#include <asm/cpu_device_id.h> #include <asm/processor.h> #include <linux/cpu.h> #include <linux/module.h> #include <linux/slab.h> /** * x86_match_cpu - match current CPU again an array of x86_cpu_ids * @match: Pointer to array of x86_cpu_ids. Last entry terminated with * {}. * * Return the entry if the current CPU matches the entries in the * passed x86_cpu_id match table. Otherwise NULL. The match table * contains vendor (X86_VENDOR_*), family, model and feature bits or * respective wildcard entries. * * A typical table entry would be to match a specific CPU * { X86_VENDOR_INTEL, 6, 0x12 } * or to match a specific CPU feature * { X86_FEATURE_MATCH(X86_FEATURE_FOOBAR) } * * Fields can be wildcarded with %X86_VENDOR_ANY, %X86_FAMILY_ANY, * %X86_MODEL_ANY, %X86_FEATURE_ANY or 0 (except for vendor) * * Arrays used to match for this should also be declared using * MODULE_DEVICE_TABLE(x86cpu, ...) * * This always matches against the boot cpu, assuming models and features are * consistent over all CPUs. */ const struct x86_cpu_id *x86_match_cpu(const struct x86_cpu_id *match) { const struct x86_cpu_id *m; struct cpuinfo_x86 *c = &boot_cpu_data; for (m = match; m->vendor | m->family | m->model | m->feature; m++) { if (m->vendor != X86_VENDOR_ANY && c->x86_vendor != m->vendor) continue; if (m->family != X86_FAMILY_ANY && c->x86 != m->family) continue; if (m->model != X86_MODEL_ANY && c->x86_model != m->model) continue; if (m->feature != X86_FEATURE_ANY && !cpu_has(c, m->feature)) continue; return m; } return NULL; } EXPORT_SYMBOL(x86_match_cpu); ssize_t arch_print_cpu_modalias(struct device *dev, struct device_attribute *attr, char *bufptr) { int size = PAGE_SIZE; int i, n; char *buf = bufptr; n = snprintf(buf, size, "x86cpu:vendor:%04X:family:%04X:" "model:%04X:feature:", boot_cpu_data.x86_vendor, boot_cpu_data.x86, boot_cpu_data.x86_model); size -= n; buf += n; size -= 1; for (i = 0; i < NCAPINTS*32; i++) { if (boot_cpu_has(i)) { n = snprintf(buf, size, ",%04X", i); if (n >= size) { WARN(1, "x86 features overflow page\n"); break; } size -= n; buf += n; } } *buf++ = '\n'; return buf - bufptr; } int arch_cpu_uevent(struct device *dev, struct kobj_uevent_env *env) { char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL); if (buf) { arch_print_cpu_modalias(NULL, NULL, buf); add_uevent_var(env, "MODALIAS=%s", buf); kfree(buf); } return 0; }