/* * pSeries NUMA support * * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/threads.h> #include <linux/bootmem.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/export.h> #include <linux/nodemask.h> #include <linux/cpu.h> #include <linux/notifier.h> #include <linux/memblock.h> #include <linux/of.h> #include <linux/pfn.h> #include <linux/cpuset.h> #include <linux/node.h> #include <linux/stop_machine.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/uaccess.h> #include <linux/slab.h> #include <asm/sparsemem.h> #include <asm/prom.h> #include <asm/smp.h> #include <asm/firmware.h> #include <asm/paca.h> #include <asm/hvcall.h> #include <asm/setup.h> #include <asm/vdso.h> static int numa_enabled = 1; static char *cmdline __initdata; static int numa_debug; #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } int numa_cpu_lookup_table[NR_CPUS]; cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; struct pglist_data *node_data[MAX_NUMNODES]; EXPORT_SYMBOL(numa_cpu_lookup_table); EXPORT_SYMBOL(node_to_cpumask_map); EXPORT_SYMBOL(node_data); static int min_common_depth; static int n_mem_addr_cells, n_mem_size_cells; static int form1_affinity; #define MAX_DISTANCE_REF_POINTS 4 static int distance_ref_points_depth; static const unsigned int *distance_ref_points; static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; /* * Allocate node_to_cpumask_map based on number of available nodes * Requires node_possible_map to be valid. * * Note: cpumask_of_node() is not valid until after this is done. */ static void __init setup_node_to_cpumask_map(void) { unsigned int node; /* setup nr_node_ids if not done yet */ if (nr_node_ids == MAX_NUMNODES) setup_nr_node_ids(); /* allocate the map */ for (node = 0; node < nr_node_ids; node++) alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); /* cpumask_of_node() will now work */ dbg("Node to cpumask map for %d nodes\n", nr_node_ids); } static int __init fake_numa_create_new_node(unsigned long end_pfn, unsigned int *nid) { unsigned long long mem; char *p = cmdline; static unsigned int fake_nid; static unsigned long long curr_boundary; /* * Modify node id, iff we started creating NUMA nodes * We want to continue from where we left of the last time */ if (fake_nid) *nid = fake_nid; /* * In case there are no more arguments to parse, the * node_id should be the same as the last fake node id * (we've handled this above). */ if (!p) return 0; mem = memparse(p, &p); if (!mem) return 0; if (mem < curr_boundary) return 0; curr_boundary = mem; if ((end_pfn << PAGE_SHIFT) > mem) { /* * Skip commas and spaces */ while (*p == ',' || *p == ' ' || *p == '\t') p++; cmdline = p; fake_nid++; *nid = fake_nid; dbg("created new fake_node with id %d\n", fake_nid); return 1; } return 0; } /* * get_node_active_region - Return active region containing pfn * Active range returned is empty if none found. * @pfn: The page to return the region for * @node_ar: Returned set to the active region containing @pfn */ static void __init get_node_active_region(unsigned long pfn, struct node_active_region *node_ar) { unsigned long start_pfn, end_pfn; int i, nid; for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { if (pfn >= start_pfn && pfn < end_pfn) { node_ar->nid = nid; node_ar->start_pfn = start_pfn; node_ar->end_pfn = end_pfn; break; } } } static void map_cpu_to_node(int cpu, int node) { numa_cpu_lookup_table[cpu] = node; dbg("adding cpu %d to node %d\n", cpu, node); if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) cpumask_set_cpu(cpu, node_to_cpumask_map[node]); } #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) static void unmap_cpu_from_node(unsigned long cpu) { int node = numa_cpu_lookup_table[cpu]; dbg("removing cpu %lu from node %d\n", cpu, node); if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); } else { printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", cpu, node); } } #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ /* must hold reference to node during call */ static const int *of_get_associativity(struct device_node *dev) { return of_get_property(dev, "ibm,associativity", NULL); } /* * Returns the property linux,drconf-usable-memory if * it exists (the property exists only in kexec/kdump kernels, * added by kexec-tools) */ static const u32 *of_get_usable_memory(struct device_node *memory) { const u32 *prop; u32 len; prop = of_get_property(memory, "linux,drconf-usable-memory", &len); if (!prop || len < sizeof(unsigned int)) return 0; return prop; } int __node_distance(int a, int b) { int i; int distance = LOCAL_DISTANCE; if (!form1_affinity) return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); for (i = 0; i < distance_ref_points_depth; i++) { if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) break; /* Double the distance for each NUMA level */ distance *= 2; } return distance; } static void initialize_distance_lookup_table(int nid, const unsigned int *associativity) { int i; if (!form1_affinity) return; for (i = 0; i < distance_ref_points_depth; i++) { distance_lookup_table[nid][i] = associativity[distance_ref_points[i]]; } } /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa * info is found. */ static int associativity_to_nid(const unsigned int *associativity) { int nid = -1; if (min_common_depth == -1) goto out; if (associativity[0] >= min_common_depth) nid = associativity[min_common_depth]; /* POWER4 LPAR uses 0xffff as invalid node */ if (nid == 0xffff || nid >= MAX_NUMNODES) nid = -1; if (nid > 0 && associativity[0] >= distance_ref_points_depth) initialize_distance_lookup_table(nid, associativity); out: return nid; } /* Returns the nid associated with the given device tree node, * or -1 if not found. */ static int of_node_to_nid_single(struct device_node *device) { int nid = -1; const unsigned int *tmp; tmp = of_get_associativity(device); if (tmp) nid = associativity_to_nid(tmp); return nid; } /* Walk the device tree upwards, looking for an associativity id */ int of_node_to_nid(struct device_node *device) { struct device_node *tmp; int nid = -1; of_node_get(device); while (device) { nid = of_node_to_nid_single(device); if (nid != -1) break; tmp = device; device = of_get_parent(tmp); of_node_put(tmp); } of_node_put(device); return nid; } EXPORT_SYMBOL_GPL(of_node_to_nid); static int __init find_min_common_depth(void) { int depth; struct device_node *root; if (firmware_has_feature(FW_FEATURE_OPAL)) root = of_find_node_by_path("/ibm,opal"); else root = of_find_node_by_path("/rtas"); if (!root) root = of_find_node_by_path("/"); /* * This property is a set of 32-bit integers, each representing * an index into the ibm,associativity nodes. * * With form 0 affinity the first integer is for an SMP configuration * (should be all 0's) and the second is for a normal NUMA * configuration. We have only one level of NUMA. * * With form 1 affinity the first integer is the most significant * NUMA boundary and the following are progressively less significant * boundaries. There can be more than one level of NUMA. */ distance_ref_points = of_get_property(root, "ibm,associativity-reference-points", &distance_ref_points_depth); if (!distance_ref_points) { dbg("NUMA: ibm,associativity-reference-points not found.\n"); goto err; } distance_ref_points_depth /= sizeof(int); if (firmware_has_feature(FW_FEATURE_OPAL) || firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { dbg("Using form 1 affinity\n"); form1_affinity = 1; } if (form1_affinity) { depth = distance_ref_points[0]; } else { if (distance_ref_points_depth < 2) { printk(KERN_WARNING "NUMA: " "short ibm,associativity-reference-points\n"); goto err; } depth = distance_ref_points[1]; } /* * Warn and cap if the hardware supports more than * MAX_DISTANCE_REF_POINTS domains. */ if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { printk(KERN_WARNING "NUMA: distance array capped at " "%d entries\n", MAX_DISTANCE_REF_POINTS); distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; } of_node_put(root); return depth; err: of_node_put(root); return -1; } static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) { struct device_node *memory = NULL; memory = of_find_node_by_type(memory, "memory"); if (!memory) panic("numa.c: No memory nodes found!"); *n_addr_cells = of_n_addr_cells(memory); *n_size_cells = of_n_size_cells(memory); of_node_put(memory); } static unsigned long read_n_cells(int n, const unsigned int **buf) { unsigned long result = 0; while (n--) { result = (result << 32) | **buf; (*buf)++; } return result; } /* * Read the next memblock list entry from the ibm,dynamic-memory property * and return the information in the provided of_drconf_cell structure. */ static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) { const u32 *cp; drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); cp = *cellp; drmem->drc_index = cp[0]; drmem->reserved = cp[1]; drmem->aa_index = cp[2]; drmem->flags = cp[3]; *cellp = cp + 4; } /* * Retrieve and validate the ibm,dynamic-memory property of the device tree. * * The layout of the ibm,dynamic-memory property is a number N of memblock * list entries followed by N memblock list entries. Each memblock list entry * contains information as laid out in the of_drconf_cell struct above. */ static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) { const u32 *prop; u32 len, entries; prop = of_get_property(memory, "ibm,dynamic-memory", &len); if (!prop || len < sizeof(unsigned int)) return 0; entries = *prop++; /* Now that we know the number of entries, revalidate the size * of the property read in to ensure we have everything */ if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) return 0; *dm = prop; return entries; } /* * Retrieve and validate the ibm,lmb-size property for drconf memory * from the device tree. */ static u64 of_get_lmb_size(struct device_node *memory) { const u32 *prop; u32 len; prop = of_get_property(memory, "ibm,lmb-size", &len); if (!prop || len < sizeof(unsigned int)) return 0; return read_n_cells(n_mem_size_cells, &prop); } struct assoc_arrays { u32 n_arrays; u32 array_sz; const u32 *arrays; }; /* * Retrieve and validate the list of associativity arrays for drconf * memory from the ibm,associativity-lookup-arrays property of the * device tree.. * * The layout of the ibm,associativity-lookup-arrays property is a number N * indicating the number of associativity arrays, followed by a number M * indicating the size of each associativity array, followed by a list * of N associativity arrays. */ static int of_get_assoc_arrays(struct device_node *memory, struct assoc_arrays *aa) { const u32 *prop; u32 len; prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); if (!prop || len < 2 * sizeof(unsigned int)) return -1; aa->n_arrays = *prop++; aa->array_sz = *prop++; /* Now that we know the number of arrays and size of each array, * revalidate the size of the property read in. */ if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) return -1; aa->arrays = prop; return 0; } /* * This is like of_node_to_nid_single() for memory represented in the * ibm,dynamic-reconfiguration-memory node. */ static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, struct assoc_arrays *aa) { int default_nid = 0; int nid = default_nid; int index; if (min_common_depth > 0 && min_common_depth <= aa->array_sz && !(drmem->flags & DRCONF_MEM_AI_INVALID) && drmem->aa_index < aa->n_arrays) { index = drmem->aa_index * aa->array_sz + min_common_depth - 1; nid = aa->arrays[index]; if (nid == 0xffff || nid >= MAX_NUMNODES) nid = default_nid; } return nid; } /* * Figure out to which domain a cpu belongs and stick it there. * Return the id of the domain used. */ static int __cpuinit numa_setup_cpu(unsigned long lcpu) { int nid = 0; struct device_node *cpu = of_get_cpu_node(lcpu, NULL); if (!cpu) { WARN_ON(1); goto out; } nid = of_node_to_nid_single(cpu); if (nid < 0 || !node_online(nid)) nid = first_online_node; out: map_cpu_to_node(lcpu, nid); of_node_put(cpu); return nid; } static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned long lcpu = (unsigned long)hcpu; int ret = NOTIFY_DONE; switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: numa_setup_cpu(lcpu); ret = NOTIFY_OK; break; #ifdef CONFIG_HOTPLUG_CPU case CPU_DEAD: case CPU_DEAD_FROZEN: case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: unmap_cpu_from_node(lcpu); break; ret = NOTIFY_OK; #endif } return ret; } /* * Check and possibly modify a memory region to enforce the memory limit. * * Returns the size the region should have to enforce the memory limit. * This will either be the original value of size, a truncated value, * or zero. If the returned value of size is 0 the region should be * discarded as it lies wholly above the memory limit. */ static unsigned long __init numa_enforce_memory_limit(unsigned long start, unsigned long size) { /* * We use memblock_end_of_DRAM() in here instead of memory_limit because * we've already adjusted it for the limit and it takes care of * having memory holes below the limit. Also, in the case of * iommu_is_off, memory_limit is not set but is implicitly enforced. */ if (start + size <= memblock_end_of_DRAM()) return size; if (start >= memblock_end_of_DRAM()) return 0; return memblock_end_of_DRAM() - start; } /* * Reads the counter for a given entry in * linux,drconf-usable-memory property */ static inline int __init read_usm_ranges(const u32 **usm) { /* * For each lmb in ibm,dynamic-memory a corresponding * entry in linux,drconf-usable-memory property contains * a counter followed by that many (base, size) duple. * read the counter from linux,drconf-usable-memory */ return read_n_cells(n_mem_size_cells, usm); } /* * Extract NUMA information from the ibm,dynamic-reconfiguration-memory * node. This assumes n_mem_{addr,size}_cells have been set. */ static void __init parse_drconf_memory(struct device_node *memory) { const u32 *uninitialized_var(dm), *usm; unsigned int n, rc, ranges, is_kexec_kdump = 0; unsigned long lmb_size, base, size, sz; int nid; struct assoc_arrays aa = { .arrays = NULL }; n = of_get_drconf_memory(memory, &dm); if (!n) return; lmb_size = of_get_lmb_size(memory); if (!lmb_size) return; rc = of_get_assoc_arrays(memory, &aa); if (rc) return; /* check if this is a kexec/kdump kernel */ usm = of_get_usable_memory(memory); if (usm != NULL) is_kexec_kdump = 1; for (; n != 0; --n) { struct of_drconf_cell drmem; read_drconf_cell(&drmem, &dm); /* skip this block if the reserved bit is set in flags (0x80) or if the block is not assigned to this partition (0x8) */ if ((drmem.flags & DRCONF_MEM_RESERVED) || !(drmem.flags & DRCONF_MEM_ASSIGNED)) continue; base = drmem.base_addr; size = lmb_size; ranges = 1; if (is_kexec_kdump) { ranges = read_usm_ranges(&usm); if (!ranges) /* there are no (base, size) duple */ continue; } do { if (is_kexec_kdump) { base = read_n_cells(n_mem_addr_cells, &usm); size = read_n_cells(n_mem_size_cells, &usm); } nid = of_drconf_to_nid_single(&drmem, &aa); fake_numa_create_new_node( ((base + size) >> PAGE_SHIFT), &nid); node_set_online(nid); sz = numa_enforce_memory_limit(base, size); if (sz) memblock_set_node(base, sz, nid); } while (--ranges); } } static int __init parse_numa_properties(void) { struct device_node *memory; int default_nid = 0; unsigned long i; if (numa_enabled == 0) { printk(KERN_WARNING "NUMA disabled by user\n"); return -1; } min_common_depth = find_min_common_depth(); if (min_common_depth < 0) return min_common_depth; dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); /* * Even though we connect cpus to numa domains later in SMP * init, we need to know the node ids now. This is because * each node to be onlined must have NODE_DATA etc backing it. */ for_each_present_cpu(i) { struct device_node *cpu; int nid; cpu = of_get_cpu_node(i, NULL); BUG_ON(!cpu); nid = of_node_to_nid_single(cpu); of_node_put(cpu); /* * Don't fall back to default_nid yet -- we will plug * cpus into nodes once the memory scan has discovered * the topology. */ if (nid < 0) continue; node_set_online(nid); } get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); for_each_node_by_type(memory, "memory") { unsigned long start; unsigned long size; int nid; int ranges; const unsigned int *memcell_buf; unsigned int len; memcell_buf = of_get_property(memory, "linux,usable-memory", &len); if (!memcell_buf || len <= 0) memcell_buf = of_get_property(memory, "reg", &len); if (!memcell_buf || len <= 0) continue; /* ranges in cell */ ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); new_range: /* these are order-sensitive, and modify the buffer pointer */ start = read_n_cells(n_mem_addr_cells, &memcell_buf); size = read_n_cells(n_mem_size_cells, &memcell_buf); /* * Assumption: either all memory nodes or none will * have associativity properties. If none, then * everything goes to default_nid. */ nid = of_node_to_nid_single(memory); if (nid < 0) nid = default_nid; fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); node_set_online(nid); if (!(size = numa_enforce_memory_limit(start, size))) { if (--ranges) goto new_range; else continue; } memblock_set_node(start, size, nid); if (--ranges) goto new_range; } /* * Now do the same thing for each MEMBLOCK listed in the * ibm,dynamic-memory property in the * ibm,dynamic-reconfiguration-memory node. */ memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); if (memory) parse_drconf_memory(memory); return 0; } static void __init setup_nonnuma(void) { unsigned long top_of_ram = memblock_end_of_DRAM(); unsigned long total_ram = memblock_phys_mem_size(); unsigned long start_pfn, end_pfn; unsigned int nid = 0; struct memblock_region *reg; printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram); printk(KERN_DEBUG "Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20); for_each_memblock(memory, reg) { start_pfn = memblock_region_memory_base_pfn(reg); end_pfn = memblock_region_memory_end_pfn(reg); fake_numa_create_new_node(end_pfn, &nid); memblock_set_node(PFN_PHYS(start_pfn), PFN_PHYS(end_pfn - start_pfn), nid); node_set_online(nid); } } void __init dump_numa_cpu_topology(void) { unsigned int node; unsigned int cpu, count; if (min_common_depth == -1 || !numa_enabled) return; for_each_online_node(node) { printk(KERN_DEBUG "Node %d CPUs:", node); count = 0; /* * If we used a CPU iterator here we would miss printing * the holes in the cpumap. */ for (cpu = 0; cpu < nr_cpu_ids; cpu++) { if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { if (count == 0) printk(" %u", cpu); ++count; } else { if (count > 1) printk("-%u", cpu - 1); count = 0; } } if (count > 1) printk("-%u", nr_cpu_ids - 1); printk("\n"); } } static void __init dump_numa_memory_topology(void) { unsigned int node; unsigned int count; if (min_common_depth == -1 || !numa_enabled) return; for_each_online_node(node) { unsigned long i; printk(KERN_DEBUG "Node %d Memory:", node); count = 0; for (i = 0; i < memblock_end_of_DRAM(); i += (1 << SECTION_SIZE_BITS)) { if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { if (count == 0) printk(" 0x%lx", i); ++count; } else { if (count > 0) printk("-0x%lx", i); count = 0; } } if (count > 0) printk("-0x%lx", i); printk("\n"); } } /* * Allocate some memory, satisfying the memblock or bootmem allocator where * required. nid is the preferred node and end is the physical address of * the highest address in the node. * * Returns the virtual address of the memory. */ static void __init *careful_zallocation(int nid, unsigned long size, unsigned long align, unsigned long end_pfn) { void *ret; int new_nid; unsigned long ret_paddr; ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); /* retry over all memory */ if (!ret_paddr) ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); if (!ret_paddr) panic("numa.c: cannot allocate %lu bytes for node %d", size, nid); ret = __va(ret_paddr); /* * We initialize the nodes in numeric order: 0, 1, 2... * and hand over control from the MEMBLOCK allocator to the * bootmem allocator. If this function is called for * node 5, then we know that all nodes <5 are using the * bootmem allocator instead of the MEMBLOCK allocator. * * So, check the nid from which this allocation came * and double check to see if we need to use bootmem * instead of the MEMBLOCK. We don't free the MEMBLOCK memory * since it would be useless. */ new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); if (new_nid < nid) { ret = __alloc_bootmem_node(NODE_DATA(new_nid), size, align, 0); dbg("alloc_bootmem %p %lx\n", ret, size); } memset(ret, 0, size); return ret; } static struct notifier_block __cpuinitdata ppc64_numa_nb = { .notifier_call = cpu_numa_callback, .priority = 1 /* Must run before sched domains notifier. */ }; static void __init mark_reserved_regions_for_nid(int nid) { struct pglist_data *node = NODE_DATA(nid); struct memblock_region *reg; for_each_memblock(reserved, reg) { unsigned long physbase = reg->base; unsigned long size = reg->size; unsigned long start_pfn = physbase >> PAGE_SHIFT; unsigned long end_pfn = PFN_UP(physbase + size); struct node_active_region node_ar; unsigned long node_end_pfn = node->node_start_pfn + node->node_spanned_pages; /* * Check to make sure that this memblock.reserved area is * within the bounds of the node that we care about. * Checking the nid of the start and end points is not * sufficient because the reserved area could span the * entire node. */ if (end_pfn <= node->node_start_pfn || start_pfn >= node_end_pfn) continue; get_node_active_region(start_pfn, &node_ar); while (start_pfn < end_pfn && node_ar.start_pfn < node_ar.end_pfn) { unsigned long reserve_size = size; /* * if reserved region extends past active region * then trim size to active region */ if (end_pfn > node_ar.end_pfn) reserve_size = (node_ar.end_pfn << PAGE_SHIFT) - physbase; /* * Only worry about *this* node, others may not * yet have valid NODE_DATA(). */ if (node_ar.nid == nid) { dbg("reserve_bootmem %lx %lx nid=%d\n", physbase, reserve_size, node_ar.nid); reserve_bootmem_node(NODE_DATA(node_ar.nid), physbase, reserve_size, BOOTMEM_DEFAULT); } /* * if reserved region is contained in the active region * then done. */ if (end_pfn <= node_ar.end_pfn) break; /* * reserved region extends past the active region * get next active region that contains this * reserved region */ start_pfn = node_ar.end_pfn; physbase = start_pfn << PAGE_SHIFT; size = size - reserve_size; get_node_active_region(start_pfn, &node_ar); } } } void __init do_init_bootmem(void) { int nid; min_low_pfn = 0; max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; max_pfn = max_low_pfn; if (parse_numa_properties()) setup_nonnuma(); else dump_numa_memory_topology(); for_each_online_node(nid) { unsigned long start_pfn, end_pfn; void *bootmem_vaddr; unsigned long bootmap_pages; get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); /* * Allocate the node structure node local if possible * * Be careful moving this around, as it relies on all * previous nodes' bootmem to be initialized and have * all reserved areas marked. */ NODE_DATA(nid) = careful_zallocation(nid, sizeof(struct pglist_data), SMP_CACHE_BYTES, end_pfn); dbg("node %d\n", nid); dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; NODE_DATA(nid)->node_start_pfn = start_pfn; NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; if (NODE_DATA(nid)->node_spanned_pages == 0) continue; dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); bootmem_vaddr = careful_zallocation(nid, bootmap_pages << PAGE_SHIFT, PAGE_SIZE, end_pfn); dbg("bootmap_vaddr = %p\n", bootmem_vaddr); init_bootmem_node(NODE_DATA(nid), __pa(bootmem_vaddr) >> PAGE_SHIFT, start_pfn, end_pfn); free_bootmem_with_active_regions(nid, end_pfn); /* * Be very careful about moving this around. Future * calls to careful_zallocation() depend on this getting * done correctly. */ mark_reserved_regions_for_nid(nid); sparse_memory_present_with_active_regions(nid); } init_bootmem_done = 1; /* * Now bootmem is initialised we can create the node to cpumask * lookup tables and setup the cpu callback to populate them. */ setup_node_to_cpumask_map(); register_cpu_notifier(&ppc64_numa_nb); cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, (void *)(unsigned long)boot_cpuid); } void __init paging_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; free_area_init_nodes(max_zone_pfns); } static int __init early_numa(char *p) { if (!p) return 0; if (strstr(p, "off")) numa_enabled = 0; if (strstr(p, "debug")) numa_debug = 1; p = strstr(p, "fake="); if (p) cmdline = p + strlen("fake="); return 0; } early_param("numa", early_numa); #ifdef CONFIG_MEMORY_HOTPLUG /* * Find the node associated with a hot added memory section for * memory represented in the device tree by the property * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. */ static int hot_add_drconf_scn_to_nid(struct device_node *memory, unsigned long scn_addr) { const u32 *dm; unsigned int drconf_cell_cnt, rc; unsigned long lmb_size; struct assoc_arrays aa; int nid = -1; drconf_cell_cnt = of_get_drconf_memory(memory, &dm); if (!drconf_cell_cnt) return -1; lmb_size = of_get_lmb_size(memory); if (!lmb_size) return -1; rc = of_get_assoc_arrays(memory, &aa); if (rc) return -1; for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { struct of_drconf_cell drmem; read_drconf_cell(&drmem, &dm); /* skip this block if it is reserved or not assigned to * this partition */ if ((drmem.flags & DRCONF_MEM_RESERVED) || !(drmem.flags & DRCONF_MEM_ASSIGNED)) continue; if ((scn_addr < drmem.base_addr) || (scn_addr >= (drmem.base_addr + lmb_size))) continue; nid = of_drconf_to_nid_single(&drmem, &aa); break; } return nid; } /* * Find the node associated with a hot added memory section for memory * represented in the device tree as a node (i.e. memory@XXXX) for * each memblock. */ int hot_add_node_scn_to_nid(unsigned long scn_addr) { struct device_node *memory; int nid = -1; for_each_node_by_type(memory, "memory") { unsigned long start, size; int ranges; const unsigned int *memcell_buf; unsigned int len; memcell_buf = of_get_property(memory, "reg", &len); if (!memcell_buf || len <= 0) continue; /* ranges in cell */ ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); while (ranges--) { start = read_n_cells(n_mem_addr_cells, &memcell_buf); size = read_n_cells(n_mem_size_cells, &memcell_buf); if ((scn_addr < start) || (scn_addr >= (start + size))) continue; nid = of_node_to_nid_single(memory); break; } if (nid >= 0) break; } of_node_put(memory); return nid; } /* * Find the node associated with a hot added memory section. Section * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that * sections are fully contained within a single MEMBLOCK. */ int hot_add_scn_to_nid(unsigned long scn_addr) { struct device_node *memory = NULL; int nid, found = 0; if (!numa_enabled || (min_common_depth < 0)) return first_online_node; memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); if (memory) { nid = hot_add_drconf_scn_to_nid(memory, scn_addr); of_node_put(memory); } else { nid = hot_add_node_scn_to_nid(scn_addr); } if (nid < 0 || !node_online(nid)) nid = first_online_node; if (NODE_DATA(nid)->node_spanned_pages) return nid; for_each_online_node(nid) { if (NODE_DATA(nid)->node_spanned_pages) { found = 1; break; } } BUG_ON(!found); return nid; } static u64 hot_add_drconf_memory_max(void) { struct device_node *memory = NULL; unsigned int drconf_cell_cnt = 0; u64 lmb_size = 0; const u32 *dm = 0; memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); if (memory) { drconf_cell_cnt = of_get_drconf_memory(memory, &dm); lmb_size = of_get_lmb_size(memory); of_node_put(memory); } return lmb_size * drconf_cell_cnt; } /* * memory_hotplug_max - return max address of memory that may be added * * This is currently only used on systems that support drconfig memory * hotplug. */ u64 memory_hotplug_max(void) { return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); } #endif /* CONFIG_MEMORY_HOTPLUG */ /* Virtual Processor Home Node (VPHN) support */ #ifdef CONFIG_PPC_SPLPAR struct topology_update_data { struct topology_update_data *next; unsigned int cpu; int old_nid; int new_nid; }; static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; static cpumask_t cpu_associativity_changes_mask; static int vphn_enabled; static int prrn_enabled; static void reset_topology_timer(void); /* * Store the current values of the associativity change counters in the * hypervisor. */ static void setup_cpu_associativity_change_counters(void) { int cpu; /* The VPHN feature supports a maximum of 8 reference points */ BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); for_each_possible_cpu(cpu) { int i; u8 *counts = vphn_cpu_change_counts[cpu]; volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; for (i = 0; i < distance_ref_points_depth; i++) counts[i] = hypervisor_counts[i]; } } /* * The hypervisor maintains a set of 8 associativity change counters in * the VPA of each cpu that correspond to the associativity levels in the * ibm,associativity-reference-points property. When an associativity * level changes, the corresponding counter is incremented. * * Set a bit in cpu_associativity_changes_mask for each cpu whose home * node associativity levels have changed. * * Returns the number of cpus with unhandled associativity changes. */ static int update_cpu_associativity_changes_mask(void) { int cpu; cpumask_t *changes = &cpu_associativity_changes_mask; for_each_possible_cpu(cpu) { int i, changed = 0; u8 *counts = vphn_cpu_change_counts[cpu]; volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; for (i = 0; i < distance_ref_points_depth; i++) { if (hypervisor_counts[i] != counts[i]) { counts[i] = hypervisor_counts[i]; changed = 1; } } if (changed) { cpumask_set_cpu(cpu, changes); } } return cpumask_weight(changes); } /* * 6 64-bit registers unpacked into 12 32-bit associativity values. To form * the complete property we have to add the length in the first cell. */ #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) /* * Convert the associativity domain numbers returned from the hypervisor * to the sequence they would appear in the ibm,associativity property. */ static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked) { int i, nr_assoc_doms = 0; const u16 *field = (const u16*) packed; #define VPHN_FIELD_UNUSED (0xffff) #define VPHN_FIELD_MSB (0x8000) #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB) for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { if (*field == VPHN_FIELD_UNUSED) { /* All significant fields processed, and remaining * fields contain the reserved value of all 1's. * Just store them. */ unpacked[i] = *((u32*)field); field += 2; } else if (*field & VPHN_FIELD_MSB) { /* Data is in the lower 15 bits of this field */ unpacked[i] = *field & VPHN_FIELD_MASK; field++; nr_assoc_doms++; } else { /* Data is in the lower 15 bits of this field * concatenated with the next 16 bit field */ unpacked[i] = *((u32*)field); field += 2; nr_assoc_doms++; } } /* The first cell contains the length of the property */ unpacked[0] = nr_assoc_doms; return nr_assoc_doms; } /* * Retrieve the new associativity information for a virtual processor's * home node. */ static long hcall_vphn(unsigned long cpu, unsigned int *associativity) { long rc; long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; u64 flags = 1; int hwcpu = get_hard_smp_processor_id(cpu); rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); vphn_unpack_associativity(retbuf, associativity); return rc; } static long vphn_get_associativity(unsigned long cpu, unsigned int *associativity) { long rc; rc = hcall_vphn(cpu, associativity); switch (rc) { case H_FUNCTION: printk(KERN_INFO "VPHN is not supported. Disabling polling...\n"); stop_topology_update(); break; case H_HARDWARE: printk(KERN_ERR "hcall_vphn() experienced a hardware fault " "preventing VPHN. Disabling polling...\n"); stop_topology_update(); } return rc; } /* * Update the CPU maps and sysfs entries for a single CPU when its NUMA * characteristics change. This function doesn't perform any locking and is * only safe to call from stop_machine(). */ static int update_cpu_topology(void *data) { struct topology_update_data *update; unsigned long cpu; if (!data) return -EINVAL; cpu = get_cpu(); for (update = data; update; update = update->next) { if (cpu != update->cpu) continue; unregister_cpu_under_node(update->cpu, update->old_nid); unmap_cpu_from_node(update->cpu); map_cpu_to_node(update->cpu, update->new_nid); vdso_getcpu_init(); register_cpu_under_node(update->cpu, update->new_nid); } return 0; } /* * Update the node maps and sysfs entries for each cpu whose home node * has changed. Returns 1 when the topology has changed, and 0 otherwise. */ int arch_update_cpu_topology(void) { unsigned int cpu, changed = 0; struct topology_update_data *updates, *ud; unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0}; cpumask_t updated_cpus; struct device *dev; int weight, i = 0; weight = cpumask_weight(&cpu_associativity_changes_mask); if (!weight) return 0; updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL); if (!updates) return 0; cpumask_clear(&updated_cpus); for_each_cpu(cpu, &cpu_associativity_changes_mask) { ud = &updates[i++]; ud->cpu = cpu; vphn_get_associativity(cpu, associativity); ud->new_nid = associativity_to_nid(associativity); if (ud->new_nid < 0 || !node_online(ud->new_nid)) ud->new_nid = first_online_node; ud->old_nid = numa_cpu_lookup_table[cpu]; cpumask_set_cpu(cpu, &updated_cpus); if (i < weight) ud->next = &updates[i]; } stop_machine(update_cpu_topology, &updates[0], &updated_cpus); for (ud = &updates[0]; ud; ud = ud->next) { dev = get_cpu_device(ud->cpu); if (dev) kobject_uevent(&dev->kobj, KOBJ_CHANGE); cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); changed = 1; } kfree(updates); return changed; } static void topology_work_fn(struct work_struct *work) { rebuild_sched_domains(); } static DECLARE_WORK(topology_work, topology_work_fn); void topology_schedule_update(void) { schedule_work(&topology_work); } static void topology_timer_fn(unsigned long ignored) { if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) topology_schedule_update(); else if (vphn_enabled) { if (update_cpu_associativity_changes_mask() > 0) topology_schedule_update(); reset_topology_timer(); } } static struct timer_list topology_timer = TIMER_INITIALIZER(topology_timer_fn, 0, 0); static void reset_topology_timer(void) { topology_timer.data = 0; topology_timer.expires = jiffies + 60 * HZ; mod_timer(&topology_timer, topology_timer.expires); } #ifdef CONFIG_SMP static void stage_topology_update(int core_id) { cpumask_or(&cpu_associativity_changes_mask, &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); reset_topology_timer(); } static int dt_update_callback(struct notifier_block *nb, unsigned long action, void *data) { struct of_prop_reconfig *update; int rc = NOTIFY_DONE; switch (action) { case OF_RECONFIG_UPDATE_PROPERTY: update = (struct of_prop_reconfig *)data; if (!of_prop_cmp(update->dn->type, "cpu") && !of_prop_cmp(update->prop->name, "ibm,associativity")) { u32 core_id; of_property_read_u32(update->dn, "reg", &core_id); stage_topology_update(core_id); rc = NOTIFY_OK; } break; } return rc; } static struct notifier_block dt_update_nb = { .notifier_call = dt_update_callback, }; #endif /* * Start polling for associativity changes. */ int start_topology_update(void) { int rc = 0; if (firmware_has_feature(FW_FEATURE_PRRN)) { if (!prrn_enabled) { prrn_enabled = 1; vphn_enabled = 0; #ifdef CONFIG_SMP rc = of_reconfig_notifier_register(&dt_update_nb); #endif } } else if (firmware_has_feature(FW_FEATURE_VPHN) && get_lppaca()->shared_proc) { if (!vphn_enabled) { prrn_enabled = 0; vphn_enabled = 1; setup_cpu_associativity_change_counters(); init_timer_deferrable(&topology_timer); reset_topology_timer(); } } return rc; } /* * Disable polling for VPHN associativity changes. */ int stop_topology_update(void) { int rc = 0; if (prrn_enabled) { prrn_enabled = 0; #ifdef CONFIG_SMP rc = of_reconfig_notifier_unregister(&dt_update_nb); #endif } else if (vphn_enabled) { vphn_enabled = 0; rc = del_timer_sync(&topology_timer); } return rc; } int prrn_is_enabled(void) { return prrn_enabled; } static int topology_read(struct seq_file *file, void *v) { if (vphn_enabled || prrn_enabled) seq_puts(file, "on\n"); else seq_puts(file, "off\n"); return 0; } static int topology_open(struct inode *inode, struct file *file) { return single_open(file, topology_read, NULL); } static ssize_t topology_write(struct file *file, const char __user *buf, size_t count, loff_t *off) { char kbuf[4]; /* "on" or "off" plus null. */ int read_len; read_len = count < 3 ? count : 3; if (copy_from_user(kbuf, buf, read_len)) return -EINVAL; kbuf[read_len] = '\0'; if (!strncmp(kbuf, "on", 2)) start_topology_update(); else if (!strncmp(kbuf, "off", 3)) stop_topology_update(); else return -EINVAL; return count; } static const struct file_operations topology_ops = { .read = seq_read, .write = topology_write, .open = topology_open, .release = single_release }; static int topology_update_init(void) { start_topology_update(); proc_create("powerpc/topology_updates", 644, NULL, &topology_ops); return 0; } device_initcall(topology_update_init); #endif /* CONFIG_PPC_SPLPAR */