these pointers need * to be passed into the MSI-X register fucntion. So, we allocate the * max, knowing that they might not all be used, to work around this. */ ndev->db_cb = kcalloc(ndev->limits.max_db_bits, sizeof(struct ntb_db_cb), GFP_KERNEL); if (!ndev->db_cb) return -ENOMEM; for (i = 0; i < ndev->limits.max_db_bits; i++) { ndev->db_cb[i].db_num = i; ndev->db_cb[i].ndev = ndev; } return 0; } static void ntb_free_callbacks(struct ntb_device *ndev) { int i; for (i = 0; i < ndev->limits.max_db_bits; i++) ntb_unregister_db_callback(ndev, i); kfree(ndev->db_cb); } static int ntb_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct ntb_device *ndev; int rc, i; ndev = kzalloc(sizeof(struct ntb_device), GFP_KERNEL); if (!ndev) return -ENOMEM; ndev->pdev = pdev; ndev->link_status = NTB_LINK_DOWN; pci_set_drvdata(pdev, ndev); rc = pci_enable_device(pdev); if (rc) goto err; pci_set_master(ndev->pdev); rc = pci_request_selected_regions(pdev, NTB_BAR_MASK, KBUILD_MODNAME); if (rc) goto err1; ndev->reg_base = pci_ioremap_bar(pdev, NTB_BAR_MMIO); if (!ndev->reg_base) { dev_warn(&pdev->dev, "Cannot remap BAR 0\n"); rc = -EIO; goto err2; } for (i = 0; i < NTB_NUM_MW; i++) { ndev->mw[i].bar_sz = pci_resource_len(pdev, MW_TO_BAR(i)); ndev->mw[i].vbase = ioremap_wc(pci_resource_start(pdev, MW_TO_BAR(i)), ndev->mw[i].bar_sz); dev_info(&pdev->dev, "MW %d size %llu\n", i, pci_resource_len(pdev, MW_TO_BAR(i))); if (!ndev->mw[i].vbase) { dev_warn(&pdev->dev, "Cannot remap BAR %d\n", MW_TO_BAR(i)); rc = -EIO; goto err3; } } rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (rc) { rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) goto err3; dev_warn(&pdev->dev, "Cannot DMA highmem\n"); } rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (rc) { rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) goto err3; dev_warn(&pdev->dev, "Cannot DMA consistent highmem\n"); } rc = ntb_device_setup(ndev); if (rc) goto err3; rc = ntb_create_callbacks(ndev); if (rc) goto err4; rc = ntb_setup_interrupts(ndev); if (rc) goto err5; /* The scratchpad registers keep the values between rmmod/insmod, * blast them now */ for (i = 0; i < ndev->limits.max_spads; i++) { ntb_write_local_spad(ndev, i, 0); ntb_write_remote_spad(ndev, i, 0); } rc = ntb_transport_init(pdev); if (rc) goto err6; /* Let's bring the NTB link up */ writel(NTB_CNTL_BAR23_SNOOP | NTB_CNTL_BAR45_SNOOP, ndev->reg_ofs.lnk_cntl); return 0; err6: ntb_free_interrupts(ndev); err5: ntb_free_callbacks(ndev); err4: ntb_device_free(ndev); err3: for (i--; i >= 0; i--) iounmap(ndev->mw[i].vbase); iounmap(ndev->reg_base); err2: pci_release_selected_regions(pdev, NTB_BAR_MASK); err1: pci_disable_device(pdev); err: kfree(ndev); dev_err(&pdev->dev, "Error loading %s module\n", KBUILD_MODNAME); return rc; } static void ntb_pci_remove(struct pci_dev *pdev) { struct ntb_device *ndev = pci_get_drvdata(pdev); int i; u32 ntb_cntl; /* Bring NTB link down */ ntb_cntl = readl(ndev->reg_ofs.lnk_cntl); ntb_cntl |= NTB_LINK_DISABLE; writel(ntb_cntl, ndev->reg_ofs.lnk_cntl); ntb_transport_free(ndev->ntb_transport); ntb_free_interrupts(ndev); ntb_free_callbacks(ndev); ntb_device_free(ndev); for (i = 0; i < NTB_NUM_MW; i++) iounmap(ndev->mw[i].vbase); iounmap(ndev->reg_base); pci_release_selected_regions(pdev, NTB_BAR_MASK); pci_disable_device(pdev); kfree(ndev); } static struct pci_driver ntb_pci_driver = { .name = KBUILD_MODNAME, .id_table = ntb_pci_tbl, .probe = ntb_pci_probe, .remove = ntb_pci_remove, }; module_pci_driver(ntb_pci_driver);