/* * driver for Earthsoft PT1/PT2 * * Copyright (C) 2009 HIRANO Takahito <hiranotaka@zng.info> * * based on pt1dvr - http://pt1dvr.sourceforge.jp/ * by Tomoaki Ishikawa <tomy@users.sourceforge.jp> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/pci.h> #include <linux/kthread.h> #include <linux/freezer.h> #include <linux/ratelimit.h> #include "dvbdev.h" #include "dvb_demux.h" #include "dmxdev.h" #include "dvb_net.h" #include "dvb_frontend.h" #include "va1j5jf8007t.h" #include "va1j5jf8007s.h" #define DRIVER_NAME "earth-pt1" #define PT1_PAGE_SHIFT 12 #define PT1_PAGE_SIZE (1 << PT1_PAGE_SHIFT) #define PT1_NR_UPACKETS 1024 #define PT1_NR_BUFS 511 struct pt1_buffer_page { __le32 upackets[PT1_NR_UPACKETS]; }; struct pt1_table_page { __le32 next_pfn; __le32 buf_pfns[PT1_NR_BUFS]; }; struct pt1_buffer { struct pt1_buffer_page *page; dma_addr_t addr; }; struct pt1_table { struct pt1_table_page *page; dma_addr_t addr; struct pt1_buffer bufs[PT1_NR_BUFS]; }; #define PT1_NR_ADAPS 4 struct pt1_adapter; struct pt1 { struct pci_dev *pdev; void __iomem *regs; struct i2c_adapter i2c_adap; int i2c_running; struct pt1_adapter *adaps[PT1_NR_ADAPS]; struct pt1_table *tables; struct task_struct *kthread; int table_index; int buf_index; struct mutex lock; int power; int reset; }; struct pt1_adapter { struct pt1 *pt1; int index; u8 *buf; int upacket_count; int packet_count; int st_count; struct dvb_adapter adap; struct dvb_demux demux; int users; struct dmxdev dmxdev; struct dvb_frontend *fe; int (*orig_set_voltage)(struct dvb_frontend *fe, fe_sec_voltage_t voltage); int (*orig_sleep)(struct dvb_frontend *fe); int (*orig_init)(struct dvb_frontend *fe); fe_sec_voltage_t voltage; int sleep; }; #define pt1_printk(level, pt1, format, arg...) \ dev_printk(level, &(pt1)->pdev->dev, format, ##arg) static void pt1_write_reg(struct pt1 *pt1, int reg, u32 data) { writel(data, pt1->regs + reg * 4); } static u32 pt1_read_reg(struct pt1 *pt1, int reg) { return readl(pt1->regs + reg * 4); } static int pt1_nr_tables = 8; module_param_named(nr_tables, pt1_nr_tables, int, 0); static void pt1_increment_table_count(struct pt1 *pt1) { pt1_write_reg(pt1, 0, 0x00000020); } static void pt1_init_table_count(struct pt1 *pt1) { pt1_write_reg(pt1, 0, 0x00000010); } static void pt1_register_tables(struct pt1 *pt1, u32 first_pfn) { pt1_write_reg(pt1, 5, first_pfn); pt1_write_reg(pt1, 0, 0x0c000040); } static void pt1_unregister_tables(struct pt1 *pt1) { pt1_write_reg(pt1, 0, 0x08080000); } static int pt1_sync(struct pt1 *pt1) { int i; for (i = 0; i < 57; i++) { if (pt1_read_reg(pt1, 0) & 0x20000000) return 0; pt1_write_reg(pt1, 0, 0x00000008); } pt1_printk(KERN_ERR, pt1, "could not sync\n"); return -EIO; } static u64 pt1_identify(struct pt1 *pt1) { int i; u64 id; id = 0; for (i = 0; i < 57; i++) { id |= (u64)(pt1_read_reg(pt1, 0) >> 30 & 1) << i; pt1_write_reg(pt1, 0, 0x00000008); } return id; } static int pt1_unlock(struct pt1 *pt1) { int i; pt1_write_reg(pt1, 0, 0x00000008); for (i = 0; i < 3; i++) { if (pt1_read_reg(pt1, 0) & 0x80000000) return 0; schedule_timeout_uninterruptible((HZ + 999) / 1000); } pt1_printk(KERN_ERR, pt1, "could not unlock\n"); return -EIO; } static int pt1_reset_pci(struct pt1 *pt1) { int i; pt1_write_reg(pt1, 0, 0x01010000); pt1_write_reg(pt1, 0, 0x01000000); for (i = 0; i < 10; i++) { if (pt1_read_reg(pt1, 0) & 0x00000001) return 0; schedule_timeout_uninterruptible((HZ + 999) / 1000); } pt1_printk(KERN_ERR, pt1, "could not reset PCI\n"); return -EIO; } static int pt1_reset_ram(struct pt1 *pt1) { int i; pt1_write_reg(pt1, 0, 0x02020000); pt1_write_reg(pt1, 0, 0x02000000); for (i = 0; i < 10; i++) { if (pt1_read_reg(pt1, 0) & 0x00000002) return 0; schedule_timeout_uninterruptible((HZ + 999) / 1000); } pt1_printk(KERN_ERR, pt1, "could not reset RAM\n"); return -EIO; } static int pt1_do_enable_ram(struct pt1 *pt1) { int i, j; u32 status; status = pt1_read_reg(pt1, 0) & 0x00000004; pt1_write_reg(pt1, 0, 0x00000002); for (i = 0; i < 10; i++) { for (j = 0; j < 1024; j++) { if ((pt1_read_reg(pt1, 0) & 0x00000004) != status) return 0; } schedule_timeout_uninterruptible((HZ + 999) / 1000); } pt1_printk(KERN_ERR, pt1, "could not enable RAM\n"); return -EIO; } static int pt1_enable_ram(struct pt1 *pt1) { int i, ret; int phase; schedule_timeout_uninterruptible((HZ + 999) / 1000); phase = pt1->pdev->device == 0x211a ? 128 : 166; for (i = 0; i < phase; i++) { ret = pt1_do_enable_ram(pt1); if (ret < 0) return ret; } return 0; } static void pt1_disable_ram(struct pt1 *pt1) { pt1_write_reg(pt1, 0, 0x0b0b0000); } static void pt1_set_stream(struct pt1 *pt1, int index, int enabled) { pt1_write_reg(pt1, 2, 1 << (index + 8) | enabled << index); } static void pt1_init_streams(struct pt1 *pt1) { int i; for (i = 0; i < PT1_NR_ADAPS; i++) pt1_set_stream(pt1, i, 0); } static int pt1_filter(struct pt1 *pt1, struct pt1_buffer_page *page) { u32 upacket; int i; int index; struct pt1_adapter *adap; int offset; u8 *buf; int sc; if (!page->upackets[PT1_NR_UPACKETS - 1]) return 0; for (i = 0; i < PT1_NR_UPACKETS; i++) { upacket = le32_to_cpu(page->upackets[i]); index = (upacket >> 29) - 1; if (index < 0 || index >= PT1_NR_ADAPS) continue; adap = pt1->adaps[index]; if (upacket >> 25 & 1) adap->upacket_count = 0; else if (!adap->upacket_count) continue; if (upacket >> 24 & 1) printk_ratelimited(KERN_INFO "earth-pt1: device " "buffer overflowing. table[%d] buf[%d]\n", pt1->table_index, pt1->buf_index); sc = upacket >> 26 & 0x7; if (adap->st_count != -1 && sc != ((adap->st_count + 1) & 0x7)) printk_ratelimited(KERN_INFO "earth-pt1: data loss" " in streamID(adapter)[%d]\n", index); adap->st_count = sc; buf = adap->buf; offset = adap->packet_count * 188 + adap->upacket_count * 3; buf[offset] = upacket >> 16; buf[offset + 1] = upacket >> 8; if (adap->upacket_count != 62) buf[offset + 2] = upacket; if (++adap->upacket_count >= 63) { adap->upacket_count = 0; if (++adap->packet_count >= 21) { dvb_dmx_swfilter_packets(&adap->demux, buf, 21); adap->packet_count = 0; } } } page->upackets[PT1_NR_UPACKETS - 1] = 0; return 1; } static int pt1_thread(void *data) { struct pt1 *pt1; struct pt1_buffer_page *page; pt1 = data; set_freezable(); while (!kthread_should_stop()) { try_to_freeze(); page = pt1->tables[pt1->table_index].bufs[pt1->buf_index].page; if (!pt1_filter(pt1, page)) { schedule_timeout_interruptible((HZ + 999) / 1000); continue; } if (++pt1->buf_index >= PT1_NR_BUFS) { pt1_increment_table_count(pt1); pt1->buf_index = 0; if (++pt1->table_index >= pt1_nr_tables) pt1->table_index = 0; } } return 0; } static void pt1_free_page(struct pt1 *pt1, void *page, dma_addr_t addr) { dma_free_coherent(&pt1->pdev->dev, PT1_PAGE_SIZE, page, addr); } static void *pt1_alloc_page(struct pt1 *pt1, dma_addr_t *addrp, u32 *pfnp) { void *page; dma_addr_t addr; page = dma_alloc_coherent(&pt1->pdev->dev, PT1_PAGE_SIZE, &addr, GFP_KERNEL); if (page == NULL) return NULL; BUG_ON(addr & (PT1_PAGE_SIZE - 1)); BUG_ON(addr >> PT1_PAGE_SHIFT >> 31 >> 1); *addrp = addr; *pfnp = addr >> PT1_PAGE_SHIFT; return page; } static void pt1_cleanup_buffer(struct pt1 *pt1, struct pt1_buffer *buf) { pt1_free_page(pt1, buf->page, buf->addr); } static int pt1_init_buffer(struct pt1 *pt1, struct pt1_buffer *buf, u32 *pfnp) { struct pt1_buffer_page *page; dma_addr_t addr; page = pt1_alloc_page(pt1, &addr, pfnp); if (page == NULL) return -ENOMEM; page->upackets[PT1_NR_UPACKETS - 1] = 0; buf->page = page; buf->addr = addr; return 0; } static void pt1_cleanup_table(struct pt1 *pt1, struct pt1_table *table) { int i; for (i = 0; i < PT1_NR_BUFS; i++) pt1_cleanup_buffer(pt1, &table->bufs[i]); pt1_free_page(pt1, table->page, table->addr); } static int pt1_init_table(struct pt1 *pt1, struct pt1_table *table, u32 *pfnp) { struct pt1_table_page *page; dma_addr_t addr; int i, ret; u32 buf_pfn; page = pt1_alloc_page(pt1, &addr, pfnp); if (page == NULL) return -ENOMEM; for (i = 0; i < PT1_NR_BUFS; i++) { ret = pt1_init_buffer(pt1, &table->bufs[i], &buf_pfn); if (ret < 0) goto err; page->buf_pfns[i] = cpu_to_le32(buf_pfn); } pt1_increment_table_count(pt1); table->page = page; table->addr = addr; return 0; err: while (i--) pt1_cleanup_buffer(pt1, &table->bufs[i]); pt1_free_page(pt1, page, addr); return ret; } static void pt1_cleanup_tables(struct pt1 *pt1) { struct pt1_table *tables; int i; tables = pt1->tables; pt1_unregister_tables(pt1); for (i = 0; i < pt1_nr_tables; i++) pt1_cleanup_table(pt1, &tables[i]); vfree(tables); } static int pt1_init_tables(struct pt1 *pt1) { struct pt1_table *tables; int i, ret; u32 first_pfn, pfn; tables = vmalloc(sizeof(struct pt1_table) * pt1_nr_tables); if (tables == NULL) return -ENOMEM; pt1_init_table_count(pt1); i = 0; if (pt1_nr_tables) { ret = pt1_init_table(pt1, &tables[0], &first_pfn); if (ret) goto err; i++; } while (i < pt1_nr_tables) { ret = pt1_init_table(pt1, &tables[i], &pfn); if (ret) goto err; tables[i - 1].page->next_pfn = cpu_to_le32(pfn); i++; } tables[pt1_nr_tables - 1].page->next_pfn = cpu_to_le32(first_pfn); pt1_register_tables(pt1, first_pfn); pt1->tables = tables; return 0; err: while (i--) pt1_cleanup_table(pt1, &tables[i]); vfree(tables); return ret; } static int pt1_start_polling(struct pt1 *pt1) { int ret = 0; mutex_lock(&pt1->lock); if (!pt1->kthread) { pt1->kthread = kthread_run(pt1_thread, pt1, "earth-pt1"); if (IS_ERR(pt1->kthread)) { ret = PTR_ERR(pt1->kthread); pt1->kthread = NULL; } } mutex_unlock(&pt1->lock); return ret; } static int pt1_start_feed(struct dvb_demux_feed *feed) { struct pt1_adapter *adap; adap = container_of(feed->demux, struct pt1_adapter, demux); if (!adap->users++) { int ret; ret = pt1_start_polling(adap->pt1); if (ret) return ret; pt1_set_stream(adap->pt1, adap->index, 1); } return 0; } static void pt1_stop_polling(struct pt1 *pt1) { int i, count; mutex_lock(&pt1->lock); for (i = 0, count = 0; i < PT1_NR_ADAPS; i++) count += pt1->adaps[i]->users; if (count == 0 && pt1->kthread) { kthread_stop(pt1->kthread); pt1->kthread = NULL; } mutex_unlock(&pt1->lock); } static int pt1_stop_feed(struct dvb_demux_feed *feed) { struct pt1_adapter *adap; adap = container_of(feed->demux, struct pt1_adapter, demux); if (!--adap->users) { pt1_set_stream(adap->pt1, adap->index, 0); pt1_stop_polling(adap->pt1); } return 0; } static void pt1_update_power(struct pt1 *pt1) { int bits; int i; struct pt1_adapter *adap; static const int sleep_bits[] = { 1 << 4, 1 << 6 | 1 << 7, 1 << 5, 1 << 6 | 1 << 8, }; bits = pt1->power | !pt1->reset << 3; mutex_lock(&pt1->lock); for (i = 0; i < PT1_NR_ADAPS; i++) { adap = pt1->adaps[i]; switch (adap->voltage) { case SEC_VOLTAGE_13: /* actually 11V */ bits |= 1 << 1; break; case SEC_VOLTAGE_18: /* actually 15V */ bits |= 1 << 1 | 1 << 2; break; default: break; } /* XXX: The bits should be changed depending on adap->sleep. */ bits |= sleep_bits[i]; } pt1_write_reg(pt1, 1, bits); mutex_unlock(&pt1->lock); } static int pt1_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t voltage) { struct pt1_adapter *adap; adap = container_of(fe->dvb, struct pt1_adapter, adap); adap->voltage = voltage; pt1_update_power(adap->pt1); if (adap->orig_set_voltage) return adap->orig_set_voltage(fe, voltage); else return 0; } static int pt1_sleep(struct dvb_frontend *fe) { struct pt1_adapter *adap; adap = container_of(fe->dvb, struct pt1_adapter, adap); adap->sleep = 1; pt1_update_power(adap->pt1); if (adap->orig_sleep) return adap->orig_sleep(fe); else return 0; } static int pt1_wakeup(struct dvb_frontend *fe) { struct pt1_adapter *adap; adap = container_of(fe->dvb, struct pt1_adapter, adap); adap->sleep = 0; pt1_update_power(adap->pt1); schedule_timeout_uninterruptible((HZ + 999) / 1000); if (adap->orig_init) return adap->orig_init(fe); else return 0; } static void pt1_free_adapter(struct pt1_adapter *adap) { adap->demux.dmx.close(&adap->demux.dmx); dvb_dmxdev_release(&adap->dmxdev); dvb_dmx_release(&adap->demux); dvb_unregister_adapter(&adap->adap); free_page((unsigned long)adap->buf); kfree(adap); } DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); static struct pt1_adapter * pt1_alloc_adapter(struct pt1 *pt1) { struct pt1_adapter *adap; void *buf; struct dvb_adapter *dvb_adap; struct dvb_demux *demux; struct dmxdev *dmxdev; int ret; adap = kzalloc(sizeof(struct pt1_adapter), GFP_KERNEL); if (!adap) { ret = -ENOMEM; goto err; } adap->pt1 = pt1; adap->voltage = SEC_VOLTAGE_OFF; adap->sleep = 1; buf = (u8 *)__get_free_page(GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto err_kfree; } adap->buf = buf; adap->upacket_count = 0; adap->packet_count = 0; adap->st_count = -1; dvb_adap = &adap->adap; dvb_adap->priv = adap; ret = dvb_register_adapter(dvb_adap, DRIVER_NAME, THIS_MODULE, &pt1->pdev->dev, adapter_nr); if (ret < 0) goto err_free_page; demux = &adap->demux; demux->dmx.capabilities = DMX_TS_FILTERING | DMX_SECTION_FILTERING; demux->priv = adap; demux->feednum = 256; demux->filternum = 256; demux->start_feed = pt1_start_feed; demux->stop_feed = pt1_stop_feed; demux->write_to_decoder = NULL; ret = dvb_dmx_init(demux); if (ret < 0) goto err_unregister_adapter; dmxdev = &adap->dmxdev; dmxdev->filternum = 256; dmxdev->demux = &demux->dmx; dmxdev->capabilities = 0; ret = dvb_dmxdev_init(dmxdev, dvb_adap); if (ret < 0) goto err_dmx_release; return adap; err_dmx_release: dvb_dmx_release(demux); err_unregister_adapter: dvb_unregister_adapter(dvb_adap); err_free_page: free_page((unsigned long)buf); err_kfree: kfree(adap); err: return ERR_PTR(ret); } static void pt1_cleanup_adapters(struct pt1 *pt1) { int i; for (i = 0; i < PT1_NR_ADAPS; i++) pt1_free_adapter(pt1->adaps[i]); } static int pt1_init_adapters(struct pt1 *pt1) { int i; struct pt1_adapter *adap; int ret; for (i = 0; i < PT1_NR_ADAPS; i++) { adap = pt1_alloc_adapter(pt1); if (IS_ERR(adap)) { ret = PTR_ERR(adap); goto err; } adap->index = i; pt1->adaps[i] = adap; } return 0; err: while (i--) pt1_free_adapter(pt1->adaps[i]); return ret; } static void pt1_cleanup_frontend(struct pt1_adapter *adap) { dvb_unregister_frontend(adap->fe); } static int pt1_init_frontend(struct pt1_adapter *adap, struct dvb_frontend *fe) { int ret; adap->orig_set_voltage = fe->ops.set_voltage; adap->orig_sleep = fe->ops.sleep; adap->orig_init = fe->ops.init; fe->ops.set_voltage = pt1_set_voltage; fe->ops.sleep = pt1_sleep; fe->ops.init = pt1_wakeup; ret = dvb_register_frontend(&adap->adap, fe); if (ret < 0) return ret; adap->fe = fe; return 0; } static void pt1_cleanup_frontends(struct pt1 *pt1) { int i; for (i = 0; i < PT1_NR_ADAPS; i++) pt1_cleanup_frontend(pt1->adaps[i]); } struct pt1_config { struct va1j5jf8007s_config va1j5jf8007s_config; struct va1j5jf8007t_config va1j5jf8007t_config; }; static const struct pt1_config pt1_configs[2] = { { { .demod_address = 0x1b, .frequency = VA1J5JF8007S_20MHZ, }, { .demod_address = 0x1a, .frequency = VA1J5JF8007T_20MHZ, }, }, { { .demod_address = 0x19, .frequency = VA1J5JF8007S_20MHZ, }, { .demod_address = 0x18, .frequency = VA1J5JF8007T_20MHZ, }, }, }; static const struct pt1_config pt2_configs[2] = { { { .demod_address = 0x1b, .frequency = VA1J5JF8007S_25MHZ, }, { .demod_address = 0x1a, .frequency = VA1J5JF8007T_25MHZ, }, }, { { .demod_address = 0x19, .frequency = VA1J5JF8007S_25MHZ, }, { .demod_address = 0x18, .frequency = VA1J5JF8007T_25MHZ, }, }, }; static int pt1_init_frontends(struct pt1 *pt1) { int i, j; struct i2c_adapter *i2c_adap; const struct pt1_config *configs, *config; struct dvb_frontend *fe[4]; int ret; i = 0; j = 0; i2c_adap = &pt1->i2c_adap; configs = pt1->pdev->device == 0x211a ? pt1_configs : pt2_configs; do { config = &configs[i / 2]; fe[i] = va1j5jf8007s_attach(&config->va1j5jf8007s_config, i2c_adap); if (!fe[i]) { ret = -ENODEV; /* This does not sound nice... */ goto err; } i++; fe[i] = va1j5jf8007t_attach(&config->va1j5jf8007t_config, i2c_adap); if (!fe[i]) { ret = -ENODEV; goto err; } i++; ret = va1j5jf8007s_prepare(fe[i - 2]); if (ret < 0) goto err; ret = va1j5jf8007t_prepare(fe[i - 1]); if (ret < 0) goto err; } while (i < 4); do { ret = pt1_init_frontend(pt1->adaps[j], fe[j]); if (ret < 0) goto err; } while (++j < 4); return 0; err: while (i-- > j) fe[i]->ops.release(fe[i]); while (j--) dvb_unregister_frontend(fe[j]); return ret; } static void pt1_i2c_emit(struct pt1 *pt1, int addr, int busy, int read_enable, int clock, int data, int next_addr) { pt1_write_reg(pt1, 4, addr << 18 | busy << 13 | read_enable << 12 | !clock << 11 | !data << 10 | next_addr); } static void pt1_i2c_write_bit(struct pt1 *pt1, int addr, int *addrp, int data) { pt1_i2c_emit(pt1, addr, 1, 0, 0, data, addr + 1); pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, data, addr + 2); pt1_i2c_emit(pt1, addr + 2, 1, 0, 0, data, addr + 3); *addrp = addr + 3; } static void pt1_i2c_read_bit(struct pt1 *pt1, int addr, int *addrp) { pt1_i2c_emit(pt1, addr, 1, 0, 0, 1, addr + 1); pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 1, addr + 2); pt1_i2c_emit(pt1, addr + 2, 1, 1, 1, 1, addr + 3); pt1_i2c_emit(pt1, addr + 3, 1, 0, 0, 1, addr + 4); *addrp = addr + 4; } static void pt1_i2c_write_byte(struct pt1 *pt1, int addr, int *addrp, int data) { int i; for (i = 0; i < 8; i++) pt1_i2c_write_bit(pt1, addr, &addr, data >> (7 - i) & 1); pt1_i2c_write_bit(pt1, addr, &addr, 1); *addrp = addr; } static void pt1_i2c_read_byte(struct pt1 *pt1, int addr, int *addrp, int last) { int i; for (i = 0; i < 8; i++) pt1_i2c_read_bit(pt1, addr, &addr); pt1_i2c_write_bit(pt1, addr, &addr, last); *addrp = addr; } static void pt1_i2c_prepare(struct pt1 *pt1, int addr, int *addrp) { pt1_i2c_emit(pt1, addr, 1, 0, 1, 1, addr + 1); pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2); pt1_i2c_emit(pt1, addr + 2, 1, 0, 0, 0, addr + 3); *addrp = addr + 3; } static void pt1_i2c_write_msg(struct pt1 *pt1, int addr, int *addrp, struct i2c_msg *msg) { int i; pt1_i2c_prepare(pt1, addr, &addr); pt1_i2c_write_byte(pt1, addr, &addr, msg->addr << 1); for (i = 0; i < msg->len; i++) pt1_i2c_write_byte(pt1, addr, &addr, msg->buf[i]); *addrp = addr; } static void pt1_i2c_read_msg(struct pt1 *pt1, int addr, int *addrp, struct i2c_msg *msg) { int i; pt1_i2c_prepare(pt1, addr, &addr); pt1_i2c_write_byte(pt1, addr, &addr, msg->addr << 1 | 1); for (i = 0; i < msg->len; i++) pt1_i2c_read_byte(pt1, addr, &addr, i == msg->len - 1); *addrp = addr; } static int pt1_i2c_end(struct pt1 *pt1, int addr) { pt1_i2c_emit(pt1, addr, 1, 0, 0, 0, addr + 1); pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2); pt1_i2c_emit(pt1, addr + 2, 1, 0, 1, 1, 0); pt1_write_reg(pt1, 0, 0x00000004); do { if (signal_pending(current)) return -EINTR; schedule_timeout_interruptible((HZ + 999) / 1000); } while (pt1_read_reg(pt1, 0) & 0x00000080); return 0; } static void pt1_i2c_begin(struct pt1 *pt1, int *addrp) { int addr; addr = 0; pt1_i2c_emit(pt1, addr, 0, 0, 1, 1, addr /* itself */); addr = addr + 1; if (!pt1->i2c_running) { pt1_i2c_emit(pt1, addr, 1, 0, 1, 1, addr + 1); pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2); addr = addr + 2; pt1->i2c_running = 1; } *addrp = addr; } static int pt1_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct pt1 *pt1; int i; struct i2c_msg *msg, *next_msg; int addr, ret; u16 len; u32 word; pt1 = i2c_get_adapdata(adap); for (i = 0; i < num; i++) { msg = &msgs[i]; if (msg->flags & I2C_M_RD) return -ENOTSUPP; if (i + 1 < num) next_msg = &msgs[i + 1]; else next_msg = NULL; if (next_msg && next_msg->flags & I2C_M_RD) { i++; len = next_msg->len; if (len > 4) return -ENOTSUPP; pt1_i2c_begin(pt1, &addr); pt1_i2c_write_msg(pt1, addr, &addr, msg); pt1_i2c_read_msg(pt1, addr, &addr, next_msg); ret = pt1_i2c_end(pt1, addr); if (ret < 0) return ret; word = pt1_read_reg(pt1, 2); while (len--) { next_msg->buf[len] = word; word >>= 8; } } else { pt1_i2c_begin(pt1, &addr); pt1_i2c_write_msg(pt1, addr, &addr, msg); ret = pt1_i2c_end(pt1, addr); if (ret < 0) return ret; } } return num; } static u32 pt1_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C; } static const struct i2c_algorithm pt1_i2c_algo = { .master_xfer = pt1_i2c_xfer, .functionality = pt1_i2c_func, }; static void pt1_i2c_wait(struct pt1 *pt1) { int i; for (i = 0; i < 128; i++) pt1_i2c_emit(pt1, 0, 0, 0, 1, 1, 0); } static void pt1_i2c_init(struct pt1 *pt1) { int i; for (i = 0; i < 1024; i++) pt1_i2c_emit(pt1, i, 0, 0, 1, 1, 0); } static void pt1_remove(struct pci_dev *pdev) { struct pt1 *pt1; void __iomem *regs; pt1 = pci_get_drvdata(pdev); regs = pt1->regs; if (pt1->kthread) kthread_stop(pt1->kthread); pt1_cleanup_tables(pt1); pt1_cleanup_frontends(pt1); pt1_disable_ram(pt1); pt1->power = 0; pt1->reset = 1; pt1_update_power(pt1); pt1_cleanup_adapters(pt1); i2c_del_adapter(&pt1->i2c_adap); pci_set_drvdata(pdev, NULL); kfree(pt1); pci_iounmap(pdev, regs); pci_release_regions(pdev); pci_disable_device(pdev); } static int pt1_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int ret; void __iomem *regs; struct pt1 *pt1; struct i2c_adapter *i2c_adap; ret = pci_enable_device(pdev); if (ret < 0) goto err; ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (ret < 0) goto err_pci_disable_device; pci_set_master(pdev); ret = pci_request_regions(pdev, DRIVER_NAME); if (ret < 0) goto err_pci_disable_device; regs = pci_iomap(pdev, 0, 0); if (!regs) { ret = -EIO; goto err_pci_release_regions; } pt1 = kzalloc(sizeof(struct pt1), GFP_KERNEL); if (!pt1) { ret = -ENOMEM; goto err_pci_iounmap; } mutex_init(&pt1->lock); pt1->pdev = pdev; pt1->regs = regs; pci_set_drvdata(pdev, pt1); ret = pt1_init_adapters(pt1); if (ret < 0) goto err_kfree; mutex_init(&pt1->lock); pt1->power = 0; pt1->reset = 1; pt1_update_power(pt1); i2c_adap = &pt1->i2c_adap; i2c_adap->algo = &pt1_i2c_algo; i2c_adap->algo_data = NULL; i2c_adap->dev.parent = &pdev->dev; strcpy(i2c_adap->name, DRIVER_NAME); i2c_set_adapdata(i2c_adap, pt1); ret = i2c_add_adapter(i2c_adap); if (ret < 0) goto err_pt1_cleanup_adapters; pt1_i2c_init(pt1); pt1_i2c_wait(pt1); ret = pt1_sync(pt1); if (ret < 0) goto err_i2c_del_adapter; pt1_identify(pt1); ret = pt1_unlock(pt1); if (ret < 0) goto err_i2c_del_adapter; ret = pt1_reset_pci(pt1); if (ret < 0) goto err_i2c_del_adapter; ret = pt1_reset_ram(pt1); if (ret < 0) goto err_i2c_del_adapter; ret = pt1_enable_ram(pt1); if (ret < 0) goto err_i2c_del_adapter; pt1_init_streams(pt1); pt1->power = 1; pt1_update_power(pt1); schedule_timeout_uninterruptible((HZ + 49) / 50); pt1->reset = 0; pt1_update_power(pt1); schedule_timeout_uninterruptible((HZ + 999) / 1000); ret = pt1_init_frontends(pt1); if (ret < 0) goto err_pt1_disable_ram; ret = pt1_init_tables(pt1); if (ret < 0) goto err_pt1_cleanup_frontends; return 0; err_pt1_cleanup_frontends: pt1_cleanup_frontends(pt1); err_pt1_disable_ram: pt1_disable_ram(pt1); pt1->power = 0; pt1->reset = 1; pt1_update_power(pt1); err_i2c_del_adapter: i2c_del_adapter(i2c_adap); err_pt1_cleanup_adapters: pt1_cleanup_adapters(pt1); err_kfree: pci_set_drvdata(pdev, NULL); kfree(pt1); err_pci_iounmap: pci_iounmap(pdev, regs); err_pci_release_regions: pci_release_regions(pdev); err_pci_disable_device: pci_disable_device(pdev); err: return ret; } static struct pci_device_id pt1_id_table[] = { { PCI_DEVICE(0x10ee, 0x211a) }, { PCI_DEVICE(0x10ee, 0x222a) }, { }, }; MODULE_DEVICE_TABLE(pci, pt1_id_table); static struct pci_driver pt1_driver = { .name = DRIVER_NAME, .probe = pt1_probe, .remove = pt1_remove, .id_table = pt1_id_table, }; static int __init pt1_init(void) { return pci_register_driver(&pt1_driver); } static void __exit pt1_cleanup(void) { pci_unregister_driver(&pt1_driver); } module_init(pt1_init); module_exit(pt1_cleanup); MODULE_AUTHOR("Takahito HIRANO <hiranotaka@zng.info>"); MODULE_DESCRIPTION("Earthsoft PT1/PT2 Driver"); MODULE_LICENSE("GPL");