/* * inventory.c * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Copyright (c) 1999 The Puffin Group (David Kennedy and Alex deVries) * Copyright (c) 2001 Matthew Wilcox for Hewlett-Packard * * These are the routines to discover what hardware exists in this box. * This task is complicated by there being 3 different ways of * performing an inventory, depending largely on the age of the box. * The recommended way to do this is to check to see whether the machine * is a `Snake' first, then try System Map, then try PAT. We try System * Map before checking for a Snake -- this probably doesn't cause any * problems, but... */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/hardware.h> #include <asm/io.h> #include <asm/mmzone.h> #include <asm/pdc.h> #include <asm/pdcpat.h> #include <asm/processor.h> #include <asm/page.h> #include <asm/parisc-device.h> /* ** Debug options ** DEBUG_PAT Dump details which PDC PAT provides about ranges/devices. */ #undef DEBUG_PAT int pdc_type __read_mostly = PDC_TYPE_ILLEGAL; void __init setup_pdc(void) { long status; unsigned int bus_id; struct pdc_system_map_mod_info module_result; struct pdc_module_path module_path; struct pdc_model model; #ifdef CONFIG_64BIT struct pdc_pat_cell_num cell_info; #endif /* Determine the pdc "type" used on this machine */ printk(KERN_INFO "Determining PDC firmware type: "); status = pdc_system_map_find_mods(&module_result, &module_path, 0); if (status == PDC_OK) { pdc_type = PDC_TYPE_SYSTEM_MAP; printk("System Map.\n"); return; } /* * If the machine doesn't support PDC_SYSTEM_MAP then either it * is a pdc pat box, or it is an older box. All 64 bit capable * machines are either pdc pat boxes or they support PDC_SYSTEM_MAP. */ /* * TODO: We should test for 64 bit capability and give a * clearer message. */ #ifdef CONFIG_64BIT status = pdc_pat_cell_get_number(&cell_info); if (status == PDC_OK) { pdc_type = PDC_TYPE_PAT; printk("64 bit PAT.\n"); return; } #endif /* Check the CPU's bus ID. There's probably a better test. */ status = pdc_model_info(&model); bus_id = (model.hversion >> (4 + 7)) & 0x1f; switch (bus_id) { case 0x4: /* 720, 730, 750, 735, 755 */ case 0x6: /* 705, 710 */ case 0x7: /* 715, 725 */ case 0x8: /* 745, 747, 742 */ case 0xA: /* 712 and similar */ case 0xC: /* 715/64, at least */ pdc_type = PDC_TYPE_SNAKE; printk("Snake.\n"); return; default: /* Everything else */ printk("Unsupported.\n"); panic("If this is a 64-bit machine, please try a 64-bit kernel.\n"); } } #define PDC_PAGE_ADJ_SHIFT (PAGE_SHIFT - 12) /* pdc pages are always 4k */ static void __init set_pmem_entry(physmem_range_t *pmem_ptr, unsigned long start, unsigned long pages4k) { /* Rather than aligning and potentially throwing away * memory, we'll assume that any ranges are already * nicely aligned with any reasonable page size, and * panic if they are not (it's more likely that the * pdc info is bad in this case). */ if (unlikely( ((start & (PAGE_SIZE - 1)) != 0) || ((pages4k & ((1UL << PDC_PAGE_ADJ_SHIFT) - 1)) != 0) )) { panic("Memory range doesn't align with page size!\n"); } pmem_ptr->start_pfn = (start >> PAGE_SHIFT); pmem_ptr->pages = (pages4k >> PDC_PAGE_ADJ_SHIFT); } static void __init pagezero_memconfig(void) { unsigned long npages; /* Use the 32 bit information from page zero to create a single * entry in the pmem_ranges[] table. * * We currently don't support machines with contiguous memory * >= 4 Gb, who report that memory using 64 bit only fields * on page zero. It's not worth doing until it can be tested, * and it is not clear we can support those machines for other * reasons. * * If that support is done in the future, this is where it * should be done. */ npages = (PAGE_ALIGN(PAGE0->imm_max_mem) >> PAGE_SHIFT); set_pmem_entry(pmem_ranges,0UL,npages); npmem_ranges = 1; } #ifdef CONFIG_64BIT /* All of the PDC PAT specific code is 64-bit only */ /* ** The module object is filled via PDC_PAT_CELL[Return Cell Module]. ** If a module is found, register module will get the IODC bytes via ** pdc_iodc_read() using the PA view of conf_base_addr for the hpa parameter. ** ** The IO view can be used by PDC_PAT_CELL[Return Cell Module] ** only for SBAs and LBAs. This view will cause an invalid ** argument error for all other cell module types. ** */ static int __init pat_query_module(ulong pcell_loc, ulong mod_index) { pdc_pat_cell_mod_maddr_block_t *pa_pdc_cell; unsigned long bytecnt; unsigned long temp; /* 64-bit scratch value */ long status; /* PDC return value status */ struct parisc_device *dev; pa_pdc_cell = kmalloc(sizeof (*pa_pdc_cell), GFP_KERNEL); if (!pa_pdc_cell) panic("couldn't allocate memory for PDC_PAT_CELL!"); /* return cell module (PA or Processor view) */ status = pdc_pat_cell_module(&bytecnt, pcell_loc, mod_index, PA_VIEW, pa_pdc_cell); if (status != PDC_OK) { /* no more cell modules or error */ kfree(pa_pdc_cell); return status; } temp = pa_pdc_cell->cba; dev = alloc_pa_dev(PAT_GET_CBA(temp), &(pa_pdc_cell->mod_path)); if (!dev) { kfree(pa_pdc_cell); return PDC_OK; } /* alloc_pa_dev sets dev->hpa */ /* ** save parameters in the parisc_device ** (The idea being the device driver will call pdc_pat_cell_module() ** and store the results in its own data structure.) */ dev->pcell_loc = pcell_loc; dev->mod_index = mod_index; /* save generic info returned from the call */ /* REVISIT: who is the consumer of this? not sure yet... */ dev->mod_info = pa_pdc_cell->mod_info; /* pass to PAT_GET_ENTITY() */ dev->pmod_loc = pa_pdc_cell->mod_location; register_parisc_device(dev); /* advertise device */ #ifdef DEBUG_PAT pdc_pat_cell_mod_maddr_block_t io_pdc_cell; /* dump what we see so far... */ switch (PAT_GET_ENTITY(dev->mod_info)) { unsigned long i; case PAT_ENTITY_PROC: printk(KERN_DEBUG "PAT_ENTITY_PROC: id_eid 0x%lx\n", pa_pdc_cell->mod[0]); break; case PAT_ENTITY_MEM: printk(KERN_DEBUG "PAT_ENTITY_MEM: amount 0x%lx min_gni_base 0x%lx min_gni_len 0x%lx\n", pa_pdc_cell->mod[0], pa_pdc_cell->mod[1], pa_pdc_cell->mod[2]); break; case PAT_ENTITY_CA: printk(KERN_DEBUG "PAT_ENTITY_CA: %ld\n", pcell_loc); break; case PAT_ENTITY_PBC: printk(KERN_DEBUG "PAT_ENTITY_PBC: "); goto print_ranges; case PAT_ENTITY_SBA: printk(KERN_DEBUG "PAT_ENTITY_SBA: "); goto print_ranges; case PAT_ENTITY_LBA: printk(KERN_DEBUG "PAT_ENTITY_LBA: "); print_ranges: pdc_pat_cell_module(&bytecnt, pcell_loc, mod_index, IO_VIEW, &io_pdc_cell); printk(KERN_DEBUG "ranges %ld\n", pa_pdc_cell->mod[1]); for (i = 0; i < pa_pdc_cell->mod[1]; i++) { printk(KERN_DEBUG " PA_VIEW %ld: 0x%016lx 0x%016lx 0x%016lx\n", i, pa_pdc_cell->mod[2 + i * 3], /* type */ pa_pdc_cell->mod[3 + i * 3], /* start */ pa_pdc_cell->mod[4 + i * 3]); /* finish (ie end) */ printk(KERN_DEBUG " IO_VIEW %ld: 0x%016lx 0x%016lx 0x%016lx\n", i, io_pdc_cell->mod[2 + i * 3], /* type */ io_pdc_cell->mod[3 + i * 3], /* start */ io_pdc_cell->mod[4 + i * 3]); /* finish (ie end) */ } printk(KERN_DEBUG "\n"); break; } #endif /* DEBUG_PAT */ kfree(pa_pdc_cell); return PDC_OK; } /* pat pdc can return information about a variety of different * types of memory (e.g. firmware,i/o, etc) but we only care about * the usable physical ram right now. Since the firmware specific * information is allocated on the stack, we'll be generous, in * case there is a lot of other information we don't care about. */ #define PAT_MAX_RANGES (4 * MAX_PHYSMEM_RANGES) static void __init pat_memconfig(void) { unsigned long actual_len; struct pdc_pat_pd_addr_map_entry mem_table[PAT_MAX_RANGES+1]; struct pdc_pat_pd_addr_map_entry *mtbl_ptr; physmem_range_t *pmem_ptr; long status; int entries; unsigned long length; int i; length = (PAT_MAX_RANGES + 1) * sizeof(struct pdc_pat_pd_addr_map_entry); status = pdc_pat_pd_get_addr_map(&actual_len, mem_table, length, 0L); if ((status != PDC_OK) || ((actual_len % sizeof(struct pdc_pat_pd_addr_map_entry)) != 0)) { /* The above pdc call shouldn't fail, but, just in * case, just use the PAGE0 info. */ printk("\n\n\n"); printk(KERN_WARNING "WARNING! Could not get full memory configuration. " "All memory may not be used!\n\n\n"); pagezero_memconfig(); return; } entries = actual_len / sizeof(struct pdc_pat_pd_addr_map_entry); if (entries > PAT_MAX_RANGES) { printk(KERN_WARNING "This Machine has more memory ranges than we support!\n"); printk(KERN_WARNING "Some memory may not be used!\n"); } /* Copy information into the firmware independent pmem_ranges * array, skipping types we don't care about. Notice we said * "may" above. We'll use all the entries that were returned. */ npmem_ranges = 0; mtbl_ptr = mem_table; pmem_ptr = pmem_ranges; /* Global firmware independent table */ for (i = 0; i < entries; i++,mtbl_ptr++) { if ( (mtbl_ptr->entry_type != PAT_MEMORY_DESCRIPTOR) || (mtbl_ptr->memory_type != PAT_MEMTYPE_MEMORY) || (mtbl_ptr->pages == 0) || ( (mtbl_ptr->memory_usage != PAT_MEMUSE_GENERAL) && (mtbl_ptr->memory_usage != PAT_MEMUSE_GI) && (mtbl_ptr->memory_usage != PAT_MEMUSE_GNI) ) ) { continue; } if (npmem_ranges == MAX_PHYSMEM_RANGES) { printk(KERN_WARNING "This Machine has more memory ranges than we support!\n"); printk(KERN_WARNING "Some memory will not be used!\n"); break; } set_pmem_entry(pmem_ptr++,mtbl_ptr->paddr,mtbl_ptr->pages); npmem_ranges++; } } static int __init pat_inventory(void) { int status; ulong mod_index = 0; struct pdc_pat_cell_num cell_info; /* ** Note: Prelude (and it's successors: Lclass, A400/500) only ** implement PDC_PAT_CELL sub-options 0 and 2. */ status = pdc_pat_cell_get_number(&cell_info); if (status != PDC_OK) { return 0; } #ifdef DEBUG_PAT printk(KERN_DEBUG "CELL_GET_NUMBER: 0x%lx 0x%lx\n", cell_info.cell_num, cell_info.cell_loc); #endif while (PDC_OK == pat_query_module(cell_info.cell_loc, mod_index)) { mod_index++; } return mod_index; } /* We only look for extended memory ranges on a 64 bit capable box */ static void __init sprockets_memconfig(void) { struct pdc_memory_table_raddr r_addr; struct pdc_memory_table mem_table[MAX_PHYSMEM_RANGES]; struct pdc_memory_table *mtbl_ptr; physmem_range_t *pmem_ptr; long status; int entries; int i; status = pdc_mem_mem_table(&r_addr,mem_table, (unsigned long)MAX_PHYSMEM_RANGES); if (status != PDC_OK) { /* The above pdc call only works on boxes with sprockets * firmware (newer B,C,J class). Other non PAT PDC machines * do support more than 3.75 Gb of memory, but we don't * support them yet. */ pagezero_memconfig(); return; } if (r_addr.entries_total > MAX_PHYSMEM_RANGES) { printk(KERN_WARNING "This Machine has more memory ranges than we support!\n"); printk(KERN_WARNING "Some memory will not be used!\n"); } entries = (int)r_addr.entries_returned; npmem_ranges = 0; mtbl_ptr = mem_table; pmem_ptr = pmem_ranges; /* Global firmware independent table */ for (i = 0; i < entries; i++,mtbl_ptr++) { set_pmem_entry(pmem_ptr++,mtbl_ptr->paddr,mtbl_ptr->pages); npmem_ranges++; } } #else /* !CONFIG_64BIT */ #define pat_inventory() do { } while (0) #define pat_memconfig() do { } while (0) #define sprockets_memconfig() pagezero_memconfig() #endif /* !CONFIG_64BIT */ #ifndef CONFIG_PA20 /* Code to support Snake machines (7[2350], 7[235]5, 715/Scorpio) */ static struct parisc_device * __init legacy_create_device(struct pdc_memory_map *r_addr, struct pdc_module_path *module_path) { struct parisc_device *dev; int status = pdc_mem_map_hpa(r_addr, module_path); if (status != PDC_OK) return NULL; dev = alloc_pa_dev(r_addr->hpa, &module_path->path); if (dev == NULL) return NULL; register_parisc_device(dev); return dev; } /** * snake_inventory * * Before PDC_SYSTEM_MAP was invented, the PDC_MEM_MAP call was used. * To use it, we initialise the mod_path.bc to 0xff and try all values of * mod to get the HPA for the top-level devices. Bus adapters may have * sub-devices which are discovered by setting bc[5] to 0 and bc[4] to the * module, then trying all possible functions. */ static void __init snake_inventory(void) { int mod; for (mod = 0; mod < 16; mod++) { struct parisc_device *dev; struct pdc_module_path module_path; struct pdc_memory_map r_addr; unsigned int func; memset(module_path.path.bc, 0xff, 6); module_path.path.mod = mod; dev = legacy_create_device(&r_addr, &module_path); if ((!dev) || (dev->id.hw_type != HPHW_BA)) continue; memset(module_path.path.bc, 0xff, 4); module_path.path.bc[4] = mod; for (func = 0; func < 16; func++) { module_path.path.bc[5] = 0; module_path.path.mod = func; legacy_create_device(&r_addr, &module_path); } } } #else /* CONFIG_PA20 */ #define snake_inventory() do { } while (0) #endif /* CONFIG_PA20 */ /* Common 32/64 bit based code goes here */ /** * add_system_map_addresses - Add additional addresses to the parisc device. * @dev: The parisc device. * @num_addrs: Then number of addresses to add; * @module_instance: The system_map module instance. * * This function adds any additional addresses reported by the system_map * firmware to the parisc device. */ static void __init add_system_map_addresses(struct parisc_device *dev, int num_addrs, int module_instance) { int i; long status; struct pdc_system_map_addr_info addr_result; dev->addr = kmalloc(num_addrs * sizeof(unsigned long), GFP_KERNEL); if(!dev->addr) { printk(KERN_ERR "%s %s(): memory allocation failure\n", __FILE__, __func__); return; } for(i = 1; i <= num_addrs; ++i) { status = pdc_system_map_find_addrs(&addr_result, module_instance, i); if(PDC_OK == status) { dev->addr[dev->num_addrs] = (unsigned long)addr_result.mod_addr; dev->num_addrs++; } else { printk(KERN_WARNING "Bad PDC_FIND_ADDRESS status return (%ld) for index %d\n", status, i); } } } /** * system_map_inventory - Retrieve firmware devices via SYSTEM_MAP. * * This function attempts to retrieve and register all the devices firmware * knows about via the SYSTEM_MAP PDC call. */ static void __init system_map_inventory(void) { int i; long status = PDC_OK; for (i = 0; i < 256; i++) { struct parisc_device *dev; struct pdc_system_map_mod_info module_result; struct pdc_module_path module_path; status = pdc_system_map_find_mods(&module_result, &module_path, i); if ((status == PDC_BAD_PROC) || (status == PDC_NE_MOD)) break; if (status != PDC_OK) continue; dev = alloc_pa_dev(module_result.mod_addr, &module_path.path); if (!dev) continue; register_parisc_device(dev); /* if available, get the additional addresses for a module */ if (!module_result.add_addrs) continue; add_system_map_addresses(dev, module_result.add_addrs, i); } walk_central_bus(); return; } void __init do_memory_inventory(void) { switch (pdc_type) { case PDC_TYPE_PAT: pat_memconfig(); break; case PDC_TYPE_SYSTEM_MAP: sprockets_memconfig(); break; case PDC_TYPE_SNAKE: pagezero_memconfig(); return; default: panic("Unknown PDC type!\n"); } if (npmem_ranges == 0 || pmem_ranges[0].start_pfn != 0) { printk(KERN_WARNING "Bad memory configuration returned!\n"); printk(KERN_WARNING "Some memory may not be used!\n"); pagezero_memconfig(); } } void __init do_device_inventory(void) { printk(KERN_INFO "Searching for devices...\n"); init_parisc_bus(); switch (pdc_type) { case PDC_TYPE_PAT: pat_inventory(); break; case PDC_TYPE_SYSTEM_MAP: system_map_inventory(); break; case PDC_TYPE_SNAKE: snake_inventory(); break; default: panic("Unknown PDC type!\n"); } printk(KERN_INFO "Found devices:\n"); print_parisc_devices(); }