/* * Performance counter callchain support - powerpc architecture code * * Copyright © 2009 Paul Mackerras, IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/perf_event.h> #include <linux/percpu.h> #include <linux/uaccess.h> #include <linux/mm.h> #include <asm/ptrace.h> #include <asm/pgtable.h> #include <asm/sigcontext.h> #include <asm/ucontext.h> #include <asm/vdso.h> #ifdef CONFIG_PPC64 #include "../kernel/ppc32.h" #endif /* * Is sp valid as the address of the next kernel stack frame after prev_sp? * The next frame may be in a different stack area but should not go * back down in the same stack area. */ static int valid_next_sp(unsigned long sp, unsigned long prev_sp) { if (sp & 0xf) return 0; /* must be 16-byte aligned */ if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD)) return 0; if (sp >= prev_sp + STACK_FRAME_OVERHEAD) return 1; /* * sp could decrease when we jump off an interrupt stack * back to the regular process stack. */ if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1))) return 1; return 0; } void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) { unsigned long sp, next_sp; unsigned long next_ip; unsigned long lr; long level = 0; unsigned long *fp; lr = regs->link; sp = regs->gpr[1]; perf_callchain_store(entry, perf_instruction_pointer(regs)); if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD)) return; for (;;) { fp = (unsigned long *) sp; next_sp = fp[0]; if (next_sp == sp + STACK_INT_FRAME_SIZE && fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { /* * This looks like an interrupt frame for an * interrupt that occurred in the kernel */ regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD); next_ip = regs->nip; lr = regs->link; level = 0; perf_callchain_store(entry, PERF_CONTEXT_KERNEL); } else { if (level == 0) next_ip = lr; else next_ip = fp[STACK_FRAME_LR_SAVE]; /* * We can't tell which of the first two addresses * we get are valid, but we can filter out the * obviously bogus ones here. We replace them * with 0 rather than removing them entirely so * that userspace can tell which is which. */ if ((level == 1 && next_ip == lr) || (level <= 1 && !kernel_text_address(next_ip))) next_ip = 0; ++level; } perf_callchain_store(entry, next_ip); if (!valid_next_sp(next_sp, sp)) return; sp = next_sp; } } #ifdef CONFIG_PPC64 /* * On 64-bit we don't want to invoke hash_page on user addresses from * interrupt context, so if the access faults, we read the page tables * to find which page (if any) is mapped and access it directly. */ static int read_user_stack_slow(void __user *ptr, void *ret, int nb) { pgd_t *pgdir; pte_t *ptep, pte; unsigned shift; unsigned long addr = (unsigned long) ptr; unsigned long offset; unsigned long pfn; void *kaddr; pgdir = current->mm->pgd; if (!pgdir) return -EFAULT; ptep = find_linux_pte_or_hugepte(pgdir, addr, &shift); if (!shift) shift = PAGE_SHIFT; /* align address to page boundary */ offset = addr & ((1UL << shift) - 1); addr -= offset; if (ptep == NULL) return -EFAULT; pte = *ptep; if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER)) return -EFAULT; pfn = pte_pfn(pte); if (!page_is_ram(pfn)) return -EFAULT; /* no highmem to worry about here */ kaddr = pfn_to_kaddr(pfn); memcpy(ret, kaddr + offset, nb); return 0; } static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret) { if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) || ((unsigned long)ptr & 7)) return -EFAULT; pagefault_disable(); if (!__get_user_inatomic(*ret, ptr)) { pagefault_enable(); return 0; } pagefault_enable(); return read_user_stack_slow(ptr, ret, 8); } static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret) { if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) || ((unsigned long)ptr & 3)) return -EFAULT; pagefault_disable(); if (!__get_user_inatomic(*ret, ptr)) { pagefault_enable(); return 0; } pagefault_enable(); return read_user_stack_slow(ptr, ret, 4); } static inline int valid_user_sp(unsigned long sp, int is_64) { if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32) return 0; return 1; } /* * 64-bit user processes use the same stack frame for RT and non-RT signals. */ struct signal_frame_64 { char dummy[__SIGNAL_FRAMESIZE]; struct ucontext uc; unsigned long unused[2]; unsigned int tramp[6]; struct siginfo *pinfo; void *puc; struct siginfo info; char abigap[288]; }; static int is_sigreturn_64_address(unsigned long nip, unsigned long fp) { if (nip == fp + offsetof(struct signal_frame_64, tramp)) return 1; if (vdso64_rt_sigtramp && current->mm->context.vdso_base && nip == current->mm->context.vdso_base + vdso64_rt_sigtramp) return 1; return 0; } /* * Do some sanity checking on the signal frame pointed to by sp. * We check the pinfo and puc pointers in the frame. */ static int sane_signal_64_frame(unsigned long sp) { struct signal_frame_64 __user *sf; unsigned long pinfo, puc; sf = (struct signal_frame_64 __user *) sp; if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) || read_user_stack_64((unsigned long __user *) &sf->puc, &puc)) return 0; return pinfo == (unsigned long) &sf->info && puc == (unsigned long) &sf->uc; } static void perf_callchain_user_64(struct perf_callchain_entry *entry, struct pt_regs *regs) { unsigned long sp, next_sp; unsigned long next_ip; unsigned long lr; long level = 0; struct signal_frame_64 __user *sigframe; unsigned long __user *fp, *uregs; next_ip = perf_instruction_pointer(regs); lr = regs->link; sp = regs->gpr[1]; perf_callchain_store(entry, next_ip); for (;;) { fp = (unsigned long __user *) sp; if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp)) return; if (level > 0 && read_user_stack_64(&fp[2], &next_ip)) return; /* * Note: the next_sp - sp >= signal frame size check * is true when next_sp < sp, which can happen when * transitioning from an alternate signal stack to the * normal stack. */ if (next_sp - sp >= sizeof(struct signal_frame_64) && (is_sigreturn_64_address(next_ip, sp) || (level <= 1 && is_sigreturn_64_address(lr, sp))) && sane_signal_64_frame(sp)) { /* * This looks like an signal frame */ sigframe = (struct signal_frame_64 __user *) sp; uregs = sigframe->uc.uc_mcontext.gp_regs; if (read_user_stack_64(&uregs[PT_NIP], &next_ip) || read_user_stack_64(&uregs[PT_LNK], &lr) || read_user_stack_64(&uregs[PT_R1], &sp)) return; level = 0; perf_callchain_store(entry, PERF_CONTEXT_USER); perf_callchain_store(entry, next_ip); continue; } if (level == 0) next_ip = lr; perf_callchain_store(entry, next_ip); ++level; sp = next_sp; } } static inline int current_is_64bit(void) { /* * We can't use test_thread_flag() here because we may be on an * interrupt stack, and the thread flags don't get copied over * from the thread_info on the main stack to the interrupt stack. */ return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT); } #else /* CONFIG_PPC64 */ /* * On 32-bit we just access the address and let hash_page create a * HPTE if necessary, so there is no need to fall back to reading * the page tables. Since this is called at interrupt level, * do_page_fault() won't treat a DSI as a page fault. */ static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret) { int rc; if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) || ((unsigned long)ptr & 3)) return -EFAULT; pagefault_disable(); rc = __get_user_inatomic(*ret, ptr); pagefault_enable(); return rc; } static inline void perf_callchain_user_64(struct perf_callchain_entry *entry, struct pt_regs *regs) { } static inline int current_is_64bit(void) { return 0; } static inline int valid_user_sp(unsigned long sp, int is_64) { if (!sp || (sp & 7) || sp > TASK_SIZE - 32) return 0; return 1; } #define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE #define sigcontext32 sigcontext #define mcontext32 mcontext #define ucontext32 ucontext #define compat_siginfo_t struct siginfo #endif /* CONFIG_PPC64 */ /* * Layout for non-RT signal frames */ struct signal_frame_32 { char dummy[__SIGNAL_FRAMESIZE32]; struct sigcontext32 sctx; struct mcontext32 mctx; int abigap[56]; }; /* * Layout for RT signal frames */ struct rt_signal_frame_32 { char dummy[__SIGNAL_FRAMESIZE32 + 16]; compat_siginfo_t info; struct ucontext32 uc; int abigap[56]; }; static int is_sigreturn_32_address(unsigned int nip, unsigned int fp) { if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad)) return 1; if (vdso32_sigtramp && current->mm->context.vdso_base && nip == current->mm->context.vdso_base + vdso32_sigtramp) return 1; return 0; } static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp) { if (nip == fp + offsetof(struct rt_signal_frame_32, uc.uc_mcontext.mc_pad)) return 1; if (vdso32_rt_sigtramp && current->mm->context.vdso_base && nip == current->mm->context.vdso_base + vdso32_rt_sigtramp) return 1; return 0; } static int sane_signal_32_frame(unsigned int sp) { struct signal_frame_32 __user *sf; unsigned int regs; sf = (struct signal_frame_32 __user *) (unsigned long) sp; if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, ®s)) return 0; return regs == (unsigned long) &sf->mctx; } static int sane_rt_signal_32_frame(unsigned int sp) { struct rt_signal_frame_32 __user *sf; unsigned int regs; sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp; if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, ®s)) return 0; return regs == (unsigned long) &sf->uc.uc_mcontext; } static unsigned int __user *signal_frame_32_regs(unsigned int sp, unsigned int next_sp, unsigned int next_ip) { struct mcontext32 __user *mctx = NULL; struct signal_frame_32 __user *sf; struct rt_signal_frame_32 __user *rt_sf; /* * Note: the next_sp - sp >= signal frame size check * is true when next_sp < sp, for example, when * transitioning from an alternate signal stack to the * normal stack. */ if (next_sp - sp >= sizeof(struct signal_frame_32) && is_sigreturn_32_address(next_ip, sp) && sane_signal_32_frame(sp)) { sf = (struct signal_frame_32 __user *) (unsigned long) sp; mctx = &sf->mctx; } if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) && is_rt_sigreturn_32_address(next_ip, sp) && sane_rt_signal_32_frame(sp)) { rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp; mctx = &rt_sf->uc.uc_mcontext; } if (!mctx) return NULL; return mctx->mc_gregs; } static void perf_callchain_user_32(struct perf_callchain_entry *entry, struct pt_regs *regs) { unsigned int sp, next_sp; unsigned int next_ip; unsigned int lr; long level = 0; unsigned int __user *fp, *uregs; next_ip = perf_instruction_pointer(regs); lr = regs->link; sp = regs->gpr[1]; perf_callchain_store(entry, next_ip); while (entry->nr < PERF_MAX_STACK_DEPTH) { fp = (unsigned int __user *) (unsigned long) sp; if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp)) return; if (level > 0 && read_user_stack_32(&fp[1], &next_ip)) return; uregs = signal_frame_32_regs(sp, next_sp, next_ip); if (!uregs && level <= 1) uregs = signal_frame_32_regs(sp, next_sp, lr); if (uregs) { /* * This looks like an signal frame, so restart * the stack trace with the values in it. */ if (read_user_stack_32(&uregs[PT_NIP], &next_ip) || read_user_stack_32(&uregs[PT_LNK], &lr) || read_user_stack_32(&uregs[PT_R1], &sp)) return; level = 0; perf_callchain_store(entry, PERF_CONTEXT_USER); perf_callchain_store(entry, next_ip); continue; } if (level == 0) next_ip = lr; perf_callchain_store(entry, next_ip); ++level; sp = next_sp; } } void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) { if (current_is_64bit()) perf_callchain_user_64(entry, regs); else perf_callchain_user_32(entry, regs); }