#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/list.h> #include <linux/random.h> #include <linux/string.h> #include <linux/bitops.h> #include <linux/slab.h> #include <linux/mtd/nand_ecc.h> /* * Test the implementation for software ECC * * No actual MTD device is needed, So we don't need to warry about losing * important data by human error. * * This covers possible patterns of corruption which can be reliably corrected * or detected. */ #if defined(CONFIG_MTD_NAND) || defined(CONFIG_MTD_NAND_MODULE) struct nand_ecc_test { const char *name; void (*prepare)(void *, void *, void *, void *, const size_t); int (*verify)(void *, void *, void *, const size_t); }; /* * The reason for this __change_bit_le() instead of __change_bit() is to inject * bit error properly within the region which is not a multiple of * sizeof(unsigned long) on big-endian systems */ #ifdef __LITTLE_ENDIAN #define __change_bit_le(nr, addr) __change_bit(nr, addr) #elif defined(__BIG_ENDIAN) #define __change_bit_le(nr, addr) \ __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr) #else #error "Unknown byte order" #endif static void single_bit_error_data(void *error_data, void *correct_data, size_t size) { unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE); memcpy(error_data, correct_data, size); __change_bit_le(offset, error_data); } static void double_bit_error_data(void *error_data, void *correct_data, size_t size) { unsigned int offset[2]; offset[0] = prandom_u32() % (size * BITS_PER_BYTE); do { offset[1] = prandom_u32() % (size * BITS_PER_BYTE); } while (offset[0] == offset[1]); memcpy(error_data, correct_data, size); __change_bit_le(offset[0], error_data); __change_bit_le(offset[1], error_data); } static unsigned int random_ecc_bit(size_t size) { unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE); if (size == 256) { /* * Don't inject a bit error into the insignificant bits (16th * and 17th bit) in ECC code for 256 byte data block */ while (offset == 16 || offset == 17) offset = prandom_u32() % (3 * BITS_PER_BYTE); } return offset; } static void single_bit_error_ecc(void *error_ecc, void *correct_ecc, size_t size) { unsigned int offset = random_ecc_bit(size); memcpy(error_ecc, correct_ecc, 3); __change_bit_le(offset, error_ecc); } static void double_bit_error_ecc(void *error_ecc, void *correct_ecc, size_t size) { unsigned int offset[2]; offset[0] = random_ecc_bit(size); do { offset[1] = random_ecc_bit(size); } while (offset[0] == offset[1]); memcpy(error_ecc, correct_ecc, 3); __change_bit_le(offset[0], error_ecc); __change_bit_le(offset[1], error_ecc); } static void no_bit_error(void *error_data, void *error_ecc, void *correct_data, void *correct_ecc, const size_t size) { memcpy(error_data, correct_data, size); memcpy(error_ecc, correct_ecc, 3); } static int no_bit_error_verify(void *error_data, void *error_ecc, void *correct_data, const size_t size) { unsigned char calc_ecc[3]; int ret; __nand_calculate_ecc(error_data, size, calc_ecc); ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size); if (ret == 0 && !memcmp(correct_data, error_data, size)) return 0; return -EINVAL; } static void single_bit_error_in_data(void *error_data, void *error_ecc, void *correct_data, void *correct_ecc, const size_t size) { single_bit_error_data(error_data, correct_data, size); memcpy(error_ecc, correct_ecc, 3); } static void single_bit_error_in_ecc(void *error_data, void *error_ecc, void *correct_data, void *correct_ecc, const size_t size) { memcpy(error_data, correct_data, size); single_bit_error_ecc(error_ecc, correct_ecc, size); } static int single_bit_error_correct(void *error_data, void *error_ecc, void *correct_data, const size_t size) { unsigned char calc_ecc[3]; int ret; __nand_calculate_ecc(error_data, size, calc_ecc); ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size); if (ret == 1 && !memcmp(correct_data, error_data, size)) return 0; return -EINVAL; } static void double_bit_error_in_data(void *error_data, void *error_ecc, void *correct_data, void *correct_ecc, const size_t size) { double_bit_error_data(error_data, correct_data, size); memcpy(error_ecc, correct_ecc, 3); } static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc, void *correct_data, void *correct_ecc, const size_t size) { single_bit_error_data(error_data, correct_data, size); single_bit_error_ecc(error_ecc, correct_ecc, size); } static void double_bit_error_in_ecc(void *error_data, void *error_ecc, void *correct_data, void *correct_ecc, const size_t size) { memcpy(error_data, correct_data, size); double_bit_error_ecc(error_ecc, correct_ecc, size); } static int double_bit_error_detect(void *error_data, void *error_ecc, void *correct_data, const size_t size) { unsigned char calc_ecc[3]; int ret; __nand_calculate_ecc(error_data, size, calc_ecc); ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size); return (ret == -1) ? 0 : -EINVAL; } static const struct nand_ecc_test nand_ecc_test[] = { { .name = "no-bit-error", .prepare = no_bit_error, .verify = no_bit_error_verify, }, { .name = "single-bit-error-in-data-correct", .prepare = single_bit_error_in_data, .verify = single_bit_error_correct, }, { .name = "single-bit-error-in-ecc-correct", .prepare = single_bit_error_in_ecc, .verify = single_bit_error_correct, }, { .name = "double-bit-error-in-data-detect", .prepare = double_bit_error_in_data, .verify = double_bit_error_detect, }, { .name = "single-bit-error-in-data-and-ecc-detect", .prepare = single_bit_error_in_data_and_ecc, .verify = double_bit_error_detect, }, { .name = "double-bit-error-in-ecc-detect", .prepare = double_bit_error_in_ecc, .verify = double_bit_error_detect, }, }; static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data, void *correct_ecc, const size_t size) { pr_info("hexdump of error data:\n"); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, error_data, size, false); print_hex_dump(KERN_INFO, "hexdump of error ecc: ", DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false); pr_info("hexdump of correct data:\n"); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, correct_data, size, false); print_hex_dump(KERN_INFO, "hexdump of correct ecc: ", DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false); } static int nand_ecc_test_run(const size_t size) { int i; int err = 0; void *error_data; void *error_ecc; void *correct_data; void *correct_ecc; error_data = kmalloc(size, GFP_KERNEL); error_ecc = kmalloc(3, GFP_KERNEL); correct_data = kmalloc(size, GFP_KERNEL); correct_ecc = kmalloc(3, GFP_KERNEL); if (!error_data || !error_ecc || !correct_data || !correct_ecc) { err = -ENOMEM; goto error; } prandom_bytes(correct_data, size); __nand_calculate_ecc(correct_data, size, correct_ecc); for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) { nand_ecc_test[i].prepare(error_data, error_ecc, correct_data, correct_ecc, size); err = nand_ecc_test[i].verify(error_data, error_ecc, correct_data, size); if (err) { pr_err("not ok - %s-%zd\n", nand_ecc_test[i].name, size); dump_data_ecc(error_data, error_ecc, correct_data, correct_ecc, size); break; } pr_info("ok - %s-%zd\n", nand_ecc_test[i].name, size); } error: kfree(error_data); kfree(error_ecc); kfree(correct_data); kfree(correct_ecc); return err; } #else static int nand_ecc_test_run(const size_t size) { return 0; } #endif static int __init ecc_test_init(void) { int err; err = nand_ecc_test_run(256); if (err) return err; return nand_ecc_test_run(512); } static void __exit ecc_test_exit(void) { } module_init(ecc_test_init); module_exit(ecc_test_exit); MODULE_DESCRIPTION("NAND ECC function test module"); MODULE_AUTHOR("Akinobu Mita"); MODULE_LICENSE("GPL");