/* * Carsten Langgaard, carstenl@mips.com * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. * Portions copyright (C) 2009 Cisco Systems, Inc. * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. */ #include <linux/init.h> #include <linux/sched.h> #include <linux/ioport.h> #include <linux/pci.h> #include <linux/screen_info.h> #include <linux/notifier.h> #include <linux/etherdevice.h> #include <linux/if_ether.h> #include <linux/ctype.h> #include <linux/cpu.h> #include <linux/time.h> #include <asm/bootinfo.h> #include <asm/irq.h> #include <asm/mips-boards/generic.h> #include <asm/dma.h> #include <asm/asm.h> #include <asm/traps.h> #include <asm/asm-offsets.h> #include "reset.h" #define VAL(n) STR(n) /* * Macros for loading addresses and storing registers: * LONG_L_ Stringified version of LONG_L for use in asm() statement * LONG_S_ Stringified version of LONG_S for use in asm() statement * PTR_LA_ Stringified version of PTR_LA for use in asm() statement * REG_SIZE Number of 8-bit bytes in a full width register */ #define LONG_L_ VAL(LONG_L) " " #define LONG_S_ VAL(LONG_S) " " #define PTR_LA_ VAL(PTR_LA) " " #ifdef CONFIG_64BIT #warning TODO: 64-bit code needs to be verified #define REG_SIZE "8" /* In bytes */ #endif #ifdef CONFIG_32BIT #define REG_SIZE "4" /* In bytes */ #endif static void register_panic_notifier(void); static int panic_handler(struct notifier_block *notifier_block, unsigned long event, void *cause_string); const char *get_system_type(void) { return "PowerTV"; } void __init plat_mem_setup(void) { panic_on_oops = 1; register_panic_notifier(); #if 0 mips_pcibios_init(); #endif mips_reboot_setup(); } /* * Install a panic notifier for platform-specific diagnostics */ static void register_panic_notifier() { static struct notifier_block panic_notifier = { .notifier_call = panic_handler, .next = NULL, .priority = INT_MAX }; atomic_notifier_chain_register(&panic_notifier_list, &panic_notifier); } static int panic_handler(struct notifier_block *notifier_block, unsigned long event, void *cause_string) { struct pt_regs my_regs; /* Save all of the registers */ { unsigned long at, v0, v1; /* Must be on the stack */ /* Start by saving $at and v0 on the stack. We use $at * ourselves, but it looks like the compiler may use v0 or v1 * to load the address of the pt_regs structure. We'll come * back later to store the registers in the pt_regs * structure. */ __asm__ __volatile__ ( ".set noat\n" LONG_S_ "$at, %[at]\n" LONG_S_ "$2, %[v0]\n" LONG_S_ "$3, %[v1]\n" : [at] "=m" (at), [v0] "=m" (v0), [v1] "=m" (v1) : : "at" ); __asm__ __volatile__ ( ".set noat\n" "move $at, %[pt_regs]\n" /* Argument registers */ LONG_S_ "$4, " VAL(PT_R4) "($at)\n" LONG_S_ "$5, " VAL(PT_R5) "($at)\n" LONG_S_ "$6, " VAL(PT_R6) "($at)\n" LONG_S_ "$7, " VAL(PT_R7) "($at)\n" /* Temporary regs */ LONG_S_ "$8, " VAL(PT_R8) "($at)\n" LONG_S_ "$9, " VAL(PT_R9) "($at)\n" LONG_S_ "$10, " VAL(PT_R10) "($at)\n" LONG_S_ "$11, " VAL(PT_R11) "($at)\n" LONG_S_ "$12, " VAL(PT_R12) "($at)\n" LONG_S_ "$13, " VAL(PT_R13) "($at)\n" LONG_S_ "$14, " VAL(PT_R14) "($at)\n" LONG_S_ "$15, " VAL(PT_R15) "($at)\n" /* "Saved" registers */ LONG_S_ "$16, " VAL(PT_R16) "($at)\n" LONG_S_ "$17, " VAL(PT_R17) "($at)\n" LONG_S_ "$18, " VAL(PT_R18) "($at)\n" LONG_S_ "$19, " VAL(PT_R19) "($at)\n" LONG_S_ "$20, " VAL(PT_R20) "($at)\n" LONG_S_ "$21, " VAL(PT_R21) "($at)\n" LONG_S_ "$22, " VAL(PT_R22) "($at)\n" LONG_S_ "$23, " VAL(PT_R23) "($at)\n" /* Add'l temp regs */ LONG_S_ "$24, " VAL(PT_R24) "($at)\n" LONG_S_ "$25, " VAL(PT_R25) "($at)\n" /* Kernel temp regs */ LONG_S_ "$26, " VAL(PT_R26) "($at)\n" LONG_S_ "$27, " VAL(PT_R27) "($at)\n" /* Global pointer, stack pointer, frame pointer and * return address */ LONG_S_ "$gp, " VAL(PT_R28) "($at)\n" LONG_S_ "$sp, " VAL(PT_R29) "($at)\n" LONG_S_ "$fp, " VAL(PT_R30) "($at)\n" LONG_S_ "$ra, " VAL(PT_R31) "($at)\n" /* Now we can get the $at and v0 registers back and * store them */ LONG_L_ "$8, %[at]\n" LONG_S_ "$8, " VAL(PT_R1) "($at)\n" LONG_L_ "$8, %[v0]\n" LONG_S_ "$8, " VAL(PT_R2) "($at)\n" LONG_L_ "$8, %[v1]\n" LONG_S_ "$8, " VAL(PT_R3) "($at)\n" : : [at] "m" (at), [v0] "m" (v0), [v1] "m" (v1), [pt_regs] "r" (&my_regs) : "at", "t0" ); /* Set the current EPC value to be the current location in this * function */ __asm__ __volatile__ ( ".set noat\n" "1:\n" PTR_LA_ "$at, 1b\n" LONG_S_ "$at, %[cp0_epc]\n" : [cp0_epc] "=m" (my_regs.cp0_epc) : : "at" ); my_regs.cp0_cause = read_c0_cause(); my_regs.cp0_status = read_c0_status(); } pr_crit("I'm feeling a bit sleepy. hmmmmm... perhaps a nap would... " "zzzz... \n"); return NOTIFY_DONE; } /* Information about the RF MAC address, if one was supplied on the * command line. */ static bool have_rfmac; static u8 rfmac[ETH_ALEN]; static int rfmac_param(char *p) { u8 *q; bool is_high_nibble; int c; /* Skip a leading "0x", if present */ if (*p == '0' && *(p+1) == 'x') p += 2; q = rfmac; is_high_nibble = true; for (c = (unsigned char) *p++; isxdigit(c) && q - rfmac < ETH_ALEN; c = (unsigned char) *p++) { int nibble; nibble = (isdigit(c) ? (c - '0') : (isupper(c) ? c - 'A' + 10 : c - 'a' + 10)); if (is_high_nibble) *q = nibble << 4; else *q++ |= nibble; is_high_nibble = !is_high_nibble; } /* If we parsed all the way to the end of the parameter value and * parsed all ETH_ALEN bytes, we have a usable RF MAC address */ have_rfmac = (c == '\0' && q - rfmac == ETH_ALEN); return 0; } early_param("rfmac", rfmac_param); /* * Generate an Ethernet MAC address that has a good chance of being unique. * @addr: Pointer to six-byte array containing the Ethernet address * Generates an Ethernet MAC address that is highly likely to be unique for * this particular system on a network with other systems of the same type. * * The problem we are solving is that, when eth_random_addr() is used to * generate MAC addresses at startup, there isn't much entropy for the random * number generator to use and the addresses it produces are fairly likely to * be the same as those of other identical systems on the same local network. * This is true even for relatively small numbers of systems (for the reason * why, see the Wikipedia entry for "Birthday problem" at: * http://en.wikipedia.org/wiki/Birthday_problem * * The good news is that we already have a MAC address known to be unique, the * RF MAC address. The bad news is that this address is already in use on the * RF interface. Worse, the obvious trick, taking the RF MAC address and * turning on the locally managed bit, has already been used for other devices. * Still, this does give us something to work with. * * The approach we take is: * 1. If we can't get the RF MAC Address, just call eth_random_addr. * 2. Use the 24-bit NIC-specific bits of the RF MAC address as the last 24 * bits of the new address. This is very likely to be unique, except for * the current box. * 3. To avoid using addresses already on the current box, we set the top * six bits of the address with a value different from any currently * registered Scientific Atlanta organizationally unique identifyer * (OUI). This avoids duplication with any addresses on the system that * were generated from valid Scientific Atlanta-registered address by * simply flipping the locally managed bit. * 4. We aren't generating a multicast address, so we leave the multicast * bit off. Since we aren't using a registered address, we have to set * the locally managed bit. * 5. We then randomly generate the remaining 16-bits. This does two * things: * a. It allows us to call this function for more than one device * in this system * b. It ensures that things will probably still work even if * some device on the device network has a locally managed * address that matches the top six bits from step 2. */ void platform_random_ether_addr(u8 addr[ETH_ALEN]) { const int num_random_bytes = 2; const unsigned char non_sciatl_oui_bits = 0xc0u; const unsigned char mac_addr_locally_managed = (1 << 1); if (!have_rfmac) { pr_warning("rfmac not available on command line; " "generating random MAC address\n"); eth_random_addr(addr); } else { int i; /* Set the first byte to something that won't match a Scientific * Atlanta OUI, is locally managed, and isn't a multicast * address */ addr[0] = non_sciatl_oui_bits | mac_addr_locally_managed; /* Get some bytes of random address information */ get_random_bytes(&addr[1], num_random_bytes); /* Copy over the NIC-specific bits of the RF MAC address */ for (i = 1 + num_random_bytes; i < ETH_ALEN; i++) addr[i] = rfmac[i]; } }