/* * PowerPC version derived from arch/arm/mm/consistent.c * Copyright (C) 2001 Dan Malek (dmalek@jlc.net) * * Copyright (C) 2000 Russell King * * Consistent memory allocators. Used for DMA devices that want to * share uncached memory with the processor core. The function return * is the virtual address and 'dma_handle' is the physical address. * Mostly stolen from the ARM port, with some changes for PowerPC. * -- Dan * * Reorganized to get rid of the arch-specific consistent_* functions * and provide non-coherent implementations for the DMA API. -Matt * * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent() * implementation. This is pulled straight from ARM and barely * modified. -Matt * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/sched.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/highmem.h> #include <linux/dma-mapping.h> #include <linux/export.h> #include <asm/tlbflush.h> #include "mmu_decl.h" /* * This address range defaults to a value that is safe for all * platforms which currently set CONFIG_NOT_COHERENT_CACHE. It * can be further configured for specific applications under * the "Advanced Setup" menu. -Matt */ #define CONSISTENT_BASE (IOREMAP_TOP) #define CONSISTENT_END (CONSISTENT_BASE + CONFIG_CONSISTENT_SIZE) #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT) /* * This is the page table (2MB) covering uncached, DMA consistent allocations */ static DEFINE_SPINLOCK(consistent_lock); /* * VM region handling support. * * This should become something generic, handling VM region allocations for * vmalloc and similar (ioremap, module space, etc). * * I envisage vmalloc()'s supporting vm_struct becoming: * * struct vm_struct { * struct vm_region region; * unsigned long flags; * struct page **pages; * unsigned int nr_pages; * unsigned long phys_addr; * }; * * get_vm_area() would then call vm_region_alloc with an appropriate * struct vm_region head (eg): * * struct vm_region vmalloc_head = { * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list), * .vm_start = VMALLOC_START, * .vm_end = VMALLOC_END, * }; * * However, vmalloc_head.vm_start is variable (typically, it is dependent on * the amount of RAM found at boot time.) I would imagine that get_vm_area() * would have to initialise this each time prior to calling vm_region_alloc(). */ struct ppc_vm_region { struct list_head vm_list; unsigned long vm_start; unsigned long vm_end; }; static struct ppc_vm_region consistent_head = { .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), .vm_start = CONSISTENT_BASE, .vm_end = CONSISTENT_END, }; static struct ppc_vm_region * ppc_vm_region_alloc(struct ppc_vm_region *head, size_t size, gfp_t gfp) { unsigned long addr = head->vm_start, end = head->vm_end - size; unsigned long flags; struct ppc_vm_region *c, *new; new = kmalloc(sizeof(struct ppc_vm_region), gfp); if (!new) goto out; spin_lock_irqsave(&consistent_lock, flags); list_for_each_entry(c, &head->vm_list, vm_list) { if ((addr + size) < addr) goto nospc; if ((addr + size) <= c->vm_start) goto found; addr = c->vm_end; if (addr > end) goto nospc; } found: /* * Insert this entry _before_ the one we found. */ list_add_tail(&new->vm_list, &c->vm_list); new->vm_start = addr; new->vm_end = addr + size; spin_unlock_irqrestore(&consistent_lock, flags); return new; nospc: spin_unlock_irqrestore(&consistent_lock, flags); kfree(new); out: return NULL; } static struct ppc_vm_region *ppc_vm_region_find(struct ppc_vm_region *head, unsigned long addr) { struct ppc_vm_region *c; list_for_each_entry(c, &head->vm_list, vm_list) { if (c->vm_start == addr) goto out; } c = NULL; out: return c; } /* * Allocate DMA-coherent memory space and return both the kernel remapped * virtual and bus address for that space. */ void * __dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) { struct page *page; struct ppc_vm_region *c; unsigned long order; u64 mask = ISA_DMA_THRESHOLD, limit; if (dev) { mask = dev->coherent_dma_mask; /* * Sanity check the DMA mask - it must be non-zero, and * must be able to be satisfied by a DMA allocation. */ if (mask == 0) { dev_warn(dev, "coherent DMA mask is unset\n"); goto no_page; } if ((~mask) & ISA_DMA_THRESHOLD) { dev_warn(dev, "coherent DMA mask %#llx is smaller " "than system GFP_DMA mask %#llx\n", mask, (unsigned long long)ISA_DMA_THRESHOLD); goto no_page; } } size = PAGE_ALIGN(size); limit = (mask + 1) & ~mask; if ((limit && size >= limit) || size >= (CONSISTENT_END - CONSISTENT_BASE)) { printk(KERN_WARNING "coherent allocation too big (requested %#x mask %#Lx)\n", size, mask); return NULL; } order = get_order(size); /* Might be useful if we ever have a real legacy DMA zone... */ if (mask != 0xffffffff) gfp |= GFP_DMA; page = alloc_pages(gfp, order); if (!page) goto no_page; /* * Invalidate any data that might be lurking in the * kernel direct-mapped region for device DMA. */ { unsigned long kaddr = (unsigned long)page_address(page); memset(page_address(page), 0, size); flush_dcache_range(kaddr, kaddr + size); } /* * Allocate a virtual address in the consistent mapping region. */ c = ppc_vm_region_alloc(&consistent_head, size, gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); if (c) { unsigned long vaddr = c->vm_start; struct page *end = page + (1 << order); split_page(page, order); /* * Set the "dma handle" */ *handle = page_to_phys(page); do { SetPageReserved(page); map_page(vaddr, page_to_phys(page), pgprot_noncached(PAGE_KERNEL)); page++; vaddr += PAGE_SIZE; } while (size -= PAGE_SIZE); /* * Free the otherwise unused pages. */ while (page < end) { __free_page(page); page++; } return (void *)c->vm_start; } if (page) __free_pages(page, order); no_page: return NULL; } EXPORT_SYMBOL(__dma_alloc_coherent); /* * free a page as defined by the above mapping. */ void __dma_free_coherent(size_t size, void *vaddr) { struct ppc_vm_region *c; unsigned long flags, addr; size = PAGE_ALIGN(size); spin_lock_irqsave(&consistent_lock, flags); c = ppc_vm_region_find(&consistent_head, (unsigned long)vaddr); if (!c) goto no_area; if ((c->vm_end - c->vm_start) != size) { printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", __func__, c->vm_end - c->vm_start, size); dump_stack(); size = c->vm_end - c->vm_start; } addr = c->vm_start; do { pte_t *ptep; unsigned long pfn; ptep = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(addr), addr), addr), addr); if (!pte_none(*ptep) && pte_present(*ptep)) { pfn = pte_pfn(*ptep); pte_clear(&init_mm, addr, ptep); if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); ClearPageReserved(page); __free_page(page); } } addr += PAGE_SIZE; } while (size -= PAGE_SIZE); flush_tlb_kernel_range(c->vm_start, c->vm_end); list_del(&c->vm_list); spin_unlock_irqrestore(&consistent_lock, flags); kfree(c); return; no_area: spin_unlock_irqrestore(&consistent_lock, flags); printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", __func__, vaddr); dump_stack(); } EXPORT_SYMBOL(__dma_free_coherent); /* * make an area consistent. */ void __dma_sync(void *vaddr, size_t size, int direction) { unsigned long start = (unsigned long)vaddr; unsigned long end = start + size; switch (direction) { case DMA_NONE: BUG(); case DMA_FROM_DEVICE: /* * invalidate only when cache-line aligned otherwise there is * the potential for discarding uncommitted data from the cache */ if ((start & (L1_CACHE_BYTES - 1)) || (size & (L1_CACHE_BYTES - 1))) flush_dcache_range(start, end); else invalidate_dcache_range(start, end); break; case DMA_TO_DEVICE: /* writeback only */ clean_dcache_range(start, end); break; case DMA_BIDIRECTIONAL: /* writeback and invalidate */ flush_dcache_range(start, end); break; } } EXPORT_SYMBOL(__dma_sync); #ifdef CONFIG_HIGHMEM /* * __dma_sync_page() implementation for systems using highmem. * In this case, each page of a buffer must be kmapped/kunmapped * in order to have a virtual address for __dma_sync(). This must * not sleep so kmap_atomic()/kunmap_atomic() are used. * * Note: yes, it is possible and correct to have a buffer extend * beyond the first page. */ static inline void __dma_sync_page_highmem(struct page *page, unsigned long offset, size_t size, int direction) { size_t seg_size = min((size_t)(PAGE_SIZE - offset), size); size_t cur_size = seg_size; unsigned long flags, start, seg_offset = offset; int nr_segs = 1 + ((size - seg_size) + PAGE_SIZE - 1)/PAGE_SIZE; int seg_nr = 0; local_irq_save(flags); do { start = (unsigned long)kmap_atomic(page + seg_nr) + seg_offset; /* Sync this buffer segment */ __dma_sync((void *)start, seg_size, direction); kunmap_atomic((void *)start); seg_nr++; /* Calculate next buffer segment size */ seg_size = min((size_t)PAGE_SIZE, size - cur_size); /* Add the segment size to our running total */ cur_size += seg_size; seg_offset = 0; } while (seg_nr < nr_segs); local_irq_restore(flags); } #endif /* CONFIG_HIGHMEM */ /* * __dma_sync_page makes memory consistent. identical to __dma_sync, but * takes a struct page instead of a virtual address */ void __dma_sync_page(struct page *page, unsigned long offset, size_t size, int direction) { #ifdef CONFIG_HIGHMEM __dma_sync_page_highmem(page, offset, size, direction); #else unsigned long start = (unsigned long)page_address(page) + offset; __dma_sync((void *)start, size, direction); #endif } EXPORT_SYMBOL(__dma_sync_page); /* * Return the PFN for a given cpu virtual address returned by * __dma_alloc_coherent. This is used by dma_mmap_coherent() */ unsigned long __dma_get_coherent_pfn(unsigned long cpu_addr) { /* This should always be populated, so we don't test every * level. If that fails, we'll have a nice crash which * will be as good as a BUG_ON() */ pgd_t *pgd = pgd_offset_k(cpu_addr); pud_t *pud = pud_offset(pgd, cpu_addr); pmd_t *pmd = pmd_offset(pud, cpu_addr); pte_t *ptep = pte_offset_kernel(pmd, cpu_addr); if (pte_none(*ptep) || !pte_present(*ptep)) return 0; return pte_pfn(*ptep); }