/* * Cryptographic API. * * Support for ATMEL AES HW acceleration. * * Copyright (c) 2012 Eukréa Electromatique - ATMEL * Author: Nicolas Royer <nicolas@eukrea.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Some ideas are from omap-aes.c driver. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/hw_random.h> #include <linux/platform_device.h> #include <linux/device.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/scatterlist.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/crypto.h> #include <linux/cryptohash.h> #include <crypto/scatterwalk.h> #include <crypto/algapi.h> #include <crypto/aes.h> #include <crypto/hash.h> #include <crypto/internal/hash.h> #include <linux/platform_data/crypto-atmel.h> #include "atmel-aes-regs.h" #define CFB8_BLOCK_SIZE 1 #define CFB16_BLOCK_SIZE 2 #define CFB32_BLOCK_SIZE 4 #define CFB64_BLOCK_SIZE 8 /* AES flags */ #define AES_FLAGS_MODE_MASK 0x03ff #define AES_FLAGS_ENCRYPT BIT(0) #define AES_FLAGS_CBC BIT(1) #define AES_FLAGS_CFB BIT(2) #define AES_FLAGS_CFB8 BIT(3) #define AES_FLAGS_CFB16 BIT(4) #define AES_FLAGS_CFB32 BIT(5) #define AES_FLAGS_CFB64 BIT(6) #define AES_FLAGS_CFB128 BIT(7) #define AES_FLAGS_OFB BIT(8) #define AES_FLAGS_CTR BIT(9) #define AES_FLAGS_INIT BIT(16) #define AES_FLAGS_DMA BIT(17) #define AES_FLAGS_BUSY BIT(18) #define AES_FLAGS_FAST BIT(19) #define ATMEL_AES_QUEUE_LENGTH 50 #define ATMEL_AES_DMA_THRESHOLD 16 struct atmel_aes_caps { bool has_dualbuff; bool has_cfb64; u32 max_burst_size; }; struct atmel_aes_dev; struct atmel_aes_ctx { struct atmel_aes_dev *dd; int keylen; u32 key[AES_KEYSIZE_256 / sizeof(u32)]; u16 block_size; }; struct atmel_aes_reqctx { unsigned long mode; }; struct atmel_aes_dma { struct dma_chan *chan; struct dma_slave_config dma_conf; }; struct atmel_aes_dev { struct list_head list; unsigned long phys_base; void __iomem *io_base; struct atmel_aes_ctx *ctx; struct device *dev; struct clk *iclk; int irq; unsigned long flags; int err; spinlock_t lock; struct crypto_queue queue; struct tasklet_struct done_task; struct tasklet_struct queue_task; struct ablkcipher_request *req; size_t total; struct scatterlist *in_sg; unsigned int nb_in_sg; size_t in_offset; struct scatterlist *out_sg; unsigned int nb_out_sg; size_t out_offset; size_t bufcnt; size_t buflen; size_t dma_size; void *buf_in; int dma_in; dma_addr_t dma_addr_in; struct atmel_aes_dma dma_lch_in; void *buf_out; int dma_out; dma_addr_t dma_addr_out; struct atmel_aes_dma dma_lch_out; struct atmel_aes_caps caps; u32 hw_version; }; struct atmel_aes_drv { struct list_head dev_list; spinlock_t lock; }; static struct atmel_aes_drv atmel_aes = { .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list), .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock), }; static int atmel_aes_sg_length(struct ablkcipher_request *req, struct scatterlist *sg) { unsigned int total = req->nbytes; int sg_nb; unsigned int len; struct scatterlist *sg_list; sg_nb = 0; sg_list = sg; total = req->nbytes; while (total) { len = min(sg_list->length, total); sg_nb++; total -= len; sg_list = sg_next(sg_list); if (!sg_list) total = 0; } return sg_nb; } static int atmel_aes_sg_copy(struct scatterlist **sg, size_t *offset, void *buf, size_t buflen, size_t total, int out) { unsigned int count, off = 0; while (buflen && total) { count = min((*sg)->length - *offset, total); count = min(count, buflen); if (!count) return off; scatterwalk_map_and_copy(buf + off, *sg, *offset, count, out); off += count; buflen -= count; *offset += count; total -= count; if (*offset == (*sg)->length) { *sg = sg_next(*sg); if (*sg) *offset = 0; else total = 0; } } return off; } static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset) { return readl_relaxed(dd->io_base + offset); } static inline void atmel_aes_write(struct atmel_aes_dev *dd, u32 offset, u32 value) { writel_relaxed(value, dd->io_base + offset); } static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset, u32 *value, int count) { for (; count--; value++, offset += 4) *value = atmel_aes_read(dd, offset); } static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset, u32 *value, int count) { for (; count--; value++, offset += 4) atmel_aes_write(dd, offset, *value); } static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_ctx *ctx) { struct atmel_aes_dev *aes_dd = NULL; struct atmel_aes_dev *tmp; spin_lock_bh(&atmel_aes.lock); if (!ctx->dd) { list_for_each_entry(tmp, &atmel_aes.dev_list, list) { aes_dd = tmp; break; } ctx->dd = aes_dd; } else { aes_dd = ctx->dd; } spin_unlock_bh(&atmel_aes.lock); return aes_dd; } static int atmel_aes_hw_init(struct atmel_aes_dev *dd) { clk_prepare_enable(dd->iclk); if (!(dd->flags & AES_FLAGS_INIT)) { atmel_aes_write(dd, AES_CR, AES_CR_SWRST); atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET); dd->flags |= AES_FLAGS_INIT; dd->err = 0; } return 0; } static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd) { return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff; } static void atmel_aes_hw_version_init(struct atmel_aes_dev *dd) { atmel_aes_hw_init(dd); dd->hw_version = atmel_aes_get_version(dd); dev_info(dd->dev, "version: 0x%x\n", dd->hw_version); clk_disable_unprepare(dd->iclk); } static void atmel_aes_finish_req(struct atmel_aes_dev *dd, int err) { struct ablkcipher_request *req = dd->req; clk_disable_unprepare(dd->iclk); dd->flags &= ~AES_FLAGS_BUSY; req->base.complete(&req->base, err); } static void atmel_aes_dma_callback(void *data) { struct atmel_aes_dev *dd = data; /* dma_lch_out - completed */ tasklet_schedule(&dd->done_task); } static int atmel_aes_crypt_dma(struct atmel_aes_dev *dd, dma_addr_t dma_addr_in, dma_addr_t dma_addr_out, int length) { struct scatterlist sg[2]; struct dma_async_tx_descriptor *in_desc, *out_desc; dd->dma_size = length; if (!(dd->flags & AES_FLAGS_FAST)) { dma_sync_single_for_device(dd->dev, dma_addr_in, length, DMA_TO_DEVICE); } if (dd->flags & AES_FLAGS_CFB8) { dd->dma_lch_in.dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; dd->dma_lch_out.dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; } else if (dd->flags & AES_FLAGS_CFB16) { dd->dma_lch_in.dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; dd->dma_lch_out.dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; } else { dd->dma_lch_in.dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dd->dma_lch_out.dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; } if (dd->flags & (AES_FLAGS_CFB8 | AES_FLAGS_CFB16 | AES_FLAGS_CFB32 | AES_FLAGS_CFB64)) { dd->dma_lch_in.dma_conf.src_maxburst = 1; dd->dma_lch_in.dma_conf.dst_maxburst = 1; dd->dma_lch_out.dma_conf.src_maxburst = 1; dd->dma_lch_out.dma_conf.dst_maxburst = 1; } else { dd->dma_lch_in.dma_conf.src_maxburst = dd->caps.max_burst_size; dd->dma_lch_in.dma_conf.dst_maxburst = dd->caps.max_burst_size; dd->dma_lch_out.dma_conf.src_maxburst = dd->caps.max_burst_size; dd->dma_lch_out.dma_conf.dst_maxburst = dd->caps.max_burst_size; } dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf); dmaengine_slave_config(dd->dma_lch_out.chan, &dd->dma_lch_out.dma_conf); dd->flags |= AES_FLAGS_DMA; sg_init_table(&sg[0], 1); sg_dma_address(&sg[0]) = dma_addr_in; sg_dma_len(&sg[0]) = length; sg_init_table(&sg[1], 1); sg_dma_address(&sg[1]) = dma_addr_out; sg_dma_len(&sg[1]) = length; in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, &sg[0], 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!in_desc) return -EINVAL; out_desc = dmaengine_prep_slave_sg(dd->dma_lch_out.chan, &sg[1], 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!out_desc) return -EINVAL; out_desc->callback = atmel_aes_dma_callback; out_desc->callback_param = dd; dmaengine_submit(out_desc); dma_async_issue_pending(dd->dma_lch_out.chan); dmaengine_submit(in_desc); dma_async_issue_pending(dd->dma_lch_in.chan); return 0; } static int atmel_aes_crypt_cpu_start(struct atmel_aes_dev *dd) { dd->flags &= ~AES_FLAGS_DMA; /* use cache buffers */ dd->nb_in_sg = atmel_aes_sg_length(dd->req, dd->in_sg); if (!dd->nb_in_sg) return -EINVAL; dd->nb_out_sg = atmel_aes_sg_length(dd->req, dd->out_sg); if (!dd->nb_out_sg) return -EINVAL; dd->bufcnt = sg_copy_to_buffer(dd->in_sg, dd->nb_in_sg, dd->buf_in, dd->total); if (!dd->bufcnt) return -EINVAL; dd->total -= dd->bufcnt; atmel_aes_write(dd, AES_IER, AES_INT_DATARDY); atmel_aes_write_n(dd, AES_IDATAR(0), (u32 *) dd->buf_in, dd->bufcnt >> 2); return 0; } static int atmel_aes_crypt_dma_start(struct atmel_aes_dev *dd) { int err, fast = 0, in, out; size_t count; dma_addr_t addr_in, addr_out; if ((!dd->in_offset) && (!dd->out_offset)) { /* check for alignment */ in = IS_ALIGNED((u32)dd->in_sg->offset, sizeof(u32)) && IS_ALIGNED(dd->in_sg->length, dd->ctx->block_size); out = IS_ALIGNED((u32)dd->out_sg->offset, sizeof(u32)) && IS_ALIGNED(dd->out_sg->length, dd->ctx->block_size); fast = in && out; if (sg_dma_len(dd->in_sg) != sg_dma_len(dd->out_sg)) fast = 0; } if (fast) { count = min(dd->total, sg_dma_len(dd->in_sg)); count = min(count, sg_dma_len(dd->out_sg)); err = dma_map_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); if (!err) { dev_err(dd->dev, "dma_map_sg() error\n"); return -EINVAL; } err = dma_map_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE); if (!err) { dev_err(dd->dev, "dma_map_sg() error\n"); dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); return -EINVAL; } addr_in = sg_dma_address(dd->in_sg); addr_out = sg_dma_address(dd->out_sg); dd->flags |= AES_FLAGS_FAST; } else { /* use cache buffers */ count = atmel_aes_sg_copy(&dd->in_sg, &dd->in_offset, dd->buf_in, dd->buflen, dd->total, 0); addr_in = dd->dma_addr_in; addr_out = dd->dma_addr_out; dd->flags &= ~AES_FLAGS_FAST; } dd->total -= count; err = atmel_aes_crypt_dma(dd, addr_in, addr_out, count); if (err && (dd->flags & AES_FLAGS_FAST)) { dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_TO_DEVICE); } return err; } static int atmel_aes_write_ctrl(struct atmel_aes_dev *dd) { int err; u32 valcr = 0, valmr = 0; err = atmel_aes_hw_init(dd); if (err) return err; /* MR register must be set before IV registers */ if (dd->ctx->keylen == AES_KEYSIZE_128) valmr |= AES_MR_KEYSIZE_128; else if (dd->ctx->keylen == AES_KEYSIZE_192) valmr |= AES_MR_KEYSIZE_192; else valmr |= AES_MR_KEYSIZE_256; if (dd->flags & AES_FLAGS_CBC) { valmr |= AES_MR_OPMOD_CBC; } else if (dd->flags & AES_FLAGS_CFB) { valmr |= AES_MR_OPMOD_CFB; if (dd->flags & AES_FLAGS_CFB8) valmr |= AES_MR_CFBS_8b; else if (dd->flags & AES_FLAGS_CFB16) valmr |= AES_MR_CFBS_16b; else if (dd->flags & AES_FLAGS_CFB32) valmr |= AES_MR_CFBS_32b; else if (dd->flags & AES_FLAGS_CFB64) valmr |= AES_MR_CFBS_64b; else if (dd->flags & AES_FLAGS_CFB128) valmr |= AES_MR_CFBS_128b; } else if (dd->flags & AES_FLAGS_OFB) { valmr |= AES_MR_OPMOD_OFB; } else if (dd->flags & AES_FLAGS_CTR) { valmr |= AES_MR_OPMOD_CTR; } else { valmr |= AES_MR_OPMOD_ECB; } if (dd->flags & AES_FLAGS_ENCRYPT) valmr |= AES_MR_CYPHER_ENC; if (dd->total > ATMEL_AES_DMA_THRESHOLD) { valmr |= AES_MR_SMOD_IDATAR0; if (dd->caps.has_dualbuff) valmr |= AES_MR_DUALBUFF; } else { valmr |= AES_MR_SMOD_AUTO; } atmel_aes_write(dd, AES_CR, valcr); atmel_aes_write(dd, AES_MR, valmr); atmel_aes_write_n(dd, AES_KEYWR(0), dd->ctx->key, dd->ctx->keylen >> 2); if (((dd->flags & AES_FLAGS_CBC) || (dd->flags & AES_FLAGS_CFB) || (dd->flags & AES_FLAGS_OFB) || (dd->flags & AES_FLAGS_CTR)) && dd->req->info) { atmel_aes_write_n(dd, AES_IVR(0), dd->req->info, 4); } return 0; } static int atmel_aes_handle_queue(struct atmel_aes_dev *dd, struct ablkcipher_request *req) { struct crypto_async_request *async_req, *backlog; struct atmel_aes_ctx *ctx; struct atmel_aes_reqctx *rctx; unsigned long flags; int err, ret = 0; spin_lock_irqsave(&dd->lock, flags); if (req) ret = ablkcipher_enqueue_request(&dd->queue, req); if (dd->flags & AES_FLAGS_BUSY) { spin_unlock_irqrestore(&dd->lock, flags); return ret; } backlog = crypto_get_backlog(&dd->queue); async_req = crypto_dequeue_request(&dd->queue); if (async_req) dd->flags |= AES_FLAGS_BUSY; spin_unlock_irqrestore(&dd->lock, flags); if (!async_req) return ret; if (backlog) backlog->complete(backlog, -EINPROGRESS); req = ablkcipher_request_cast(async_req); /* assign new request to device */ dd->req = req; dd->total = req->nbytes; dd->in_offset = 0; dd->in_sg = req->src; dd->out_offset = 0; dd->out_sg = req->dst; rctx = ablkcipher_request_ctx(req); ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); rctx->mode &= AES_FLAGS_MODE_MASK; dd->flags = (dd->flags & ~AES_FLAGS_MODE_MASK) | rctx->mode; dd->ctx = ctx; ctx->dd = dd; err = atmel_aes_write_ctrl(dd); if (!err) { if (dd->total > ATMEL_AES_DMA_THRESHOLD) err = atmel_aes_crypt_dma_start(dd); else err = atmel_aes_crypt_cpu_start(dd); } if (err) { /* aes_task will not finish it, so do it here */ atmel_aes_finish_req(dd, err); tasklet_schedule(&dd->queue_task); } return ret; } static int atmel_aes_crypt_dma_stop(struct atmel_aes_dev *dd) { int err = -EINVAL; size_t count; if (dd->flags & AES_FLAGS_DMA) { err = 0; if (dd->flags & AES_FLAGS_FAST) { dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE); dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); } else { dma_sync_single_for_device(dd->dev, dd->dma_addr_out, dd->dma_size, DMA_FROM_DEVICE); /* copy data */ count = atmel_aes_sg_copy(&dd->out_sg, &dd->out_offset, dd->buf_out, dd->buflen, dd->dma_size, 1); if (count != dd->dma_size) { err = -EINVAL; pr_err("not all data converted: %u\n", count); } } } return err; } static int atmel_aes_buff_init(struct atmel_aes_dev *dd) { int err = -ENOMEM; dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, 0); dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, 0); dd->buflen = PAGE_SIZE; dd->buflen &= ~(AES_BLOCK_SIZE - 1); if (!dd->buf_in || !dd->buf_out) { dev_err(dd->dev, "unable to alloc pages.\n"); goto err_alloc; } /* MAP here */ dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in, dd->buflen, DMA_TO_DEVICE); if (dma_mapping_error(dd->dev, dd->dma_addr_in)) { dev_err(dd->dev, "dma %d bytes error\n", dd->buflen); err = -EINVAL; goto err_map_in; } dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out, dd->buflen, DMA_FROM_DEVICE); if (dma_mapping_error(dd->dev, dd->dma_addr_out)) { dev_err(dd->dev, "dma %d bytes error\n", dd->buflen); err = -EINVAL; goto err_map_out; } return 0; err_map_out: dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE); err_map_in: free_page((unsigned long)dd->buf_out); free_page((unsigned long)dd->buf_in); err_alloc: if (err) pr_err("error: %d\n", err); return err; } static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd) { dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen, DMA_FROM_DEVICE); dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE); free_page((unsigned long)dd->buf_out); free_page((unsigned long)dd->buf_in); } static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode) { struct atmel_aes_ctx *ctx = crypto_ablkcipher_ctx( crypto_ablkcipher_reqtfm(req)); struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req); struct atmel_aes_dev *dd; if (mode & AES_FLAGS_CFB8) { if (!IS_ALIGNED(req->nbytes, CFB8_BLOCK_SIZE)) { pr_err("request size is not exact amount of CFB8 blocks\n"); return -EINVAL; } ctx->block_size = CFB8_BLOCK_SIZE; } else if (mode & AES_FLAGS_CFB16) { if (!IS_ALIGNED(req->nbytes, CFB16_BLOCK_SIZE)) { pr_err("request size is not exact amount of CFB16 blocks\n"); return -EINVAL; } ctx->block_size = CFB16_BLOCK_SIZE; } else if (mode & AES_FLAGS_CFB32) { if (!IS_ALIGNED(req->nbytes, CFB32_BLOCK_SIZE)) { pr_err("request size is not exact amount of CFB32 blocks\n"); return -EINVAL; } ctx->block_size = CFB32_BLOCK_SIZE; } else { if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) { pr_err("request size is not exact amount of AES blocks\n"); return -EINVAL; } ctx->block_size = AES_BLOCK_SIZE; } dd = atmel_aes_find_dev(ctx); if (!dd) return -ENODEV; rctx->mode = mode; return atmel_aes_handle_queue(dd, req); } static bool atmel_aes_filter(struct dma_chan *chan, void *slave) { struct at_dma_slave *sl = slave; if (sl && sl->dma_dev == chan->device->dev) { chan->private = sl; return true; } else { return false; } } static int atmel_aes_dma_init(struct atmel_aes_dev *dd, struct crypto_platform_data *pdata) { int err = -ENOMEM; dma_cap_mask_t mask_in, mask_out; if (pdata && pdata->dma_slave->txdata.dma_dev && pdata->dma_slave->rxdata.dma_dev) { /* Try to grab 2 DMA channels */ dma_cap_zero(mask_in); dma_cap_set(DMA_SLAVE, mask_in); dd->dma_lch_in.chan = dma_request_channel(mask_in, atmel_aes_filter, &pdata->dma_slave->rxdata); if (!dd->dma_lch_in.chan) goto err_dma_in; dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV; dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base + AES_IDATAR(0); dd->dma_lch_in.dma_conf.src_maxburst = dd->caps.max_burst_size; dd->dma_lch_in.dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dd->dma_lch_in.dma_conf.dst_maxburst = dd->caps.max_burst_size; dd->dma_lch_in.dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dd->dma_lch_in.dma_conf.device_fc = false; dma_cap_zero(mask_out); dma_cap_set(DMA_SLAVE, mask_out); dd->dma_lch_out.chan = dma_request_channel(mask_out, atmel_aes_filter, &pdata->dma_slave->txdata); if (!dd->dma_lch_out.chan) goto err_dma_out; dd->dma_lch_out.dma_conf.direction = DMA_DEV_TO_MEM; dd->dma_lch_out.dma_conf.src_addr = dd->phys_base + AES_ODATAR(0); dd->dma_lch_out.dma_conf.src_maxburst = dd->caps.max_burst_size; dd->dma_lch_out.dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dd->dma_lch_out.dma_conf.dst_maxburst = dd->caps.max_burst_size; dd->dma_lch_out.dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dd->dma_lch_out.dma_conf.device_fc = false; return 0; } else { return -ENODEV; } err_dma_out: dma_release_channel(dd->dma_lch_in.chan); err_dma_in: return err; } static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd) { dma_release_channel(dd->dma_lch_in.chan); dma_release_channel(dd->dma_lch_out.chan); } static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct atmel_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256) { crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } memcpy(ctx->key, key, keylen); ctx->keylen = keylen; return 0; } static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT); } static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, 0); } static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC); } static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CBC); } static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_OFB); } static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_OFB); } static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB128); } static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CFB | AES_FLAGS_CFB128); } static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB64); } static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CFB | AES_FLAGS_CFB64); } static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB32); } static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CFB | AES_FLAGS_CFB32); } static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB16); } static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CFB | AES_FLAGS_CFB16); } static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB8); } static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CFB | AES_FLAGS_CFB8); } static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CTR); } static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CTR); } static int atmel_aes_cra_init(struct crypto_tfm *tfm) { tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx); return 0; } static void atmel_aes_cra_exit(struct crypto_tfm *tfm) { } static struct crypto_alg aes_algs[] = { { .cra_name = "ecb(aes)", .cra_driver_name = "atmel-ecb-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0xf, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_ecb_encrypt, .decrypt = atmel_aes_ecb_decrypt, } }, { .cra_name = "cbc(aes)", .cra_driver_name = "atmel-cbc-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0xf, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_cbc_encrypt, .decrypt = atmel_aes_cbc_decrypt, } }, { .cra_name = "ofb(aes)", .cra_driver_name = "atmel-ofb-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0xf, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_ofb_encrypt, .decrypt = atmel_aes_ofb_decrypt, } }, { .cra_name = "cfb(aes)", .cra_driver_name = "atmel-cfb-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0xf, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_cfb_encrypt, .decrypt = atmel_aes_cfb_decrypt, } }, { .cra_name = "cfb32(aes)", .cra_driver_name = "atmel-cfb32-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = CFB32_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x3, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_cfb32_encrypt, .decrypt = atmel_aes_cfb32_decrypt, } }, { .cra_name = "cfb16(aes)", .cra_driver_name = "atmel-cfb16-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = CFB16_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x1, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_cfb16_encrypt, .decrypt = atmel_aes_cfb16_decrypt, } }, { .cra_name = "cfb8(aes)", .cra_driver_name = "atmel-cfb8-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = CFB64_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_cfb8_encrypt, .decrypt = atmel_aes_cfb8_decrypt, } }, { .cra_name = "ctr(aes)", .cra_driver_name = "atmel-ctr-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0xf, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_ctr_encrypt, .decrypt = atmel_aes_ctr_decrypt, } }, }; static struct crypto_alg aes_cfb64_alg = { .cra_name = "cfb64(aes)", .cra_driver_name = "atmel-cfb64-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = CFB64_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x7, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_cfb64_encrypt, .decrypt = atmel_aes_cfb64_decrypt, } }; static void atmel_aes_queue_task(unsigned long data) { struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data; atmel_aes_handle_queue(dd, NULL); } static void atmel_aes_done_task(unsigned long data) { struct atmel_aes_dev *dd = (struct atmel_aes_dev *) data; int err; if (!(dd->flags & AES_FLAGS_DMA)) { atmel_aes_read_n(dd, AES_ODATAR(0), (u32 *) dd->buf_out, dd->bufcnt >> 2); if (sg_copy_from_buffer(dd->out_sg, dd->nb_out_sg, dd->buf_out, dd->bufcnt)) err = 0; else err = -EINVAL; goto cpu_end; } err = atmel_aes_crypt_dma_stop(dd); err = dd->err ? : err; if (dd->total && !err) { if (dd->flags & AES_FLAGS_FAST) { dd->in_sg = sg_next(dd->in_sg); dd->out_sg = sg_next(dd->out_sg); if (!dd->in_sg || !dd->out_sg) err = -EINVAL; } if (!err) err = atmel_aes_crypt_dma_start(dd); if (!err) return; /* DMA started. Not fininishing. */ } cpu_end: atmel_aes_finish_req(dd, err); atmel_aes_handle_queue(dd, NULL); } static irqreturn_t atmel_aes_irq(int irq, void *dev_id) { struct atmel_aes_dev *aes_dd = dev_id; u32 reg; reg = atmel_aes_read(aes_dd, AES_ISR); if (reg & atmel_aes_read(aes_dd, AES_IMR)) { atmel_aes_write(aes_dd, AES_IDR, reg); if (AES_FLAGS_BUSY & aes_dd->flags) tasklet_schedule(&aes_dd->done_task); else dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n"); return IRQ_HANDLED; } return IRQ_NONE; } static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd) { int i; for (i = 0; i < ARRAY_SIZE(aes_algs); i++) crypto_unregister_alg(&aes_algs[i]); if (dd->caps.has_cfb64) crypto_unregister_alg(&aes_cfb64_alg); } static int atmel_aes_register_algs(struct atmel_aes_dev *dd) { int err, i, j; for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { err = crypto_register_alg(&aes_algs[i]); if (err) goto err_aes_algs; } if (dd->caps.has_cfb64) { err = crypto_register_alg(&aes_cfb64_alg); if (err) goto err_aes_cfb64_alg; } return 0; err_aes_cfb64_alg: i = ARRAY_SIZE(aes_algs); err_aes_algs: for (j = 0; j < i; j++) crypto_unregister_alg(&aes_algs[j]); return err; } static void atmel_aes_get_cap(struct atmel_aes_dev *dd) { dd->caps.has_dualbuff = 0; dd->caps.has_cfb64 = 0; dd->caps.max_burst_size = 1; /* keep only major version number */ switch (dd->hw_version & 0xff0) { case 0x130: dd->caps.has_dualbuff = 1; dd->caps.has_cfb64 = 1; dd->caps.max_burst_size = 4; break; case 0x120: break; default: dev_warn(dd->dev, "Unmanaged aes version, set minimum capabilities\n"); break; } } static int atmel_aes_probe(struct platform_device *pdev) { struct atmel_aes_dev *aes_dd; struct crypto_platform_data *pdata; struct device *dev = &pdev->dev; struct resource *aes_res; unsigned long aes_phys_size; int err; pdata = pdev->dev.platform_data; if (!pdata) { err = -ENXIO; goto aes_dd_err; } aes_dd = kzalloc(sizeof(struct atmel_aes_dev), GFP_KERNEL); if (aes_dd == NULL) { dev_err(dev, "unable to alloc data struct.\n"); err = -ENOMEM; goto aes_dd_err; } aes_dd->dev = dev; platform_set_drvdata(pdev, aes_dd); INIT_LIST_HEAD(&aes_dd->list); tasklet_init(&aes_dd->done_task, atmel_aes_done_task, (unsigned long)aes_dd); tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task, (unsigned long)aes_dd); crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH); aes_dd->irq = -1; /* Get the base address */ aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!aes_res) { dev_err(dev, "no MEM resource info\n"); err = -ENODEV; goto res_err; } aes_dd->phys_base = aes_res->start; aes_phys_size = resource_size(aes_res); /* Get the IRQ */ aes_dd->irq = platform_get_irq(pdev, 0); if (aes_dd->irq < 0) { dev_err(dev, "no IRQ resource info\n"); err = aes_dd->irq; goto aes_irq_err; } err = request_irq(aes_dd->irq, atmel_aes_irq, IRQF_SHARED, "atmel-aes", aes_dd); if (err) { dev_err(dev, "unable to request aes irq.\n"); goto aes_irq_err; } /* Initializing the clock */ aes_dd->iclk = clk_get(&pdev->dev, "aes_clk"); if (IS_ERR(aes_dd->iclk)) { dev_err(dev, "clock intialization failed.\n"); err = PTR_ERR(aes_dd->iclk); goto clk_err; } aes_dd->io_base = ioremap(aes_dd->phys_base, aes_phys_size); if (!aes_dd->io_base) { dev_err(dev, "can't ioremap\n"); err = -ENOMEM; goto aes_io_err; } atmel_aes_hw_version_init(aes_dd); atmel_aes_get_cap(aes_dd); err = atmel_aes_buff_init(aes_dd); if (err) goto err_aes_buff; err = atmel_aes_dma_init(aes_dd, pdata); if (err) goto err_aes_dma; spin_lock(&atmel_aes.lock); list_add_tail(&aes_dd->list, &atmel_aes.dev_list); spin_unlock(&atmel_aes.lock); err = atmel_aes_register_algs(aes_dd); if (err) goto err_algs; dev_info(dev, "Atmel AES\n"); return 0; err_algs: spin_lock(&atmel_aes.lock); list_del(&aes_dd->list); spin_unlock(&atmel_aes.lock); atmel_aes_dma_cleanup(aes_dd); err_aes_dma: atmel_aes_buff_cleanup(aes_dd); err_aes_buff: iounmap(aes_dd->io_base); aes_io_err: clk_put(aes_dd->iclk); clk_err: free_irq(aes_dd->irq, aes_dd); aes_irq_err: res_err: tasklet_kill(&aes_dd->done_task); tasklet_kill(&aes_dd->queue_task); kfree(aes_dd); aes_dd = NULL; aes_dd_err: dev_err(dev, "initialization failed.\n"); return err; } static int atmel_aes_remove(struct platform_device *pdev) { static struct atmel_aes_dev *aes_dd; aes_dd = platform_get_drvdata(pdev); if (!aes_dd) return -ENODEV; spin_lock(&atmel_aes.lock); list_del(&aes_dd->list); spin_unlock(&atmel_aes.lock); atmel_aes_unregister_algs(aes_dd); tasklet_kill(&aes_dd->done_task); tasklet_kill(&aes_dd->queue_task); atmel_aes_dma_cleanup(aes_dd); iounmap(aes_dd->io_base); clk_put(aes_dd->iclk); if (aes_dd->irq > 0) free_irq(aes_dd->irq, aes_dd); kfree(aes_dd); aes_dd = NULL; return 0; } static struct platform_driver atmel_aes_driver = { .probe = atmel_aes_probe, .remove = atmel_aes_remove, .driver = { .name = "atmel_aes", .owner = THIS_MODULE, }, }; module_platform_driver(atmel_aes_driver); MODULE_DESCRIPTION("Atmel AES hw acceleration support."); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");