/* Glue code for CRC32C optimized for sparc64 crypto opcodes. * * This is based largely upon arch/x86/crypto/crc32c-intel.c * * Copyright (C) 2008 Intel Corporation * Authors: Austin Zhang <austin_zhang@linux.intel.com> * Kent Liu <kent.liu@intel.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <linux/module.h> #include <linux/string.h> #include <linux/kernel.h> #include <linux/crc32.h> #include <crypto/internal/hash.h> #include <asm/pstate.h> #include <asm/elf.h> #include "opcodes.h" /* * Setting the seed allows arbitrary accumulators and flexible XOR policy * If your algorithm starts with ~0, then XOR with ~0 before you set * the seed. */ static int crc32c_sparc64_setkey(struct crypto_shash *hash, const u8 *key, unsigned int keylen) { u32 *mctx = crypto_shash_ctx(hash); if (keylen != sizeof(u32)) { crypto_shash_set_flags(hash, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } *(__le32 *)mctx = le32_to_cpup((__le32 *)key); return 0; } static int crc32c_sparc64_init(struct shash_desc *desc) { u32 *mctx = crypto_shash_ctx(desc->tfm); u32 *crcp = shash_desc_ctx(desc); *crcp = *mctx; return 0; } extern void crc32c_sparc64(u32 *crcp, const u64 *data, unsigned int len); static void crc32c_compute(u32 *crcp, const u64 *data, unsigned int len) { unsigned int asm_len; asm_len = len & ~7U; if (asm_len) { crc32c_sparc64(crcp, data, asm_len); data += asm_len / 8; len -= asm_len; } if (len) *crcp = __crc32c_le(*crcp, (const unsigned char *) data, len); } static int crc32c_sparc64_update(struct shash_desc *desc, const u8 *data, unsigned int len) { u32 *crcp = shash_desc_ctx(desc); crc32c_compute(crcp, (const u64 *) data, len); return 0; } static int __crc32c_sparc64_finup(u32 *crcp, const u8 *data, unsigned int len, u8 *out) { u32 tmp = *crcp; crc32c_compute(&tmp, (const u64 *) data, len); *(__le32 *) out = ~cpu_to_le32(tmp); return 0; } static int crc32c_sparc64_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return __crc32c_sparc64_finup(shash_desc_ctx(desc), data, len, out); } static int crc32c_sparc64_final(struct shash_desc *desc, u8 *out) { u32 *crcp = shash_desc_ctx(desc); *(__le32 *) out = ~cpu_to_le32p(crcp); return 0; } static int crc32c_sparc64_digest(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return __crc32c_sparc64_finup(crypto_shash_ctx(desc->tfm), data, len, out); } static int crc32c_sparc64_cra_init(struct crypto_tfm *tfm) { u32 *key = crypto_tfm_ctx(tfm); *key = ~0; return 0; } #define CHKSUM_BLOCK_SIZE 1 #define CHKSUM_DIGEST_SIZE 4 static struct shash_alg alg = { .setkey = crc32c_sparc64_setkey, .init = crc32c_sparc64_init, .update = crc32c_sparc64_update, .final = crc32c_sparc64_final, .finup = crc32c_sparc64_finup, .digest = crc32c_sparc64_digest, .descsize = sizeof(u32), .digestsize = CHKSUM_DIGEST_SIZE, .base = { .cra_name = "crc32c", .cra_driver_name = "crc32c-sparc64", .cra_priority = SPARC_CR_OPCODE_PRIORITY, .cra_blocksize = CHKSUM_BLOCK_SIZE, .cra_ctxsize = sizeof(u32), .cra_alignmask = 7, .cra_module = THIS_MODULE, .cra_init = crc32c_sparc64_cra_init, } }; static bool __init sparc64_has_crc32c_opcode(void) { unsigned long cfr; if (!(sparc64_elf_hwcap & HWCAP_SPARC_CRYPTO)) return false; __asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr)); if (!(cfr & CFR_CRC32C)) return false; return true; } static int __init crc32c_sparc64_mod_init(void) { if (sparc64_has_crc32c_opcode()) { pr_info("Using sparc64 crc32c opcode optimized CRC32C implementation\n"); return crypto_register_shash(&alg); } pr_info("sparc64 crc32c opcode not available.\n"); return -ENODEV; } static void __exit crc32c_sparc64_mod_fini(void) { crypto_unregister_shash(&alg); } module_init(crc32c_sparc64_mod_init); module_exit(crc32c_sparc64_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("CRC32c (Castagnoli), sparc64 crc32c opcode accelerated"); MODULE_ALIAS("crc32c"); #include "crop_devid.c"