/* * Copyright (C) 2012 Red Hat, Inc. * * This file is released under the GPL. */ #include "dm-array.h" #include "dm-space-map.h" #include "dm-transaction-manager.h" #include <linux/export.h> #include <linux/device-mapper.h> #define DM_MSG_PREFIX "array" /*----------------------------------------------------------------*/ /* * The array is implemented as a fully populated btree, which points to * blocks that contain the packed values. This is more space efficient * than just using a btree since we don't store 1 key per value. */ struct array_block { __le32 csum; __le32 max_entries; __le32 nr_entries; __le32 value_size; __le64 blocknr; /* Block this node is supposed to live in. */ } __packed; /*----------------------------------------------------------------*/ /* * Validator methods. As usual we calculate a checksum, and also write the * block location into the header (paranoia about ssds remapping areas by * mistake). */ #define CSUM_XOR 595846735 static void array_block_prepare_for_write(struct dm_block_validator *v, struct dm_block *b, size_t size_of_block) { struct array_block *bh_le = dm_block_data(b); bh_le->blocknr = cpu_to_le64(dm_block_location(b)); bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries, size_of_block - sizeof(__le32), CSUM_XOR)); } static int array_block_check(struct dm_block_validator *v, struct dm_block *b, size_t size_of_block) { struct array_block *bh_le = dm_block_data(b); __le32 csum_disk; if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) { DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu", (unsigned long long) le64_to_cpu(bh_le->blocknr), (unsigned long long) dm_block_location(b)); return -ENOTBLK; } csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries, size_of_block - sizeof(__le32), CSUM_XOR)); if (csum_disk != bh_le->csum) { DMERR_LIMIT("array_block_check failed: csum %u != wanted %u", (unsigned) le32_to_cpu(csum_disk), (unsigned) le32_to_cpu(bh_le->csum)); return -EILSEQ; } return 0; } static struct dm_block_validator array_validator = { .name = "array", .prepare_for_write = array_block_prepare_for_write, .check = array_block_check }; /*----------------------------------------------------------------*/ /* * Functions for manipulating the array blocks. */ /* * Returns a pointer to a value within an array block. * * index - The index into _this_ specific block. */ static void *element_at(struct dm_array_info *info, struct array_block *ab, unsigned index) { unsigned char *entry = (unsigned char *) (ab + 1); entry += index * info->value_type.size; return entry; } /* * Utility function that calls one of the value_type methods on every value * in an array block. */ static void on_entries(struct dm_array_info *info, struct array_block *ab, void (*fn)(void *, const void *)) { unsigned i, nr_entries = le32_to_cpu(ab->nr_entries); for (i = 0; i < nr_entries; i++) fn(info->value_type.context, element_at(info, ab, i)); } /* * Increment every value in an array block. */ static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab) { struct dm_btree_value_type *vt = &info->value_type; if (vt->inc) on_entries(info, ab, vt->inc); } /* * Decrement every value in an array block. */ static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab) { struct dm_btree_value_type *vt = &info->value_type; if (vt->dec) on_entries(info, ab, vt->dec); } /* * Each array block can hold this many values. */ static uint32_t calc_max_entries(size_t value_size, size_t size_of_block) { return (size_of_block - sizeof(struct array_block)) / value_size; } /* * Allocate a new array block. The caller will need to unlock block. */ static int alloc_ablock(struct dm_array_info *info, size_t size_of_block, uint32_t max_entries, struct dm_block **block, struct array_block **ab) { int r; r = dm_tm_new_block(info->btree_info.tm, &array_validator, block); if (r) return r; (*ab) = dm_block_data(*block); (*ab)->max_entries = cpu_to_le32(max_entries); (*ab)->nr_entries = cpu_to_le32(0); (*ab)->value_size = cpu_to_le32(info->value_type.size); return 0; } /* * Pad an array block out with a particular value. Every instance will * cause an increment of the value_type. new_nr must always be more than * the current number of entries. */ static void fill_ablock(struct dm_array_info *info, struct array_block *ab, const void *value, unsigned new_nr) { unsigned i; uint32_t nr_entries; struct dm_btree_value_type *vt = &info->value_type; BUG_ON(new_nr > le32_to_cpu(ab->max_entries)); BUG_ON(new_nr < le32_to_cpu(ab->nr_entries)); nr_entries = le32_to_cpu(ab->nr_entries); for (i = nr_entries; i < new_nr; i++) { if (vt->inc) vt->inc(vt->context, value); memcpy(element_at(info, ab, i), value, vt->size); } ab->nr_entries = cpu_to_le32(new_nr); } /* * Remove some entries from the back of an array block. Every value * removed will be decremented. new_nr must be <= the current number of * entries. */ static void trim_ablock(struct dm_array_info *info, struct array_block *ab, unsigned new_nr) { unsigned i; uint32_t nr_entries; struct dm_btree_value_type *vt = &info->value_type; BUG_ON(new_nr > le32_to_cpu(ab->max_entries)); BUG_ON(new_nr > le32_to_cpu(ab->nr_entries)); nr_entries = le32_to_cpu(ab->nr_entries); for (i = nr_entries; i > new_nr; i--) if (vt->dec) vt->dec(vt->context, element_at(info, ab, i - 1)); ab->nr_entries = cpu_to_le32(new_nr); } /* * Read locks a block, and coerces it to an array block. The caller must * unlock 'block' when finished. */ static int get_ablock(struct dm_array_info *info, dm_block_t b, struct dm_block **block, struct array_block **ab) { int r; r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block); if (r) return r; *ab = dm_block_data(*block); return 0; } /* * Unlocks an array block. */ static int unlock_ablock(struct dm_array_info *info, struct dm_block *block) { return dm_tm_unlock(info->btree_info.tm, block); } /*----------------------------------------------------------------*/ /* * Btree manipulation. */ /* * Looks up an array block in the btree, and then read locks it. * * index is the index of the index of the array_block, (ie. the array index * / max_entries). */ static int lookup_ablock(struct dm_array_info *info, dm_block_t root, unsigned index, struct dm_block **block, struct array_block **ab) { int r; uint64_t key = index; __le64 block_le; r = dm_btree_lookup(&info->btree_info, root, &key, &block_le); if (r) return r; return get_ablock(info, le64_to_cpu(block_le), block, ab); } /* * Insert an array block into the btree. The block is _not_ unlocked. */ static int insert_ablock(struct dm_array_info *info, uint64_t index, struct dm_block *block, dm_block_t *root) { __le64 block_le = cpu_to_le64(dm_block_location(block)); __dm_bless_for_disk(block_le); return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root); } /* * Looks up an array block in the btree. Then shadows it, and updates the * btree to point to this new shadow. 'root' is an input/output parameter * for both the current root block, and the new one. */ static int shadow_ablock(struct dm_array_info *info, dm_block_t *root, unsigned index, struct dm_block **block, struct array_block **ab) { int r, inc; uint64_t key = index; dm_block_t b; __le64 block_le; /* * lookup */ r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le); if (r) return r; b = le64_to_cpu(block_le); /* * shadow */ r = dm_tm_shadow_block(info->btree_info.tm, b, &array_validator, block, &inc); if (r) return r; *ab = dm_block_data(*block); if (inc) inc_ablock_entries(info, *ab); /* * Reinsert. * * The shadow op will often be a noop. Only insert if it really * copied data. */ if (dm_block_location(*block) != b) r = insert_ablock(info, index, *block, root); return r; } /* * Allocate an new array block, and fill it with some values. */ static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block, uint32_t max_entries, unsigned block_index, uint32_t nr, const void *value, dm_block_t *root) { int r; struct dm_block *block; struct array_block *ab; r = alloc_ablock(info, size_of_block, max_entries, &block, &ab); if (r) return r; fill_ablock(info, ab, value, nr); r = insert_ablock(info, block_index, block, root); unlock_ablock(info, block); return r; } static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block, unsigned begin_block, unsigned end_block, unsigned max_entries, const void *value, dm_block_t *root) { int r = 0; for (; !r && begin_block != end_block; begin_block++) r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root); return r; } /* * There are a bunch of functions involved with resizing an array. This * structure holds information that commonly needed by them. Purely here * to reduce parameter count. */ struct resize { /* * Describes the array. */ struct dm_array_info *info; /* * The current root of the array. This gets updated. */ dm_block_t root; /* * Metadata block size. Used to calculate the nr entries in an * array block. */ size_t size_of_block; /* * Maximum nr entries in an array block. */ unsigned max_entries; /* * nr of completely full blocks in the array. * * 'old' refers to before the resize, 'new' after. */ unsigned old_nr_full_blocks, new_nr_full_blocks; /* * Number of entries in the final block. 0 iff only full blocks in * the array. */ unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block; /* * The default value used when growing the array. */ const void *value; }; /* * Removes a consecutive set of array blocks from the btree. The values * in block are decremented as a side effect of the btree remove. * * begin_index - the index of the first array block to remove. * end_index - the one-past-the-end value. ie. this block is not removed. */ static int drop_blocks(struct resize *resize, unsigned begin_index, unsigned end_index) { int r; while (begin_index != end_index) { uint64_t key = begin_index++; r = dm_btree_remove(&resize->info->btree_info, resize->root, &key, &resize->root); if (r) return r; } return 0; } /* * Calculates how many blocks are needed for the array. */ static unsigned total_nr_blocks_needed(unsigned nr_full_blocks, unsigned nr_entries_in_last_block) { return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0); } /* * Shrink an array. */ static int shrink(struct resize *resize) { int r; unsigned begin, end; struct dm_block *block; struct array_block *ab; /* * Lose some blocks from the back? */ if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) { begin = total_nr_blocks_needed(resize->new_nr_full_blocks, resize->new_nr_entries_in_last_block); end = total_nr_blocks_needed(resize->old_nr_full_blocks, resize->old_nr_entries_in_last_block); r = drop_blocks(resize, begin, end); if (r) return r; } /* * Trim the new tail block */ if (resize->new_nr_entries_in_last_block) { r = shadow_ablock(resize->info, &resize->root, resize->new_nr_full_blocks, &block, &ab); if (r) return r; trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block); unlock_ablock(resize->info, block); } return 0; } /* * Grow an array. */ static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries) { int r; struct dm_block *block; struct array_block *ab; r = shadow_ablock(resize->info, &resize->root, resize->old_nr_full_blocks, &block, &ab); if (r) return r; fill_ablock(resize->info, ab, resize->value, new_nr_entries); unlock_ablock(resize->info, block); return r; } static int grow_add_tail_block(struct resize *resize) { return insert_new_ablock(resize->info, resize->size_of_block, resize->max_entries, resize->new_nr_full_blocks, resize->new_nr_entries_in_last_block, resize->value, &resize->root); } static int grow_needs_more_blocks(struct resize *resize) { int r; if (resize->old_nr_entries_in_last_block > 0) { r = grow_extend_tail_block(resize, resize->max_entries); if (r) return r; } r = insert_full_ablocks(resize->info, resize->size_of_block, resize->old_nr_full_blocks, resize->new_nr_full_blocks, resize->max_entries, resize->value, &resize->root); if (r) return r; if (resize->new_nr_entries_in_last_block) r = grow_add_tail_block(resize); return r; } static int grow(struct resize *resize) { if (resize->new_nr_full_blocks > resize->old_nr_full_blocks) return grow_needs_more_blocks(resize); else if (resize->old_nr_entries_in_last_block) return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block); else return grow_add_tail_block(resize); } /*----------------------------------------------------------------*/ /* * These are the value_type functions for the btree elements, which point * to array blocks. */ static void block_inc(void *context, const void *value) { __le64 block_le; struct dm_array_info *info = context; memcpy(&block_le, value, sizeof(block_le)); dm_tm_inc(info->btree_info.tm, le64_to_cpu(block_le)); } static void block_dec(void *context, const void *value) { int r; uint64_t b; __le64 block_le; uint32_t ref_count; struct dm_block *block; struct array_block *ab; struct dm_array_info *info = context; memcpy(&block_le, value, sizeof(block_le)); b = le64_to_cpu(block_le); r = dm_tm_ref(info->btree_info.tm, b, &ref_count); if (r) { DMERR_LIMIT("couldn't get reference count for block %llu", (unsigned long long) b); return; } if (ref_count == 1) { /* * We're about to drop the last reference to this ablock. * So we need to decrement the ref count of the contents. */ r = get_ablock(info, b, &block, &ab); if (r) { DMERR_LIMIT("couldn't get array block %llu", (unsigned long long) b); return; } dec_ablock_entries(info, ab); unlock_ablock(info, block); } dm_tm_dec(info->btree_info.tm, b); } static int block_equal(void *context, const void *value1, const void *value2) { return !memcmp(value1, value2, sizeof(__le64)); } /*----------------------------------------------------------------*/ void dm_array_info_init(struct dm_array_info *info, struct dm_transaction_manager *tm, struct dm_btree_value_type *vt) { struct dm_btree_value_type *bvt = &info->btree_info.value_type; memcpy(&info->value_type, vt, sizeof(info->value_type)); info->btree_info.tm = tm; info->btree_info.levels = 1; bvt->context = info; bvt->size = sizeof(__le64); bvt->inc = block_inc; bvt->dec = block_dec; bvt->equal = block_equal; } EXPORT_SYMBOL_GPL(dm_array_info_init); int dm_array_empty(struct dm_array_info *info, dm_block_t *root) { return dm_btree_empty(&info->btree_info, root); } EXPORT_SYMBOL_GPL(dm_array_empty); static int array_resize(struct dm_array_info *info, dm_block_t root, uint32_t old_size, uint32_t new_size, const void *value, dm_block_t *new_root) { int r; struct resize resize; if (old_size == new_size) return 0; resize.info = info; resize.root = root; resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); resize.max_entries = calc_max_entries(info->value_type.size, resize.size_of_block); resize.old_nr_full_blocks = old_size / resize.max_entries; resize.old_nr_entries_in_last_block = old_size % resize.max_entries; resize.new_nr_full_blocks = new_size / resize.max_entries; resize.new_nr_entries_in_last_block = new_size % resize.max_entries; resize.value = value; r = ((new_size > old_size) ? grow : shrink)(&resize); if (r) return r; *new_root = resize.root; return 0; } int dm_array_resize(struct dm_array_info *info, dm_block_t root, uint32_t old_size, uint32_t new_size, const void *value, dm_block_t *new_root) __dm_written_to_disk(value) { int r = array_resize(info, root, old_size, new_size, value, new_root); __dm_unbless_for_disk(value); return r; } EXPORT_SYMBOL_GPL(dm_array_resize); int dm_array_del(struct dm_array_info *info, dm_block_t root) { return dm_btree_del(&info->btree_info, root); } EXPORT_SYMBOL_GPL(dm_array_del); int dm_array_get_value(struct dm_array_info *info, dm_block_t root, uint32_t index, void *value_le) { int r; struct dm_block *block; struct array_block *ab; size_t size_of_block; unsigned entry, max_entries; size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); max_entries = calc_max_entries(info->value_type.size, size_of_block); r = lookup_ablock(info, root, index / max_entries, &block, &ab); if (r) return r; entry = index % max_entries; if (entry >= le32_to_cpu(ab->nr_entries)) r = -ENODATA; else memcpy(value_le, element_at(info, ab, entry), info->value_type.size); unlock_ablock(info, block); return r; } EXPORT_SYMBOL_GPL(dm_array_get_value); static int array_set_value(struct dm_array_info *info, dm_block_t root, uint32_t index, const void *value, dm_block_t *new_root) { int r; struct dm_block *block; struct array_block *ab; size_t size_of_block; unsigned max_entries; unsigned entry; void *old_value; struct dm_btree_value_type *vt = &info->value_type; size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); max_entries = calc_max_entries(info->value_type.size, size_of_block); r = shadow_ablock(info, &root, index / max_entries, &block, &ab); if (r) return r; *new_root = root; entry = index % max_entries; if (entry >= le32_to_cpu(ab->nr_entries)) { r = -ENODATA; goto out; } old_value = element_at(info, ab, entry); if (vt->dec && (!vt->equal || !vt->equal(vt->context, old_value, value))) { vt->dec(vt->context, old_value); if (vt->inc) vt->inc(vt->context, value); } memcpy(old_value, value, info->value_type.size); out: unlock_ablock(info, block); return r; } int dm_array_set_value(struct dm_array_info *info, dm_block_t root, uint32_t index, const void *value, dm_block_t *new_root) __dm_written_to_disk(value) { int r; r = array_set_value(info, root, index, value, new_root); __dm_unbless_for_disk(value); return r; } EXPORT_SYMBOL_GPL(dm_array_set_value); struct walk_info { struct dm_array_info *info; int (*fn)(void *context, uint64_t key, void *leaf); void *context; }; static int walk_ablock(void *context, uint64_t *keys, void *leaf) { struct walk_info *wi = context; int r; unsigned i; __le64 block_le; unsigned nr_entries, max_entries; struct dm_block *block; struct array_block *ab; memcpy(&block_le, leaf, sizeof(block_le)); r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab); if (r) return r; max_entries = le32_to_cpu(ab->max_entries); nr_entries = le32_to_cpu(ab->nr_entries); for (i = 0; i < nr_entries; i++) { r = wi->fn(wi->context, keys[0] * max_entries + i, element_at(wi->info, ab, i)); if (r) break; } unlock_ablock(wi->info, block); return r; } int dm_array_walk(struct dm_array_info *info, dm_block_t root, int (*fn)(void *, uint64_t key, void *leaf), void *context) { struct walk_info wi; wi.info = info; wi.fn = fn; wi.context = context; return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi); } EXPORT_SYMBOL_GPL(dm_array_walk); /*----------------------------------------------------------------*/