/* * PowerPC64 Segment Translation Support. * * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com * Copyright (c) 2001 Dave Engebretsen * * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/memblock.h> #include <asm/pgtable.h> #include <asm/mmu.h> #include <asm/mmu_context.h> #include <asm/paca.h> #include <asm/cputable.h> #include <asm/prom.h> struct stab_entry { unsigned long esid_data; unsigned long vsid_data; }; #define NR_STAB_CACHE_ENTRIES 8 static DEFINE_PER_CPU(long, stab_cache_ptr); static DEFINE_PER_CPU(long [NR_STAB_CACHE_ENTRIES], stab_cache); /* * Create a segment table entry for the given esid/vsid pair. */ static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid) { unsigned long esid_data, vsid_data; unsigned long entry, group, old_esid, castout_entry, i; unsigned int global_entry; struct stab_entry *ste, *castout_ste; unsigned long kernel_segment = (esid << SID_SHIFT) >= PAGE_OFFSET; vsid_data = vsid << STE_VSID_SHIFT; esid_data = esid << SID_SHIFT | STE_ESID_KP | STE_ESID_V; if (! kernel_segment) esid_data |= STE_ESID_KS; /* Search the primary group first. */ global_entry = (esid & 0x1f) << 3; ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7)); /* Find an empty entry, if one exists. */ for (group = 0; group < 2; group++) { for (entry = 0; entry < 8; entry++, ste++) { if (!(ste->esid_data & STE_ESID_V)) { ste->vsid_data = vsid_data; eieio(); ste->esid_data = esid_data; return (global_entry | entry); } } /* Now search the secondary group. */ global_entry = ((~esid) & 0x1f) << 3; ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7)); } /* * Could not find empty entry, pick one with a round robin selection. * Search all entries in the two groups. */ castout_entry = get_paca()->stab_rr; for (i = 0; i < 16; i++) { if (castout_entry < 8) { global_entry = (esid & 0x1f) << 3; ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7)); castout_ste = ste + castout_entry; } else { global_entry = ((~esid) & 0x1f) << 3; ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7)); castout_ste = ste + (castout_entry - 8); } /* Dont cast out the first kernel segment */ if ((castout_ste->esid_data & ESID_MASK) != PAGE_OFFSET) break; castout_entry = (castout_entry + 1) & 0xf; } get_paca()->stab_rr = (castout_entry + 1) & 0xf; /* Modify the old entry to the new value. */ /* Force previous translations to complete. DRENG */ asm volatile("isync" : : : "memory"); old_esid = castout_ste->esid_data >> SID_SHIFT; castout_ste->esid_data = 0; /* Invalidate old entry */ asm volatile("sync" : : : "memory"); /* Order update */ castout_ste->vsid_data = vsid_data; eieio(); /* Order update */ castout_ste->esid_data = esid_data; asm volatile("slbie %0" : : "r" (old_esid << SID_SHIFT)); /* Ensure completion of slbie */ asm volatile("sync" : : : "memory"); return (global_entry | (castout_entry & 0x7)); } /* * Allocate a segment table entry for the given ea and mm */ static int __ste_allocate(unsigned long ea, struct mm_struct *mm) { unsigned long vsid; unsigned char stab_entry; unsigned long offset; /* Kernel or user address? */ if (is_kernel_addr(ea)) { vsid = get_kernel_vsid(ea, MMU_SEGSIZE_256M); } else { if ((ea >= TASK_SIZE_USER64) || (! mm)) return 1; vsid = get_vsid(mm->context.id, ea, MMU_SEGSIZE_256M); } stab_entry = make_ste(get_paca()->stab_addr, GET_ESID(ea), vsid); if (!is_kernel_addr(ea)) { offset = __get_cpu_var(stab_cache_ptr); if (offset < NR_STAB_CACHE_ENTRIES) __get_cpu_var(stab_cache[offset++]) = stab_entry; else offset = NR_STAB_CACHE_ENTRIES+1; __get_cpu_var(stab_cache_ptr) = offset; /* Order update */ asm volatile("sync":::"memory"); } return 0; } int ste_allocate(unsigned long ea) { return __ste_allocate(ea, current->mm); } /* * Do the segment table work for a context switch: flush all user * entries from the table, then preload some probably useful entries * for the new task */ void switch_stab(struct task_struct *tsk, struct mm_struct *mm) { struct stab_entry *stab = (struct stab_entry *) get_paca()->stab_addr; struct stab_entry *ste; unsigned long offset; unsigned long pc = KSTK_EIP(tsk); unsigned long stack = KSTK_ESP(tsk); unsigned long unmapped_base; /* Force previous translations to complete. DRENG */ asm volatile("isync" : : : "memory"); /* * We need interrupts hard-disabled here, not just soft-disabled, * so that a PMU interrupt can't occur, which might try to access * user memory (to get a stack trace) and possible cause an STAB miss * which would update the stab_cache/stab_cache_ptr per-cpu variables. */ hard_irq_disable(); offset = __get_cpu_var(stab_cache_ptr); if (offset <= NR_STAB_CACHE_ENTRIES) { int i; for (i = 0; i < offset; i++) { ste = stab + __get_cpu_var(stab_cache[i]); ste->esid_data = 0; /* invalidate entry */ } } else { unsigned long entry; /* Invalidate all entries. */ ste = stab; /* Never flush the first entry. */ ste += 1; for (entry = 1; entry < (HW_PAGE_SIZE / sizeof(struct stab_entry)); entry++, ste++) { unsigned long ea; ea = ste->esid_data & ESID_MASK; if (!is_kernel_addr(ea)) { ste->esid_data = 0; } } } asm volatile("sync; slbia; sync":::"memory"); __get_cpu_var(stab_cache_ptr) = 0; /* Now preload some entries for the new task */ if (test_tsk_thread_flag(tsk, TIF_32BIT)) unmapped_base = TASK_UNMAPPED_BASE_USER32; else unmapped_base = TASK_UNMAPPED_BASE_USER64; __ste_allocate(pc, mm); if (GET_ESID(pc) == GET_ESID(stack)) return; __ste_allocate(stack, mm); if ((GET_ESID(pc) == GET_ESID(unmapped_base)) || (GET_ESID(stack) == GET_ESID(unmapped_base))) return; __ste_allocate(unmapped_base, mm); /* Order update */ asm volatile("sync" : : : "memory"); } /* * Allocate segment tables for secondary CPUs. These must all go in * the first (bolted) segment, so that do_stab_bolted won't get a * recursive segment miss on the segment table itself. */ void __init stabs_alloc(void) { int cpu; if (mmu_has_feature(MMU_FTR_SLB)) return; for_each_possible_cpu(cpu) { unsigned long newstab; if (cpu == 0) continue; /* stab for CPU 0 is statically allocated */ newstab = memblock_alloc_base(HW_PAGE_SIZE, HW_PAGE_SIZE, 1<<SID_SHIFT); newstab = (unsigned long)__va(newstab); memset((void *)newstab, 0, HW_PAGE_SIZE); paca[cpu].stab_addr = newstab; paca[cpu].stab_real = __pa(newstab); printk(KERN_INFO "Segment table for CPU %d at 0x%llx " "virtual, 0x%llx absolute\n", cpu, paca[cpu].stab_addr, paca[cpu].stab_real); } } /* * Build an entry for the base kernel segment and put it into * the segment table or SLB. All other segment table or SLB * entries are faulted in. */ void stab_initialize(unsigned long stab) { unsigned long vsid = get_kernel_vsid(PAGE_OFFSET, MMU_SEGSIZE_256M); unsigned long stabreal; asm volatile("isync; slbia; isync":::"memory"); make_ste(stab, GET_ESID(PAGE_OFFSET), vsid); /* Order update */ asm volatile("sync":::"memory"); /* Set ASR */ stabreal = get_paca()->stab_real | 0x1ul; mtspr(SPRN_ASR, stabreal); }