/* * Driver for Samsung S5K6AAFX SXGA 1/6" 1.3M CMOS Image Sensor * with embedded SoC ISP. * * Copyright (C) 2011, Samsung Electronics Co., Ltd. * Sylwester Nawrocki <s.nawrocki@samsung.com> * * Based on a driver authored by Dongsoo Nathaniel Kim. * Copyright (C) 2009, Dongsoo Nathaniel Kim <dongsoo45.kim@samsung.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/gpio.h> #include <linux/i2c.h> #include <linux/media.h> #include <linux/module.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <media/media-entity.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-subdev.h> #include <media/v4l2-mediabus.h> #include <media/s5k6aa.h> static int debug; module_param(debug, int, 0644); #define DRIVER_NAME "S5K6AA" /* The token to indicate array termination */ #define S5K6AA_TERM 0xffff #define S5K6AA_OUT_WIDTH_DEF 640 #define S5K6AA_OUT_HEIGHT_DEF 480 #define S5K6AA_WIN_WIDTH_MAX 1280 #define S5K6AA_WIN_HEIGHT_MAX 1024 #define S5K6AA_WIN_WIDTH_MIN 8 #define S5K6AA_WIN_HEIGHT_MIN 8 /* * H/W register Interface (0xD0000000 - 0xD0000FFF) */ #define AHB_MSB_ADDR_PTR 0xfcfc #define GEN_REG_OFFSH 0xd000 #define REG_CMDWR_ADDRH 0x0028 #define REG_CMDWR_ADDRL 0x002a #define REG_CMDRD_ADDRH 0x002c #define REG_CMDRD_ADDRL 0x002e #define REG_CMDBUF0_ADDR 0x0f12 #define REG_CMDBUF1_ADDR 0x0f10 /* * Host S/W Register interface (0x70000000 - 0x70002000) * The value of the two most significant address bytes is 0x7000, * (HOST_SWIF_OFFS_H). The register addresses below specify 2 LSBs. */ #define HOST_SWIF_OFFSH 0x7000 /* Initialization parameters */ /* Master clock frequency in KHz */ #define REG_I_INCLK_FREQ_L 0x01b8 #define REG_I_INCLK_FREQ_H 0x01ba #define MIN_MCLK_FREQ_KHZ 6000U #define MAX_MCLK_FREQ_KHZ 27000U #define REG_I_USE_NPVI_CLOCKS 0x01c6 #define REG_I_USE_NMIPI_CLOCKS 0x01c8 /* Clock configurations, n = 0..2. REG_I_* frequency unit is 4 kHz. */ #define REG_I_OPCLK_4KHZ(n) ((n) * 6 + 0x01cc) #define REG_I_MIN_OUTRATE_4KHZ(n) ((n) * 6 + 0x01ce) #define REG_I_MAX_OUTRATE_4KHZ(n) ((n) * 6 + 0x01d0) #define SYS_PLL_OUT_FREQ (48000000 / 4000) #define PCLK_FREQ_MIN (24000000 / 4000) #define PCLK_FREQ_MAX (48000000 / 4000) #define REG_I_INIT_PARAMS_UPDATED 0x01e0 #define REG_I_ERROR_INFO 0x01e2 /* General purpose parameters */ #define REG_USER_BRIGHTNESS 0x01e4 #define REG_USER_CONTRAST 0x01e6 #define REG_USER_SATURATION 0x01e8 #define REG_USER_SHARPBLUR 0x01ea #define REG_G_SPEC_EFFECTS 0x01ee #define REG_G_ENABLE_PREV 0x01f0 #define REG_G_ENABLE_PREV_CHG 0x01f2 #define REG_G_NEW_CFG_SYNC 0x01f8 #define REG_G_PREVZOOM_IN_WIDTH 0x020a #define REG_G_PREVZOOM_IN_HEIGHT 0x020c #define REG_G_PREVZOOM_IN_XOFFS 0x020e #define REG_G_PREVZOOM_IN_YOFFS 0x0210 #define REG_G_INPUTS_CHANGE_REQ 0x021a #define REG_G_ACTIVE_PREV_CFG 0x021c #define REG_G_PREV_CFG_CHG 0x021e #define REG_G_PREV_OPEN_AFTER_CH 0x0220 #define REG_G_PREV_CFG_ERROR 0x0222 /* Preview control section. n = 0...4. */ #define PREG(n, x) ((n) * 0x26 + x) #define REG_P_OUT_WIDTH(n) PREG(n, 0x0242) #define REG_P_OUT_HEIGHT(n) PREG(n, 0x0244) #define REG_P_FMT(n) PREG(n, 0x0246) #define REG_P_MAX_OUT_RATE(n) PREG(n, 0x0248) #define REG_P_MIN_OUT_RATE(n) PREG(n, 0x024a) #define REG_P_PVI_MASK(n) PREG(n, 0x024c) #define REG_P_CLK_INDEX(n) PREG(n, 0x024e) #define REG_P_FR_RATE_TYPE(n) PREG(n, 0x0250) #define FR_RATE_DYNAMIC 0 #define FR_RATE_FIXED 1 #define FR_RATE_FIXED_ACCURATE 2 #define REG_P_FR_RATE_Q_TYPE(n) PREG(n, 0x0252) #define FR_RATE_Q_BEST_FRRATE 1 /* Binning enabled */ #define FR_RATE_Q_BEST_QUALITY 2 /* Binning disabled */ /* Frame period in 0.1 ms units */ #define REG_P_MAX_FR_TIME(n) PREG(n, 0x0254) #define REG_P_MIN_FR_TIME(n) PREG(n, 0x0256) /* Conversion to REG_P_[MAX/MIN]_FR_TIME value; __t: time in us */ #define US_TO_FR_TIME(__t) ((__t) / 100) #define S5K6AA_MIN_FR_TIME 33300 /* us */ #define S5K6AA_MAX_FR_TIME 650000 /* us */ #define S5K6AA_MAX_HIGHRES_FR_TIME 666 /* x100 us */ /* The below 5 registers are for "device correction" values */ #define REG_P_COLORTEMP(n) PREG(n, 0x025e) #define REG_P_PREV_MIRROR(n) PREG(n, 0x0262) /* Extended image property controls */ /* Exposure time in 10 us units */ #define REG_SF_USR_EXPOSURE_L 0x03c6 #define REG_SF_USR_EXPOSURE_H 0x03c8 #define REG_SF_USR_EXPOSURE_CHG 0x03ca #define REG_SF_USR_TOT_GAIN 0x03cc #define REG_SF_USR_TOT_GAIN_CHG 0x03ce #define REG_SF_RGAIN 0x03d0 #define REG_SF_RGAIN_CHG 0x03d2 #define REG_SF_GGAIN 0x03d4 #define REG_SF_GGAIN_CHG 0x03d6 #define REG_SF_BGAIN 0x03d8 #define REG_SF_BGAIN_CHG 0x03da #define REG_SF_FLICKER_QUANT 0x03dc #define REG_SF_FLICKER_QUANT_CHG 0x03de /* Output interface (parallel/MIPI) setup */ #define REG_OIF_EN_MIPI_LANES 0x03fa #define REG_OIF_EN_PACKETS 0x03fc #define REG_OIF_CFG_CHG 0x03fe /* Auto-algorithms enable mask */ #define REG_DBG_AUTOALG_EN 0x0400 #define AALG_ALL_EN_MASK (1 << 0) #define AALG_AE_EN_MASK (1 << 1) #define AALG_DIVLEI_EN_MASK (1 << 2) #define AALG_WB_EN_MASK (1 << 3) #define AALG_FLICKER_EN_MASK (1 << 5) #define AALG_FIT_EN_MASK (1 << 6) #define AALG_WRHW_EN_MASK (1 << 7) /* Firmware revision information */ #define REG_FW_APIVER 0x012e #define S5K6AAFX_FW_APIVER 0x0001 #define REG_FW_REVISION 0x0130 /* For now we use only one user configuration register set */ #define S5K6AA_MAX_PRESETS 1 static const char * const s5k6aa_supply_names[] = { "vdd_core", /* Digital core supply 1.5V (1.4V to 1.6V) */ "vdda", /* Analog power supply 2.8V (2.6V to 3.0V) */ "vdd_reg", /* Regulator input power 1.8V (1.7V to 1.9V) or 2.8V (2.6V to 3.0) */ "vddio", /* I/O supply 1.8V (1.65V to 1.95V) or 2.8V (2.5V to 3.1V) */ }; #define S5K6AA_NUM_SUPPLIES ARRAY_SIZE(s5k6aa_supply_names) enum s5k6aa_gpio_id { STBY, RST, GPIO_NUM, }; struct s5k6aa_regval { u16 addr; u16 val; }; struct s5k6aa_pixfmt { enum v4l2_mbus_pixelcode code; u32 colorspace; /* REG_P_FMT(x) register value */ u16 reg_p_fmt; }; struct s5k6aa_preset { /* output pixel format and resolution */ struct v4l2_mbus_framefmt mbus_fmt; u8 clk_id; u8 index; }; struct s5k6aa_ctrls { struct v4l2_ctrl_handler handler; /* Auto / manual white balance cluster */ struct v4l2_ctrl *awb; struct v4l2_ctrl *gain_red; struct v4l2_ctrl *gain_blue; struct v4l2_ctrl *gain_green; /* Mirror cluster */ struct v4l2_ctrl *hflip; struct v4l2_ctrl *vflip; /* Auto exposure / manual exposure and gain cluster */ struct v4l2_ctrl *auto_exp; struct v4l2_ctrl *exposure; struct v4l2_ctrl *gain; }; struct s5k6aa_interval { u16 reg_fr_time; struct v4l2_fract interval; /* Maximum rectangle for the interval */ struct v4l2_frmsize_discrete size; }; struct s5k6aa { struct v4l2_subdev sd; struct media_pad pad; enum v4l2_mbus_type bus_type; u8 mipi_lanes; int (*s_power)(int enable); struct regulator_bulk_data supplies[S5K6AA_NUM_SUPPLIES]; struct s5k6aa_gpio gpio[GPIO_NUM]; /* external master clock frequency */ unsigned long mclk_frequency; /* ISP internal master clock frequency */ u16 clk_fop; /* output pixel clock frequency range */ u16 pclk_fmin; u16 pclk_fmax; unsigned int inv_hflip:1; unsigned int inv_vflip:1; /* protects the struct members below */ struct mutex lock; /* sensor matrix scan window */ struct v4l2_rect ccd_rect; struct s5k6aa_ctrls ctrls; struct s5k6aa_preset presets[S5K6AA_MAX_PRESETS]; struct s5k6aa_preset *preset; const struct s5k6aa_interval *fiv; unsigned int streaming:1; unsigned int apply_cfg:1; unsigned int apply_crop:1; unsigned int power; }; static struct s5k6aa_regval s5k6aa_analog_config[] = { /* Analog settings */ { 0x112a, 0x0000 }, { 0x1132, 0x0000 }, { 0x113e, 0x0000 }, { 0x115c, 0x0000 }, { 0x1164, 0x0000 }, { 0x1174, 0x0000 }, { 0x1178, 0x0000 }, { 0x077a, 0x0000 }, { 0x077c, 0x0000 }, { 0x077e, 0x0000 }, { 0x0780, 0x0000 }, { 0x0782, 0x0000 }, { 0x0784, 0x0000 }, { 0x0786, 0x0000 }, { 0x0788, 0x0000 }, { 0x07a2, 0x0000 }, { 0x07a4, 0x0000 }, { 0x07a6, 0x0000 }, { 0x07a8, 0x0000 }, { 0x07b6, 0x0000 }, { 0x07b8, 0x0002 }, { 0x07ba, 0x0004 }, { 0x07bc, 0x0004 }, { 0x07be, 0x0005 }, { 0x07c0, 0x0005 }, { S5K6AA_TERM, 0 }, }; /* TODO: Add RGB888 and Bayer format */ static const struct s5k6aa_pixfmt s5k6aa_formats[] = { { V4L2_MBUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_JPEG, 5 }, /* range 16-240 */ { V4L2_MBUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_REC709, 6 }, { V4L2_MBUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_JPEG, 0 }, }; static const struct s5k6aa_interval s5k6aa_intervals[] = { { 1000, {10000, 1000000}, {1280, 1024} }, /* 10 fps */ { 666, {15000, 1000000}, {1280, 1024} }, /* 15 fps */ { 500, {20000, 1000000}, {1280, 720} }, /* 20 fps */ { 400, {25000, 1000000}, {640, 480} }, /* 25 fps */ { 333, {33300, 1000000}, {640, 480} }, /* 30 fps */ }; #define S5K6AA_INTERVAL_DEF_INDEX 1 /* 15 fps */ static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) { return &container_of(ctrl->handler, struct s5k6aa, ctrls.handler)->sd; } static inline struct s5k6aa *to_s5k6aa(struct v4l2_subdev *sd) { return container_of(sd, struct s5k6aa, sd); } /* Set initial values for all preview presets */ static void s5k6aa_presets_data_init(struct s5k6aa *s5k6aa) { struct s5k6aa_preset *preset = &s5k6aa->presets[0]; int i; for (i = 0; i < S5K6AA_MAX_PRESETS; i++) { preset->mbus_fmt.width = S5K6AA_OUT_WIDTH_DEF; preset->mbus_fmt.height = S5K6AA_OUT_HEIGHT_DEF; preset->mbus_fmt.code = s5k6aa_formats[0].code; preset->index = i; preset->clk_id = 0; preset++; } s5k6aa->fiv = &s5k6aa_intervals[S5K6AA_INTERVAL_DEF_INDEX]; s5k6aa->preset = &s5k6aa->presets[0]; } static int s5k6aa_i2c_read(struct i2c_client *client, u16 addr, u16 *val) { u8 wbuf[2] = {addr >> 8, addr & 0xFF}; struct i2c_msg msg[2]; u8 rbuf[2]; int ret; msg[0].addr = client->addr; msg[0].flags = 0; msg[0].len = 2; msg[0].buf = wbuf; msg[1].addr = client->addr; msg[1].flags = I2C_M_RD; msg[1].len = 2; msg[1].buf = rbuf; ret = i2c_transfer(client->adapter, msg, 2); *val = be16_to_cpu(*((u16 *)rbuf)); v4l2_dbg(3, debug, client, "i2c_read: 0x%04X : 0x%04x\n", addr, *val); return ret == 2 ? 0 : ret; } static int s5k6aa_i2c_write(struct i2c_client *client, u16 addr, u16 val) { u8 buf[4] = {addr >> 8, addr & 0xFF, val >> 8, val & 0xFF}; int ret = i2c_master_send(client, buf, 4); v4l2_dbg(3, debug, client, "i2c_write: 0x%04X : 0x%04x\n", addr, val); return ret == 4 ? 0 : ret; } /* The command register write, assumes Command_Wr_addH = 0x7000. */ static int s5k6aa_write(struct i2c_client *c, u16 addr, u16 val) { int ret = s5k6aa_i2c_write(c, REG_CMDWR_ADDRL, addr); if (ret) return ret; return s5k6aa_i2c_write(c, REG_CMDBUF0_ADDR, val); } /* The command register read, assumes Command_Rd_addH = 0x7000. */ static int s5k6aa_read(struct i2c_client *client, u16 addr, u16 *val) { int ret = s5k6aa_i2c_write(client, REG_CMDRD_ADDRL, addr); if (ret) return ret; return s5k6aa_i2c_read(client, REG_CMDBUF0_ADDR, val); } static int s5k6aa_write_array(struct v4l2_subdev *sd, const struct s5k6aa_regval *msg) { struct i2c_client *client = v4l2_get_subdevdata(sd); u16 addr_incr = 0; int ret = 0; while (msg->addr != S5K6AA_TERM) { if (addr_incr != 2) ret = s5k6aa_i2c_write(client, REG_CMDWR_ADDRL, msg->addr); if (ret) break; ret = s5k6aa_i2c_write(client, REG_CMDBUF0_ADDR, msg->val); if (ret) break; /* Assume that msg->addr is always less than 0xfffc */ addr_incr = (msg + 1)->addr - msg->addr; msg++; } return ret; } /* Configure the AHB high address bytes for GTG registers access */ static int s5k6aa_set_ahb_address(struct i2c_client *client) { int ret = s5k6aa_i2c_write(client, AHB_MSB_ADDR_PTR, GEN_REG_OFFSH); if (ret) return ret; ret = s5k6aa_i2c_write(client, REG_CMDRD_ADDRH, HOST_SWIF_OFFSH); if (ret) return ret; return s5k6aa_i2c_write(client, REG_CMDWR_ADDRH, HOST_SWIF_OFFSH); } /** * s5k6aa_configure_pixel_clock - apply ISP main clock/PLL configuration * * Configure the internal ISP PLL for the required output frequency. * Locking: called with s5k6aa.lock mutex held. */ static int s5k6aa_configure_pixel_clocks(struct s5k6aa *s5k6aa) { struct i2c_client *c = v4l2_get_subdevdata(&s5k6aa->sd); unsigned long fmclk = s5k6aa->mclk_frequency / 1000; u16 status; int ret; if (WARN(fmclk < MIN_MCLK_FREQ_KHZ || fmclk > MAX_MCLK_FREQ_KHZ, "Invalid clock frequency: %ld\n", fmclk)) return -EINVAL; s5k6aa->pclk_fmin = PCLK_FREQ_MIN; s5k6aa->pclk_fmax = PCLK_FREQ_MAX; s5k6aa->clk_fop = SYS_PLL_OUT_FREQ; /* External input clock frequency in kHz */ ret = s5k6aa_write(c, REG_I_INCLK_FREQ_H, fmclk >> 16); if (!ret) ret = s5k6aa_write(c, REG_I_INCLK_FREQ_L, fmclk & 0xFFFF); if (!ret) ret = s5k6aa_write(c, REG_I_USE_NPVI_CLOCKS, 1); /* Internal PLL frequency */ if (!ret) ret = s5k6aa_write(c, REG_I_OPCLK_4KHZ(0), s5k6aa->clk_fop); if (!ret) ret = s5k6aa_write(c, REG_I_MIN_OUTRATE_4KHZ(0), s5k6aa->pclk_fmin); if (!ret) ret = s5k6aa_write(c, REG_I_MAX_OUTRATE_4KHZ(0), s5k6aa->pclk_fmax); if (!ret) ret = s5k6aa_write(c, REG_I_INIT_PARAMS_UPDATED, 1); if (!ret) ret = s5k6aa_read(c, REG_I_ERROR_INFO, &status); return ret ? ret : (status ? -EINVAL : 0); } /* Set horizontal and vertical image flipping */ static int s5k6aa_set_mirror(struct s5k6aa *s5k6aa, int horiz_flip) { struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd); int index = s5k6aa->preset->index; unsigned int vflip = s5k6aa->ctrls.vflip->val ^ s5k6aa->inv_vflip; unsigned int flip = (horiz_flip ^ s5k6aa->inv_hflip) | (vflip << 1); return s5k6aa_write(client, REG_P_PREV_MIRROR(index), flip); } /* Configure auto/manual white balance and R/G/B gains */ static int s5k6aa_set_awb(struct s5k6aa *s5k6aa, int awb) { struct i2c_client *c = v4l2_get_subdevdata(&s5k6aa->sd); struct s5k6aa_ctrls *ctrls = &s5k6aa->ctrls; u16 reg; int ret = s5k6aa_read(c, REG_DBG_AUTOALG_EN, ®); if (!ret && !awb) { ret = s5k6aa_write(c, REG_SF_RGAIN, ctrls->gain_red->val); if (!ret) ret = s5k6aa_write(c, REG_SF_RGAIN_CHG, 1); if (ret) return ret; ret = s5k6aa_write(c, REG_SF_GGAIN, ctrls->gain_green->val); if (!ret) ret = s5k6aa_write(c, REG_SF_GGAIN_CHG, 1); if (ret) return ret; ret = s5k6aa_write(c, REG_SF_BGAIN, ctrls->gain_blue->val); if (!ret) ret = s5k6aa_write(c, REG_SF_BGAIN_CHG, 1); } if (!ret) { reg = awb ? reg | AALG_WB_EN_MASK : reg & ~AALG_WB_EN_MASK; ret = s5k6aa_write(c, REG_DBG_AUTOALG_EN, reg); } return ret; } /* Program FW with exposure time, 'exposure' in us units */ static int s5k6aa_set_user_exposure(struct i2c_client *client, int exposure) { unsigned int time = exposure / 10; int ret = s5k6aa_write(client, REG_SF_USR_EXPOSURE_L, time & 0xffff); if (!ret) ret = s5k6aa_write(client, REG_SF_USR_EXPOSURE_H, time >> 16); if (ret) return ret; return s5k6aa_write(client, REG_SF_USR_EXPOSURE_CHG, 1); } static int s5k6aa_set_user_gain(struct i2c_client *client, int gain) { int ret = s5k6aa_write(client, REG_SF_USR_TOT_GAIN, gain); if (ret) return ret; return s5k6aa_write(client, REG_SF_USR_TOT_GAIN_CHG, 1); } /* Set auto/manual exposure and total gain */ static int s5k6aa_set_auto_exposure(struct s5k6aa *s5k6aa, int value) { struct i2c_client *c = v4l2_get_subdevdata(&s5k6aa->sd); unsigned int exp_time = s5k6aa->ctrls.exposure->val; u16 auto_alg; int ret = s5k6aa_read(c, REG_DBG_AUTOALG_EN, &auto_alg); if (ret) return ret; v4l2_dbg(1, debug, c, "man_exp: %d, auto_exp: %d, a_alg: 0x%x\n", exp_time, value, auto_alg); if (value == V4L2_EXPOSURE_AUTO) { auto_alg |= AALG_AE_EN_MASK | AALG_DIVLEI_EN_MASK; } else { ret = s5k6aa_set_user_exposure(c, exp_time); if (ret) return ret; ret = s5k6aa_set_user_gain(c, s5k6aa->ctrls.gain->val); if (ret) return ret; auto_alg &= ~(AALG_AE_EN_MASK | AALG_DIVLEI_EN_MASK); } return s5k6aa_write(c, REG_DBG_AUTOALG_EN, auto_alg); } static int s5k6aa_set_anti_flicker(struct s5k6aa *s5k6aa, int value) { struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd); u16 auto_alg; int ret; ret = s5k6aa_read(client, REG_DBG_AUTOALG_EN, &auto_alg); if (ret) return ret; if (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) { auto_alg |= AALG_FLICKER_EN_MASK; } else { auto_alg &= ~AALG_FLICKER_EN_MASK; /* The V4L2_CID_LINE_FREQUENCY control values match * the register values */ ret = s5k6aa_write(client, REG_SF_FLICKER_QUANT, value); if (ret) return ret; ret = s5k6aa_write(client, REG_SF_FLICKER_QUANT_CHG, 1); if (ret) return ret; } return s5k6aa_write(client, REG_DBG_AUTOALG_EN, auto_alg); } static int s5k6aa_set_colorfx(struct s5k6aa *s5k6aa, int val) { struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd); static const struct v4l2_control colorfx[] = { { V4L2_COLORFX_NONE, 0 }, { V4L2_COLORFX_BW, 1 }, { V4L2_COLORFX_NEGATIVE, 2 }, { V4L2_COLORFX_SEPIA, 3 }, { V4L2_COLORFX_SKY_BLUE, 4 }, { V4L2_COLORFX_SKETCH, 5 }, }; int i; for (i = 0; i < ARRAY_SIZE(colorfx); i++) { if (colorfx[i].id == val) return s5k6aa_write(client, REG_G_SPEC_EFFECTS, colorfx[i].value); } return -EINVAL; } static int s5k6aa_preview_config_status(struct i2c_client *client) { u16 error = 0; int ret = s5k6aa_read(client, REG_G_PREV_CFG_ERROR, &error); v4l2_dbg(1, debug, client, "error: 0x%x (%d)\n", error, ret); return ret ? ret : (error ? -EINVAL : 0); } static int s5k6aa_get_pixfmt_index(struct s5k6aa *s5k6aa, struct v4l2_mbus_framefmt *mf) { unsigned int i; for (i = 0; i < ARRAY_SIZE(s5k6aa_formats); i++) if (mf->colorspace == s5k6aa_formats[i].colorspace && mf->code == s5k6aa_formats[i].code) return i; return 0; } static int s5k6aa_set_output_framefmt(struct s5k6aa *s5k6aa, struct s5k6aa_preset *preset) { struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd); int fmt_index = s5k6aa_get_pixfmt_index(s5k6aa, &preset->mbus_fmt); int ret; ret = s5k6aa_write(client, REG_P_OUT_WIDTH(preset->index), preset->mbus_fmt.width); if (!ret) ret = s5k6aa_write(client, REG_P_OUT_HEIGHT(preset->index), preset->mbus_fmt.height); if (!ret) ret = s5k6aa_write(client, REG_P_FMT(preset->index), s5k6aa_formats[fmt_index].reg_p_fmt); return ret; } static int s5k6aa_set_input_params(struct s5k6aa *s5k6aa) { struct i2c_client *c = v4l2_get_subdevdata(&s5k6aa->sd); struct v4l2_rect *r = &s5k6aa->ccd_rect; int ret; ret = s5k6aa_write(c, REG_G_PREVZOOM_IN_WIDTH, r->width); if (!ret) ret = s5k6aa_write(c, REG_G_PREVZOOM_IN_HEIGHT, r->height); if (!ret) ret = s5k6aa_write(c, REG_G_PREVZOOM_IN_XOFFS, r->left); if (!ret) ret = s5k6aa_write(c, REG_G_PREVZOOM_IN_YOFFS, r->top); if (!ret) ret = s5k6aa_write(c, REG_G_INPUTS_CHANGE_REQ, 1); if (!ret) s5k6aa->apply_crop = 0; return ret; } /** * s5k6aa_configure_video_bus - configure the video output interface * @bus_type: video bus type: parallel or MIPI-CSI * @nlanes: number of MIPI lanes to be used (MIPI-CSI only) * * Note: Only parallel bus operation has been tested. */ static int s5k6aa_configure_video_bus(struct s5k6aa *s5k6aa, enum v4l2_mbus_type bus_type, int nlanes) { struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd); u16 cfg = 0; int ret; /* * TODO: The sensor is supposed to support BT.601 and BT.656 * but there is nothing indicating how to switch between both * in the datasheet. For now default BT.601 interface is assumed. */ if (bus_type == V4L2_MBUS_CSI2) cfg = nlanes; else if (bus_type != V4L2_MBUS_PARALLEL) return -EINVAL; ret = s5k6aa_write(client, REG_OIF_EN_MIPI_LANES, cfg); if (ret) return ret; return s5k6aa_write(client, REG_OIF_CFG_CHG, 1); } /* This function should be called when switching to new user configuration set*/ static int s5k6aa_new_config_sync(struct i2c_client *client, int timeout, int cid) { unsigned long end = jiffies + msecs_to_jiffies(timeout); u16 reg = 1; int ret; ret = s5k6aa_write(client, REG_G_ACTIVE_PREV_CFG, cid); if (!ret) ret = s5k6aa_write(client, REG_G_PREV_CFG_CHG, 1); if (!ret) ret = s5k6aa_write(client, REG_G_NEW_CFG_SYNC, 1); if (timeout == 0) return ret; while (ret >= 0 && time_is_after_jiffies(end)) { ret = s5k6aa_read(client, REG_G_NEW_CFG_SYNC, ®); if (!reg) return 0; usleep_range(1000, 5000); } return ret ? ret : -ETIMEDOUT; } /** * s5k6aa_set_prev_config - write user preview register set * * Configure output resolution and color fromat, pixel clock * frequency range, device frame rate type and frame period range. */ static int s5k6aa_set_prev_config(struct s5k6aa *s5k6aa, struct s5k6aa_preset *preset) { struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd); int idx = preset->index; u16 frame_rate_q; int ret; if (s5k6aa->fiv->reg_fr_time >= S5K6AA_MAX_HIGHRES_FR_TIME) frame_rate_q = FR_RATE_Q_BEST_FRRATE; else frame_rate_q = FR_RATE_Q_BEST_QUALITY; ret = s5k6aa_set_output_framefmt(s5k6aa, preset); if (!ret) ret = s5k6aa_write(client, REG_P_MAX_OUT_RATE(idx), s5k6aa->pclk_fmax); if (!ret) ret = s5k6aa_write(client, REG_P_MIN_OUT_RATE(idx), s5k6aa->pclk_fmin); if (!ret) ret = s5k6aa_write(client, REG_P_CLK_INDEX(idx), preset->clk_id); if (!ret) ret = s5k6aa_write(client, REG_P_FR_RATE_TYPE(idx), FR_RATE_DYNAMIC); if (!ret) ret = s5k6aa_write(client, REG_P_FR_RATE_Q_TYPE(idx), frame_rate_q); if (!ret) ret = s5k6aa_write(client, REG_P_MAX_FR_TIME(idx), s5k6aa->fiv->reg_fr_time + 33); if (!ret) ret = s5k6aa_write(client, REG_P_MIN_FR_TIME(idx), s5k6aa->fiv->reg_fr_time - 33); if (!ret) ret = s5k6aa_new_config_sync(client, 250, idx); if (!ret) ret = s5k6aa_preview_config_status(client); if (!ret) s5k6aa->apply_cfg = 0; v4l2_dbg(1, debug, client, "Frame interval: %d +/- 3.3ms. (%d)\n", s5k6aa->fiv->reg_fr_time, ret); return ret; } /** * s5k6aa_initialize_isp - basic ISP MCU initialization * * Configure AHB addresses for registers read/write; configure PLLs for * required output pixel clock. The ISP power supply needs to be already * enabled, with an optional H/W reset. * Locking: called with s5k6aa.lock mutex held. */ static int s5k6aa_initialize_isp(struct v4l2_subdev *sd) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct s5k6aa *s5k6aa = to_s5k6aa(sd); int ret; s5k6aa->apply_crop = 1; s5k6aa->apply_cfg = 1; msleep(100); ret = s5k6aa_set_ahb_address(client); if (ret) return ret; ret = s5k6aa_configure_video_bus(s5k6aa, s5k6aa->bus_type, s5k6aa->mipi_lanes); if (ret) return ret; ret = s5k6aa_write_array(sd, s5k6aa_analog_config); if (ret) return ret; msleep(20); return s5k6aa_configure_pixel_clocks(s5k6aa); } static int s5k6aa_gpio_set_value(struct s5k6aa *priv, int id, u32 val) { if (!gpio_is_valid(priv->gpio[id].gpio)) return 0; gpio_set_value(priv->gpio[id].gpio, !!val); return 1; } static int s5k6aa_gpio_assert(struct s5k6aa *priv, int id) { return s5k6aa_gpio_set_value(priv, id, priv->gpio[id].level); } static int s5k6aa_gpio_deassert(struct s5k6aa *priv, int id) { return s5k6aa_gpio_set_value(priv, id, !priv->gpio[id].level); } static int __s5k6aa_power_on(struct s5k6aa *s5k6aa) { int ret; ret = regulator_bulk_enable(S5K6AA_NUM_SUPPLIES, s5k6aa->supplies); if (ret) return ret; if (s5k6aa_gpio_deassert(s5k6aa, STBY)) usleep_range(150, 200); if (s5k6aa->s_power) ret = s5k6aa->s_power(1); usleep_range(4000, 4000); if (s5k6aa_gpio_deassert(s5k6aa, RST)) msleep(20); return ret; } static int __s5k6aa_power_off(struct s5k6aa *s5k6aa) { int ret; if (s5k6aa_gpio_assert(s5k6aa, RST)) usleep_range(100, 150); if (s5k6aa->s_power) { ret = s5k6aa->s_power(0); if (ret) return ret; } if (s5k6aa_gpio_assert(s5k6aa, STBY)) usleep_range(50, 100); s5k6aa->streaming = 0; return regulator_bulk_disable(S5K6AA_NUM_SUPPLIES, s5k6aa->supplies); } /* * V4L2 subdev core and video operations */ static int s5k6aa_set_power(struct v4l2_subdev *sd, int on) { struct s5k6aa *s5k6aa = to_s5k6aa(sd); int ret = 0; mutex_lock(&s5k6aa->lock); if (!on == s5k6aa->power) { if (on) { ret = __s5k6aa_power_on(s5k6aa); if (!ret) ret = s5k6aa_initialize_isp(sd); } else { ret = __s5k6aa_power_off(s5k6aa); } if (!ret) s5k6aa->power += on ? 1 : -1; } mutex_unlock(&s5k6aa->lock); if (!on || ret || s5k6aa->power != 1) return ret; return v4l2_ctrl_handler_setup(sd->ctrl_handler); } static int __s5k6aa_stream(struct s5k6aa *s5k6aa, int enable) { struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd); int ret = 0; ret = s5k6aa_write(client, REG_G_ENABLE_PREV, enable); if (!ret) ret = s5k6aa_write(client, REG_G_ENABLE_PREV_CHG, 1); if (!ret) s5k6aa->streaming = enable; return ret; } static int s5k6aa_s_stream(struct v4l2_subdev *sd, int on) { struct s5k6aa *s5k6aa = to_s5k6aa(sd); int ret = 0; mutex_lock(&s5k6aa->lock); if (s5k6aa->streaming == !on) { if (!ret && s5k6aa->apply_cfg) ret = s5k6aa_set_prev_config(s5k6aa, s5k6aa->preset); if (s5k6aa->apply_crop) ret = s5k6aa_set_input_params(s5k6aa); if (!ret) ret = __s5k6aa_stream(s5k6aa, !!on); } mutex_unlock(&s5k6aa->lock); return ret; } static int s5k6aa_g_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *fi) { struct s5k6aa *s5k6aa = to_s5k6aa(sd); mutex_lock(&s5k6aa->lock); fi->interval = s5k6aa->fiv->interval; mutex_unlock(&s5k6aa->lock); return 0; } static int __s5k6aa_set_frame_interval(struct s5k6aa *s5k6aa, struct v4l2_subdev_frame_interval *fi) { struct v4l2_mbus_framefmt *mbus_fmt = &s5k6aa->preset->mbus_fmt; const struct s5k6aa_interval *fiv = &s5k6aa_intervals[0]; unsigned int err, min_err = UINT_MAX; unsigned int i, fr_time; if (fi->interval.denominator == 0) return -EINVAL; fr_time = fi->interval.numerator * 10000 / fi->interval.denominator; for (i = 0; i < ARRAY_SIZE(s5k6aa_intervals); i++) { const struct s5k6aa_interval *iv = &s5k6aa_intervals[i]; if (mbus_fmt->width > iv->size.width || mbus_fmt->height > iv->size.height) continue; err = abs(iv->reg_fr_time - fr_time); if (err < min_err) { fiv = iv; min_err = err; } } s5k6aa->fiv = fiv; v4l2_dbg(1, debug, &s5k6aa->sd, "Changed frame interval to %d us\n", fiv->reg_fr_time * 100); return 0; } static int s5k6aa_s_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *fi) { struct s5k6aa *s5k6aa = to_s5k6aa(sd); int ret; v4l2_dbg(1, debug, sd, "Setting %d/%d frame interval\n", fi->interval.numerator, fi->interval.denominator); mutex_lock(&s5k6aa->lock); ret = __s5k6aa_set_frame_interval(s5k6aa, fi); s5k6aa->apply_cfg = 1; mutex_unlock(&s5k6aa->lock); return ret; } /* * V4L2 subdev pad level and video operations */ static int s5k6aa_enum_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_frame_interval_enum *fie) { struct s5k6aa *s5k6aa = to_s5k6aa(sd); const struct s5k6aa_interval *fi; int ret = 0; if (fie->index > ARRAY_SIZE(s5k6aa_intervals)) return -EINVAL; v4l_bound_align_image(&fie->width, S5K6AA_WIN_WIDTH_MIN, S5K6AA_WIN_WIDTH_MAX, 1, &fie->height, S5K6AA_WIN_HEIGHT_MIN, S5K6AA_WIN_HEIGHT_MAX, 1, 0); mutex_lock(&s5k6aa->lock); fi = &s5k6aa_intervals[fie->index]; if (fie->width > fi->size.width || fie->height > fi->size.height) ret = -EINVAL; else fie->interval = fi->interval; mutex_unlock(&s5k6aa->lock); return ret; } static int s5k6aa_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_mbus_code_enum *code) { if (code->index >= ARRAY_SIZE(s5k6aa_formats)) return -EINVAL; code->code = s5k6aa_formats[code->index].code; return 0; } static int s5k6aa_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_frame_size_enum *fse) { int i = ARRAY_SIZE(s5k6aa_formats); if (fse->index > 0) return -EINVAL; while (--i) if (fse->code == s5k6aa_formats[i].code) break; fse->code = s5k6aa_formats[i].code; fse->min_width = S5K6AA_WIN_WIDTH_MIN; fse->max_width = S5K6AA_WIN_WIDTH_MAX; fse->max_height = S5K6AA_WIN_HEIGHT_MIN; fse->min_height = S5K6AA_WIN_HEIGHT_MAX; return 0; } static struct v4l2_rect * __s5k6aa_get_crop_rect(struct s5k6aa *s5k6aa, struct v4l2_subdev_fh *fh, enum v4l2_subdev_format_whence which) { if (which == V4L2_SUBDEV_FORMAT_ACTIVE) return &s5k6aa->ccd_rect; WARN_ON(which != V4L2_SUBDEV_FORMAT_TRY); return v4l2_subdev_get_try_crop(fh, 0); } static void s5k6aa_try_format(struct s5k6aa *s5k6aa, struct v4l2_mbus_framefmt *mf) { unsigned int index; v4l_bound_align_image(&mf->width, S5K6AA_WIN_WIDTH_MIN, S5K6AA_WIN_WIDTH_MAX, 1, &mf->height, S5K6AA_WIN_HEIGHT_MIN, S5K6AA_WIN_HEIGHT_MAX, 1, 0); if (mf->colorspace != V4L2_COLORSPACE_JPEG && mf->colorspace != V4L2_COLORSPACE_REC709) mf->colorspace = V4L2_COLORSPACE_JPEG; index = s5k6aa_get_pixfmt_index(s5k6aa, mf); mf->colorspace = s5k6aa_formats[index].colorspace; mf->code = s5k6aa_formats[index].code; mf->field = V4L2_FIELD_NONE; } static int s5k6aa_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_format *fmt) { struct s5k6aa *s5k6aa = to_s5k6aa(sd); struct v4l2_mbus_framefmt *mf; memset(fmt->reserved, 0, sizeof(fmt->reserved)); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { mf = v4l2_subdev_get_try_format(fh, 0); fmt->format = *mf; return 0; } mutex_lock(&s5k6aa->lock); fmt->format = s5k6aa->preset->mbus_fmt; mutex_unlock(&s5k6aa->lock); return 0; } static int s5k6aa_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_format *fmt) { struct s5k6aa *s5k6aa = to_s5k6aa(sd); struct s5k6aa_preset *preset = s5k6aa->preset; struct v4l2_mbus_framefmt *mf; struct v4l2_rect *crop; int ret = 0; mutex_lock(&s5k6aa->lock); s5k6aa_try_format(s5k6aa, &fmt->format); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { mf = v4l2_subdev_get_try_format(fh, fmt->pad); crop = v4l2_subdev_get_try_crop(fh, 0); } else { if (s5k6aa->streaming) { ret = -EBUSY; } else { mf = &preset->mbus_fmt; crop = &s5k6aa->ccd_rect; s5k6aa->apply_cfg = 1; } } if (ret == 0) { struct v4l2_subdev_frame_interval fiv = { .interval = {0, 1} }; *mf = fmt->format; /* * Make sure the crop window is valid, i.e. its size is * greater than the output window, as the ISP supports * only down-scaling. */ crop->width = clamp_t(unsigned int, crop->width, mf->width, S5K6AA_WIN_WIDTH_MAX); crop->height = clamp_t(unsigned int, crop->height, mf->height, S5K6AA_WIN_HEIGHT_MAX); crop->left = clamp_t(unsigned int, crop->left, 0, S5K6AA_WIN_WIDTH_MAX - crop->width); crop->top = clamp_t(unsigned int, crop->top, 0, S5K6AA_WIN_HEIGHT_MAX - crop->height); /* Reset to minimum possible frame interval */ ret = __s5k6aa_set_frame_interval(s5k6aa, &fiv); } mutex_unlock(&s5k6aa->lock); return ret; } static int s5k6aa_get_crop(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_crop *crop) { struct s5k6aa *s5k6aa = to_s5k6aa(sd); struct v4l2_rect *rect; memset(crop->reserved, 0, sizeof(crop->reserved)); mutex_lock(&s5k6aa->lock); rect = __s5k6aa_get_crop_rect(s5k6aa, fh, crop->which); crop->rect = *rect; mutex_unlock(&s5k6aa->lock); v4l2_dbg(1, debug, sd, "Current crop rectangle: (%d,%d)/%dx%d\n", rect->left, rect->top, rect->width, rect->height); return 0; } static int s5k6aa_set_crop(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, struct v4l2_subdev_crop *crop) { struct s5k6aa *s5k6aa = to_s5k6aa(sd); struct v4l2_mbus_framefmt *mf; unsigned int max_x, max_y; struct v4l2_rect *crop_r; mutex_lock(&s5k6aa->lock); crop_r = __s5k6aa_get_crop_rect(s5k6aa, fh, crop->which); if (crop->which == V4L2_SUBDEV_FORMAT_ACTIVE) { mf = &s5k6aa->preset->mbus_fmt; s5k6aa->apply_crop = 1; } else { mf = v4l2_subdev_get_try_format(fh, 0); } v4l_bound_align_image(&crop->rect.width, mf->width, S5K6AA_WIN_WIDTH_MAX, 1, &crop->rect.height, mf->height, S5K6AA_WIN_HEIGHT_MAX, 1, 0); max_x = (S5K6AA_WIN_WIDTH_MAX - crop->rect.width) & ~1; max_y = (S5K6AA_WIN_HEIGHT_MAX - crop->rect.height) & ~1; crop->rect.left = clamp_t(unsigned int, crop->rect.left, 0, max_x); crop->rect.top = clamp_t(unsigned int, crop->rect.top, 0, max_y); *crop_r = crop->rect; mutex_unlock(&s5k6aa->lock); v4l2_dbg(1, debug, sd, "Set crop rectangle: (%d,%d)/%dx%d\n", crop_r->left, crop_r->top, crop_r->width, crop_r->height); return 0; } static const struct v4l2_subdev_pad_ops s5k6aa_pad_ops = { .enum_mbus_code = s5k6aa_enum_mbus_code, .enum_frame_size = s5k6aa_enum_frame_size, .enum_frame_interval = s5k6aa_enum_frame_interval, .get_fmt = s5k6aa_get_fmt, .set_fmt = s5k6aa_set_fmt, .get_crop = s5k6aa_get_crop, .set_crop = s5k6aa_set_crop, }; static const struct v4l2_subdev_video_ops s5k6aa_video_ops = { .g_frame_interval = s5k6aa_g_frame_interval, .s_frame_interval = s5k6aa_s_frame_interval, .s_stream = s5k6aa_s_stream, }; /* * V4L2 subdev controls */ static int s5k6aa_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = ctrl_to_sd(ctrl); struct i2c_client *client = v4l2_get_subdevdata(sd); struct s5k6aa *s5k6aa = to_s5k6aa(sd); int idx, err = 0; v4l2_dbg(1, debug, sd, "ctrl: 0x%x, value: %d\n", ctrl->id, ctrl->val); mutex_lock(&s5k6aa->lock); /* * If the device is not powered up by the host driver do * not apply any controls to H/W at this time. Instead * the controls will be restored right after power-up. */ if (s5k6aa->power == 0) goto unlock; idx = s5k6aa->preset->index; switch (ctrl->id) { case V4L2_CID_AUTO_WHITE_BALANCE: err = s5k6aa_set_awb(s5k6aa, ctrl->val); break; case V4L2_CID_BRIGHTNESS: err = s5k6aa_write(client, REG_USER_BRIGHTNESS, ctrl->val); break; case V4L2_CID_COLORFX: err = s5k6aa_set_colorfx(s5k6aa, ctrl->val); break; case V4L2_CID_CONTRAST: err = s5k6aa_write(client, REG_USER_CONTRAST, ctrl->val); break; case V4L2_CID_EXPOSURE_AUTO: err = s5k6aa_set_auto_exposure(s5k6aa, ctrl->val); break; case V4L2_CID_HFLIP: err = s5k6aa_set_mirror(s5k6aa, ctrl->val); if (err) break; err = s5k6aa_write(client, REG_G_PREV_CFG_CHG, 1); break; case V4L2_CID_POWER_LINE_FREQUENCY: err = s5k6aa_set_anti_flicker(s5k6aa, ctrl->val); break; case V4L2_CID_SATURATION: err = s5k6aa_write(client, REG_USER_SATURATION, ctrl->val); break; case V4L2_CID_SHARPNESS: err = s5k6aa_write(client, REG_USER_SHARPBLUR, ctrl->val); break; case V4L2_CID_WHITE_BALANCE_TEMPERATURE: err = s5k6aa_write(client, REG_P_COLORTEMP(idx), ctrl->val); if (err) break; err = s5k6aa_write(client, REG_G_PREV_CFG_CHG, 1); break; } unlock: mutex_unlock(&s5k6aa->lock); return err; } static const struct v4l2_ctrl_ops s5k6aa_ctrl_ops = { .s_ctrl = s5k6aa_s_ctrl, }; static int s5k6aa_log_status(struct v4l2_subdev *sd) { v4l2_ctrl_handler_log_status(sd->ctrl_handler, sd->name); return 0; } #define V4L2_CID_RED_GAIN (V4L2_CTRL_CLASS_CAMERA | 0x1001) #define V4L2_CID_GREEN_GAIN (V4L2_CTRL_CLASS_CAMERA | 0x1002) #define V4L2_CID_BLUE_GAIN (V4L2_CTRL_CLASS_CAMERA | 0x1003) static const struct v4l2_ctrl_config s5k6aa_ctrls[] = { { .ops = &s5k6aa_ctrl_ops, .id = V4L2_CID_RED_GAIN, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Gain, Red", .min = 0, .max = 256, .def = 127, .step = 1, }, { .ops = &s5k6aa_ctrl_ops, .id = V4L2_CID_GREEN_GAIN, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Gain, Green", .min = 0, .max = 256, .def = 127, .step = 1, }, { .ops = &s5k6aa_ctrl_ops, .id = V4L2_CID_BLUE_GAIN, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Gain, Blue", .min = 0, .max = 256, .def = 127, .step = 1, }, }; static int s5k6aa_initialize_ctrls(struct s5k6aa *s5k6aa) { const struct v4l2_ctrl_ops *ops = &s5k6aa_ctrl_ops; struct s5k6aa_ctrls *ctrls = &s5k6aa->ctrls; struct v4l2_ctrl_handler *hdl = &ctrls->handler; int ret = v4l2_ctrl_handler_init(hdl, 16); if (ret) return ret; /* Auto white balance cluster */ ctrls->awb = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1); ctrls->gain_red = v4l2_ctrl_new_custom(hdl, &s5k6aa_ctrls[0], NULL); ctrls->gain_green = v4l2_ctrl_new_custom(hdl, &s5k6aa_ctrls[1], NULL); ctrls->gain_blue = v4l2_ctrl_new_custom(hdl, &s5k6aa_ctrls[2], NULL); v4l2_ctrl_auto_cluster(4, &ctrls->awb, 0, false); ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0); ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0); v4l2_ctrl_cluster(2, &ctrls->hflip); ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0, V4L2_EXPOSURE_AUTO); /* Exposure time: x 1 us */ ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 0, 6000000U, 1, 100000U); /* Total gain: 256 <=> 1x */ ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 0, 256, 1, 256); v4l2_ctrl_auto_cluster(3, &ctrls->auto_exp, 0, false); v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_POWER_LINE_FREQUENCY, V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0, V4L2_CID_POWER_LINE_FREQUENCY_AUTO); v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_COLORFX, V4L2_COLORFX_SKY_BLUE, ~0x6f, V4L2_COLORFX_NONE); v4l2_ctrl_new_std(hdl, ops, V4L2_CID_WHITE_BALANCE_TEMPERATURE, 0, 256, 1, 0); v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, -127, 127, 1, 0); v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BRIGHTNESS, -127, 127, 1, 0); v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST, -127, 127, 1, 0); v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SHARPNESS, -127, 127, 1, 0); if (hdl->error) { ret = hdl->error; v4l2_ctrl_handler_free(hdl); return ret; } s5k6aa->sd.ctrl_handler = hdl; return 0; } /* * V4L2 subdev internal operations */ static int s5k6aa_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { struct v4l2_mbus_framefmt *format = v4l2_subdev_get_try_format(fh, 0); struct v4l2_rect *crop = v4l2_subdev_get_try_crop(fh, 0); format->colorspace = s5k6aa_formats[0].colorspace; format->code = s5k6aa_formats[0].code; format->width = S5K6AA_OUT_WIDTH_DEF; format->height = S5K6AA_OUT_HEIGHT_DEF; format->field = V4L2_FIELD_NONE; crop->width = S5K6AA_WIN_WIDTH_MAX; crop->height = S5K6AA_WIN_HEIGHT_MAX; crop->left = 0; crop->top = 0; return 0; } static int s5k6aa_check_fw_revision(struct s5k6aa *s5k6aa) { struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd); u16 api_ver = 0, fw_rev = 0; int ret = s5k6aa_set_ahb_address(client); if (!ret) ret = s5k6aa_read(client, REG_FW_APIVER, &api_ver); if (!ret) ret = s5k6aa_read(client, REG_FW_REVISION, &fw_rev); if (ret) { v4l2_err(&s5k6aa->sd, "FW revision check failed!\n"); return ret; } v4l2_info(&s5k6aa->sd, "FW API ver.: 0x%X, FW rev.: 0x%X\n", api_ver, fw_rev); return api_ver == S5K6AAFX_FW_APIVER ? 0 : -ENODEV; } static int s5k6aa_registered(struct v4l2_subdev *sd) { struct s5k6aa *s5k6aa = to_s5k6aa(sd); int ret; mutex_lock(&s5k6aa->lock); ret = __s5k6aa_power_on(s5k6aa); if (!ret) { msleep(100); ret = s5k6aa_check_fw_revision(s5k6aa); __s5k6aa_power_off(s5k6aa); } mutex_unlock(&s5k6aa->lock); return ret; } static const struct v4l2_subdev_internal_ops s5k6aa_subdev_internal_ops = { .registered = s5k6aa_registered, .open = s5k6aa_open, }; static const struct v4l2_subdev_core_ops s5k6aa_core_ops = { .s_power = s5k6aa_set_power, .log_status = s5k6aa_log_status, }; static const struct v4l2_subdev_ops s5k6aa_subdev_ops = { .core = &s5k6aa_core_ops, .pad = &s5k6aa_pad_ops, .video = &s5k6aa_video_ops, }; /* * GPIO setup */ static int s5k6aa_configure_gpio(int nr, int val, const char *name) { unsigned long flags = val ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW; int ret; if (!gpio_is_valid(nr)) return 0; ret = gpio_request_one(nr, flags, name); if (!ret) gpio_export(nr, 0); return ret; } static void s5k6aa_free_gpios(struct s5k6aa *s5k6aa) { int i; for (i = 0; i < ARRAY_SIZE(s5k6aa->gpio); i++) { if (!gpio_is_valid(s5k6aa->gpio[i].gpio)) continue; gpio_free(s5k6aa->gpio[i].gpio); s5k6aa->gpio[i].gpio = -EINVAL; } } static int s5k6aa_configure_gpios(struct s5k6aa *s5k6aa, const struct s5k6aa_platform_data *pdata) { const struct s5k6aa_gpio *gpio = &pdata->gpio_stby; int ret; s5k6aa->gpio[STBY].gpio = -EINVAL; s5k6aa->gpio[RST].gpio = -EINVAL; ret = s5k6aa_configure_gpio(gpio->gpio, gpio->level, "S5K6AA_STBY"); if (ret) { s5k6aa_free_gpios(s5k6aa); return ret; } s5k6aa->gpio[STBY] = *gpio; if (gpio_is_valid(gpio->gpio)) gpio_set_value(gpio->gpio, 0); gpio = &pdata->gpio_reset; ret = s5k6aa_configure_gpio(gpio->gpio, gpio->level, "S5K6AA_RST"); if (ret) { s5k6aa_free_gpios(s5k6aa); return ret; } s5k6aa->gpio[RST] = *gpio; if (gpio_is_valid(gpio->gpio)) gpio_set_value(gpio->gpio, 0); return 0; } static int s5k6aa_probe(struct i2c_client *client, const struct i2c_device_id *id) { const struct s5k6aa_platform_data *pdata = client->dev.platform_data; struct v4l2_subdev *sd; struct s5k6aa *s5k6aa; int i, ret; if (pdata == NULL) { dev_err(&client->dev, "Platform data not specified\n"); return -EINVAL; } if (pdata->mclk_frequency == 0) { dev_err(&client->dev, "MCLK frequency not specified\n"); return -EINVAL; } s5k6aa = devm_kzalloc(&client->dev, sizeof(*s5k6aa), GFP_KERNEL); if (!s5k6aa) return -ENOMEM; mutex_init(&s5k6aa->lock); s5k6aa->mclk_frequency = pdata->mclk_frequency; s5k6aa->bus_type = pdata->bus_type; s5k6aa->mipi_lanes = pdata->nlanes; s5k6aa->s_power = pdata->set_power; s5k6aa->inv_hflip = pdata->horiz_flip; s5k6aa->inv_vflip = pdata->vert_flip; sd = &s5k6aa->sd; v4l2_i2c_subdev_init(sd, client, &s5k6aa_subdev_ops); strlcpy(sd->name, DRIVER_NAME, sizeof(sd->name)); sd->internal_ops = &s5k6aa_subdev_internal_ops; sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; s5k6aa->pad.flags = MEDIA_PAD_FL_SOURCE; sd->entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR; ret = media_entity_init(&sd->entity, 1, &s5k6aa->pad, 0); if (ret) return ret; ret = s5k6aa_configure_gpios(s5k6aa, pdata); if (ret) goto out_err2; for (i = 0; i < S5K6AA_NUM_SUPPLIES; i++) s5k6aa->supplies[i].supply = s5k6aa_supply_names[i]; ret = devm_regulator_bulk_get(&client->dev, S5K6AA_NUM_SUPPLIES, s5k6aa->supplies); if (ret) { dev_err(&client->dev, "Failed to get regulators\n"); goto out_err3; } ret = s5k6aa_initialize_ctrls(s5k6aa); if (ret) goto out_err3; s5k6aa_presets_data_init(s5k6aa); s5k6aa->ccd_rect.width = S5K6AA_WIN_WIDTH_MAX; s5k6aa->ccd_rect.height = S5K6AA_WIN_HEIGHT_MAX; s5k6aa->ccd_rect.left = 0; s5k6aa->ccd_rect.top = 0; return 0; out_err3: s5k6aa_free_gpios(s5k6aa); out_err2: media_entity_cleanup(&s5k6aa->sd.entity); return ret; } static int s5k6aa_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct s5k6aa *s5k6aa = to_s5k6aa(sd); v4l2_device_unregister_subdev(sd); v4l2_ctrl_handler_free(sd->ctrl_handler); media_entity_cleanup(&sd->entity); s5k6aa_free_gpios(s5k6aa); return 0; } static const struct i2c_device_id s5k6aa_id[] = { { DRIVER_NAME, 0 }, { }, }; MODULE_DEVICE_TABLE(i2c, s5k6aa_id); static struct i2c_driver s5k6aa_i2c_driver = { .driver = { .name = DRIVER_NAME }, .probe = s5k6aa_probe, .remove = s5k6aa_remove, .id_table = s5k6aa_id, }; module_i2c_driver(s5k6aa_i2c_driver); MODULE_DESCRIPTION("Samsung S5K6AA(FX) SXGA camera driver"); MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>"); MODULE_LICENSE("GPL");