/* leon_smp.c: Sparc-Leon SMP support. * * based on sun4m_smp.c * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 2009 Daniel Hellstrom (daniel@gaisler.com) Aeroflex Gaisler AB * Copyright (C) 2009 Konrad Eisele (konrad@gaisler.com) Aeroflex Gaisler AB */ #include <asm/head.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/threads.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/of.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/profile.h> #include <linux/pm.h> #include <linux/delay.h> #include <linux/gfp.h> #include <linux/cpu.h> #include <linux/clockchips.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/ptrace.h> #include <linux/atomic.h> #include <asm/irq_regs.h> #include <asm/traps.h> #include <asm/delay.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/oplib.h> #include <asm/cpudata.h> #include <asm/asi.h> #include <asm/leon.h> #include <asm/leon_amba.h> #include <asm/timer.h> #include "kernel.h" #include "irq.h" extern ctxd_t *srmmu_ctx_table_phys; static int smp_processors_ready; extern volatile unsigned long cpu_callin_map[NR_CPUS]; extern cpumask_t smp_commenced_mask; void __cpuinit leon_configure_cache_smp(void); static void leon_ipi_init(void); /* IRQ number of LEON IPIs */ int leon_ipi_irq = LEON3_IRQ_IPI_DEFAULT; static inline unsigned long do_swap(volatile unsigned long *ptr, unsigned long val) { __asm__ __volatile__("swapa [%2] %3, %0\n\t" : "=&r"(val) : "0"(val), "r"(ptr), "i"(ASI_LEON_DCACHE_MISS) : "memory"); return val; } void __cpuinit leon_cpu_pre_starting(void *arg) { leon_configure_cache_smp(); } void __cpuinit leon_cpu_pre_online(void *arg) { int cpuid = hard_smp_processor_id(); /* Allow master to continue. The master will then give us the * go-ahead by setting the smp_commenced_mask and will wait without * timeouts until our setup is completed fully (signified by * our bit being set in the cpu_online_mask). */ do_swap(&cpu_callin_map[cpuid], 1); local_ops->cache_all(); local_ops->tlb_all(); /* Fix idle thread fields. */ __asm__ __volatile__("ld [%0], %%g6\n\t" : : "r"(¤t_set[cpuid]) : "memory" /* paranoid */); /* Attach to the address space of init_task. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) mb(); } /* * Cycle through the processors asking the PROM to start each one. */ extern struct linux_prom_registers smp_penguin_ctable; void __cpuinit leon_configure_cache_smp(void) { unsigned long cfg = sparc_leon3_get_dcachecfg(); int me = smp_processor_id(); if (ASI_LEON3_SYSCTRL_CFG_SSIZE(cfg) > 4) { printk(KERN_INFO "Note: SMP with snooping only works on 4k cache, found %dk(0x%x) on cpu %d, disabling caches\n", (unsigned int)ASI_LEON3_SYSCTRL_CFG_SSIZE(cfg), (unsigned int)cfg, (unsigned int)me); sparc_leon3_disable_cache(); } else { if (cfg & ASI_LEON3_SYSCTRL_CFG_SNOOPING) { sparc_leon3_enable_snooping(); } else { printk(KERN_INFO "Note: You have to enable snooping in the vhdl model cpu %d, disabling caches\n", me); sparc_leon3_disable_cache(); } } local_ops->cache_all(); local_ops->tlb_all(); } void leon_smp_setbroadcast(unsigned int mask) { int broadcast = ((LEON3_BYPASS_LOAD_PA(&(leon3_irqctrl_regs->mpstatus)) >> LEON3_IRQMPSTATUS_BROADCAST) & 1); if (!broadcast) { prom_printf("######## !!!! The irqmp-ctrl must have broadcast enabled, smp wont work !!!!! ####### nr cpus: %d\n", leon_smp_nrcpus()); if (leon_smp_nrcpus() > 1) { BUG(); } else { prom_printf("continue anyway\n"); return; } } LEON_BYPASS_STORE_PA(&(leon3_irqctrl_regs->mpbroadcast), mask); } unsigned int leon_smp_getbroadcast(void) { unsigned int mask; mask = LEON_BYPASS_LOAD_PA(&(leon3_irqctrl_regs->mpbroadcast)); return mask; } int leon_smp_nrcpus(void) { int nrcpu = ((LEON3_BYPASS_LOAD_PA(&(leon3_irqctrl_regs->mpstatus)) >> LEON3_IRQMPSTATUS_CPUNR) & 0xf) + 1; return nrcpu; } void __init leon_boot_cpus(void) { int nrcpu = leon_smp_nrcpus(); int me = smp_processor_id(); /* Setup IPI */ leon_ipi_init(); printk(KERN_INFO "%d:(%d:%d) cpus mpirq at 0x%x\n", (unsigned int)me, (unsigned int)nrcpu, (unsigned int)NR_CPUS, (unsigned int)&(leon3_irqctrl_regs->mpstatus)); leon_enable_irq_cpu(LEON3_IRQ_CROSS_CALL, me); leon_enable_irq_cpu(LEON3_IRQ_TICKER, me); leon_enable_irq_cpu(leon_ipi_irq, me); leon_smp_setbroadcast(1 << LEON3_IRQ_TICKER); leon_configure_cache_smp(); local_ops->cache_all(); } int __cpuinit leon_boot_one_cpu(int i, struct task_struct *idle) { int timeout; current_set[i] = task_thread_info(idle); /* See trampoline.S:leon_smp_cpu_startup for details... * Initialize the contexts table * Since the call to prom_startcpu() trashes the structure, * we need to re-initialize it for each cpu */ smp_penguin_ctable.which_io = 0; smp_penguin_ctable.phys_addr = (unsigned int)srmmu_ctx_table_phys; smp_penguin_ctable.reg_size = 0; /* whirrr, whirrr, whirrrrrrrrr... */ printk(KERN_INFO "Starting CPU %d : (irqmp: 0x%x)\n", (unsigned int)i, (unsigned int)&leon3_irqctrl_regs->mpstatus); local_ops->cache_all(); /* Make sure all IRQs are of from the start for this new CPU */ LEON_BYPASS_STORE_PA(&leon3_irqctrl_regs->mask[i], 0); /* Wake one CPU */ LEON_BYPASS_STORE_PA(&(leon3_irqctrl_regs->mpstatus), 1 << i); /* wheee... it's going... */ for (timeout = 0; timeout < 10000; timeout++) { if (cpu_callin_map[i]) break; udelay(200); } printk(KERN_INFO "Started CPU %d\n", (unsigned int)i); if (!(cpu_callin_map[i])) { printk(KERN_ERR "Processor %d is stuck.\n", i); return -ENODEV; } else { leon_enable_irq_cpu(LEON3_IRQ_CROSS_CALL, i); leon_enable_irq_cpu(LEON3_IRQ_TICKER, i); leon_enable_irq_cpu(leon_ipi_irq, i); } local_ops->cache_all(); return 0; } void __init leon_smp_done(void) { int i, first; int *prev; /* setup cpu list for irq rotation */ first = 0; prev = &first; for (i = 0; i < NR_CPUS; i++) { if (cpu_online(i)) { *prev = i; prev = &cpu_data(i).next; } } *prev = first; local_ops->cache_all(); /* Free unneeded trap tables */ if (!cpu_present(1)) { free_reserved_page(virt_to_page(&trapbase_cpu1)); num_physpages++; } if (!cpu_present(2)) { free_reserved_page(virt_to_page(&trapbase_cpu2)); num_physpages++; } if (!cpu_present(3)) { free_reserved_page(virt_to_page(&trapbase_cpu3)); num_physpages++; } /* Ok, they are spinning and ready to go. */ smp_processors_ready = 1; } void leon_irq_rotate(int cpu) { } struct leon_ipi_work { int single; int msk; int resched; }; static DEFINE_PER_CPU_SHARED_ALIGNED(struct leon_ipi_work, leon_ipi_work); /* Initialize IPIs on the LEON, in order to save IRQ resources only one IRQ * is used for all three types of IPIs. */ static void __init leon_ipi_init(void) { int cpu, len; struct leon_ipi_work *work; struct property *pp; struct device_node *rootnp; struct tt_entry *trap_table; unsigned long flags; /* Find IPI IRQ or stick with default value */ rootnp = of_find_node_by_path("/ambapp0"); if (rootnp) { pp = of_find_property(rootnp, "ipi_num", &len); if (pp && (*(int *)pp->value)) leon_ipi_irq = *(int *)pp->value; } printk(KERN_INFO "leon: SMP IPIs at IRQ %d\n", leon_ipi_irq); /* Adjust so that we jump directly to smpleon_ipi */ local_irq_save(flags); trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (leon_ipi_irq - 1)]; trap_table->inst_three += smpleon_ipi - real_irq_entry; local_ops->cache_all(); local_irq_restore(flags); for_each_possible_cpu(cpu) { work = &per_cpu(leon_ipi_work, cpu); work->single = work->msk = work->resched = 0; } } static void leon_send_ipi(int cpu, int level) { unsigned long mask; mask = leon_get_irqmask(level); LEON3_BYPASS_STORE_PA(&leon3_irqctrl_regs->force[cpu], mask); } static void leon_ipi_single(int cpu) { struct leon_ipi_work *work = &per_cpu(leon_ipi_work, cpu); /* Mark work */ work->single = 1; /* Generate IRQ on the CPU */ leon_send_ipi(cpu, leon_ipi_irq); } static void leon_ipi_mask_one(int cpu) { struct leon_ipi_work *work = &per_cpu(leon_ipi_work, cpu); /* Mark work */ work->msk = 1; /* Generate IRQ on the CPU */ leon_send_ipi(cpu, leon_ipi_irq); } static void leon_ipi_resched(int cpu) { struct leon_ipi_work *work = &per_cpu(leon_ipi_work, cpu); /* Mark work */ work->resched = 1; /* Generate IRQ on the CPU (any IRQ will cause resched) */ leon_send_ipi(cpu, leon_ipi_irq); } void leonsmp_ipi_interrupt(void) { struct leon_ipi_work *work = &__get_cpu_var(leon_ipi_work); if (work->single) { work->single = 0; smp_call_function_single_interrupt(); } if (work->msk) { work->msk = 0; smp_call_function_interrupt(); } if (work->resched) { work->resched = 0; smp_resched_interrupt(); } } static struct smp_funcall { smpfunc_t func; unsigned long arg1; unsigned long arg2; unsigned long arg3; unsigned long arg4; unsigned long arg5; unsigned long processors_in[NR_CPUS]; /* Set when ipi entered. */ unsigned long processors_out[NR_CPUS]; /* Set when ipi exited. */ } ccall_info; static DEFINE_SPINLOCK(cross_call_lock); /* Cross calls must be serialized, at least currently. */ static void leon_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1, unsigned long arg2, unsigned long arg3, unsigned long arg4) { if (smp_processors_ready) { register int high = NR_CPUS - 1; unsigned long flags; spin_lock_irqsave(&cross_call_lock, flags); { /* If you make changes here, make sure gcc generates proper code... */ register smpfunc_t f asm("i0") = func; register unsigned long a1 asm("i1") = arg1; register unsigned long a2 asm("i2") = arg2; register unsigned long a3 asm("i3") = arg3; register unsigned long a4 asm("i4") = arg4; register unsigned long a5 asm("i5") = 0; __asm__ __volatile__("std %0, [%6]\n\t" "std %2, [%6 + 8]\n\t" "std %4, [%6 + 16]\n\t" : : "r"(f), "r"(a1), "r"(a2), "r"(a3), "r"(a4), "r"(a5), "r"(&ccall_info.func)); } /* Init receive/complete mapping, plus fire the IPI's off. */ { register int i; cpumask_clear_cpu(smp_processor_id(), &mask); cpumask_and(&mask, cpu_online_mask, &mask); for (i = 0; i <= high; i++) { if (cpumask_test_cpu(i, &mask)) { ccall_info.processors_in[i] = 0; ccall_info.processors_out[i] = 0; leon_send_ipi(i, LEON3_IRQ_CROSS_CALL); } } } { register int i; i = 0; do { if (!cpumask_test_cpu(i, &mask)) continue; while (!ccall_info.processors_in[i]) barrier(); } while (++i <= high); i = 0; do { if (!cpumask_test_cpu(i, &mask)) continue; while (!ccall_info.processors_out[i]) barrier(); } while (++i <= high); } spin_unlock_irqrestore(&cross_call_lock, flags); } } /* Running cross calls. */ void leon_cross_call_irq(void) { int i = smp_processor_id(); ccall_info.processors_in[i] = 1; ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, ccall_info.arg4, ccall_info.arg5); ccall_info.processors_out[i] = 1; } static const struct sparc32_ipi_ops leon_ipi_ops = { .cross_call = leon_cross_call, .resched = leon_ipi_resched, .single = leon_ipi_single, .mask_one = leon_ipi_mask_one, }; void __init leon_init_smp(void) { /* Patch ipi15 trap table */ t_nmi[1] = t_nmi[1] + (linux_trap_ipi15_leon - linux_trap_ipi15_sun4m); sparc32_ipi_ops = &leon_ipi_ops; }