/* * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights * reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the NetLogic * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <linux/init.h> #include <asm/asm.h> #include <asm/asm-offsets.h> #include <asm/regdef.h> #include <asm/mipsregs.h> #include <asm/stackframe.h> #include <asm/asmmacro.h> #include <asm/addrspace.h> #include <asm/netlogic/common.h> #include <asm/netlogic/xlp-hal/iomap.h> #include <asm/netlogic/xlp-hal/xlp.h> #include <asm/netlogic/xlp-hal/sys.h> #include <asm/netlogic/xlp-hal/cpucontrol.h> #define CP0_EBASE $15 #define SYS_CPU_COHERENT_BASE(node) CKSEG1ADDR(XLP_DEFAULT_IO_BASE) + \ XLP_IO_SYS_OFFSET(node) + XLP_IO_PCI_HDRSZ + \ SYS_CPU_NONCOHERENT_MODE * 4 #define XLP_AX_WORKAROUND /* enable Ax silicon workarounds */ /* Enable XLP features and workarounds in the LSU */ .macro xlp_config_lsu li t0, LSU_DEFEATURE mfcr t1, t0 lui t2, 0xc080 /* SUE, Enable Unaligned Access, L2HPE */ or t1, t1, t2 #ifdef XLP_AX_WORKAROUND li t2, ~0xe /* S1RCM */ and t1, t1, t2 #endif mtcr t1, t0 li t0, ICU_DEFEATURE mfcr t1, t0 ori t1, 0x1000 /* Enable Icache partitioning */ mtcr t1, t0 #ifdef XLP_AX_WORKAROUND li t0, SCHED_DEFEATURE lui t1, 0x0100 /* Disable BRU accepting ALU ops */ mtcr t1, t0 #endif .endm /* * This is the code that will be copied to the reset entry point for * XLR and XLP. The XLP cores start here when they are woken up. This * is also the NMI entry point. */ .macro xlp_flush_l1_dcache li t0, LSU_DEBUG_DATA0 li t1, LSU_DEBUG_ADDR li t2, 0 /* index */ li t3, 0x1000 /* loop count */ 1: sll v0, t2, 5 mtcr zero, t0 ori v1, v0, 0x3 /* way0 | write_enable | write_active */ mtcr v1, t1 2: mfcr v1, t1 andi v1, 0x1 /* wait for write_active == 0 */ bnez v1, 2b nop mtcr zero, t0 ori v1, v0, 0x7 /* way1 | write_enable | write_active */ mtcr v1, t1 3: mfcr v1, t1 andi v1, 0x1 /* wait for write_active == 0 */ bnez v1, 3b nop addi t2, 1 bne t3, t2, 1b nop .endm /* * The cores can come start when they are woken up. This is also the NMI * entry, so check that first. * * The data corresponding to reset/NMI is stored at RESET_DATA_PHYS * location, this will have the thread mask (used when core is woken up) * and the current NMI handler in case we reached here for an NMI. * * When a core or thread is newly woken up, it loops in a 'wait'. When * the CPU really needs waking up, we send an NMI to it, with the NMI * handler set to prom_boot_secondary_cpus */ .set noreorder .set noat .set arch=xlr /* for mfcr/mtcr, XLR is sufficient */ FEXPORT(nlm_reset_entry) dmtc0 k0, $22, 6 dmtc0 k1, $22, 7 mfc0 k0, CP0_STATUS li k1, 0x80000 and k1, k0, k1 beqz k1, 1f /* go to real reset entry */ nop li k1, CKSEG1ADDR(RESET_DATA_PHYS) /* NMI */ ld k0, BOOT_NMI_HANDLER(k1) jr k0 nop 1: /* Entry point on core wakeup */ mfc0 t0, CP0_EBASE, 1 mfc0 t1, CP0_EBASE, 1 srl t1, 5 andi t1, 0x3 /* t1 <- node */ li t2, 0x40000 mul t3, t2, t1 /* t3 = node * 0x40000 */ srl t0, t0, 2 and t0, t0, 0x7 /* t0 <- core */ li t1, 0x1 sll t0, t1, t0 nor t0, t0, zero /* t0 <- ~(1 << core) */ li t2, SYS_CPU_COHERENT_BASE(0) add t2, t2, t3 /* t2 <- SYS offset for node */ lw t1, 0(t2) and t1, t1, t0 sw t1, 0(t2) /* read back to ensure complete */ lw t1, 0(t2) sync /* Configure LSU on Non-0 Cores. */ xlp_config_lsu /* FALL THROUGH */ /* * Wake up sibling threads from the initial thread in * a core. */ EXPORT(nlm_boot_siblings) /* core L1D flush before enable threads */ xlp_flush_l1_dcache /* Enable hw threads by writing to MAP_THREADMODE of the core */ li t0, CKSEG1ADDR(RESET_DATA_PHYS) lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */ li t0, ((CPU_BLOCKID_MAP << 8) | MAP_THREADMODE) mfcr t2, t0 or t2, t2, t1 mtcr t2, t0 /* * The new hardware thread starts at the next instruction * For all the cases other than core 0 thread 0, we will * jump to the secondary wait function. */ mfc0 v0, CP0_EBASE, 1 andi v0, 0x3ff /* v0 <- node/core */ /* Init MMU in the first thread after changing THREAD_MODE * register (Ax Errata?) */ andi v1, v0, 0x3 /* v1 <- thread id */ bnez v1, 2f nop li t0, MMU_SETUP li t1, 0 mtcr t1, t0 _ehb 2: beqz v0, 4f /* boot cpu (cpuid == 0)? */ nop /* setup status reg */ move t1, zero #ifdef CONFIG_64BIT ori t1, ST0_KX #endif mtc0 t1, CP0_STATUS /* mark CPU ready */ PTR_LA t1, nlm_cpu_ready sll v1, v0, 2 PTR_ADDU t1, v1 li t2, 1 sw t2, 0(t1) /* Wait until NMI hits */ 3: wait j 3b nop /* * For the boot CPU, we have to restore registers and * return */ 4: dmfc0 t0, $4, 2 /* restore SP from UserLocal */ li t1, 0xfadebeef dmtc0 t1, $4, 2 /* restore SP from UserLocal */ PTR_SUBU sp, t0, PT_SIZE RESTORE_ALL jr ra nop EXPORT(nlm_reset_entry_end) FEXPORT(xlp_boot_core0_siblings) /* "Master" cpu starts from here */ xlp_config_lsu dmtc0 sp, $4, 2 /* SP saved in UserLocal */ SAVE_ALL sync /* find the location to which nlm_boot_siblings was relocated */ li t0, CKSEG1ADDR(RESET_VEC_PHYS) dla t1, nlm_reset_entry dla t2, nlm_boot_siblings dsubu t2, t1 daddu t2, t0 /* call it */ jr t2 nop /* not reached */ __CPUINIT NESTED(nlm_boot_secondary_cpus, 16, sp) /* Initialize CP0 Status */ move t1, zero #ifdef CONFIG_64BIT ori t1, ST0_KX #endif mtc0 t1, CP0_STATUS PTR_LA t1, nlm_next_sp PTR_L sp, 0(t1) PTR_LA t1, nlm_next_gp PTR_L gp, 0(t1) /* a0 has the processor id */ mfc0 a0, CP0_EBASE, 1 andi a0, 0x3ff /* a0 <- node/core */ PTR_LA t0, nlm_early_init_secondary jalr t0 nop PTR_LA t0, smp_bootstrap jr t0 nop END(nlm_boot_secondary_cpus) __FINIT /* * In case of RMIboot bootloader which is used on XLR boards, the CPUs * be already woken up and waiting in bootloader code. * This will get them out of the bootloader code and into linux. Needed * because the bootloader area will be taken and initialized by linux. */ __CPUINIT NESTED(nlm_rmiboot_preboot, 16, sp) mfc0 t0, $15, 1 /* read ebase */ andi t0, 0x1f /* t0 has the processor_id() */ andi t2, t0, 0x3 /* thread num */ sll t0, 2 /* offset in cpu array */ PTR_LA t1, nlm_cpu_ready /* mark CPU ready */ PTR_ADDU t1, t0 li t3, 1 sw t3, 0(t1) bnez t2, 1f /* skip thread programming */ nop /* for thread id != 0 */ /* * XLR MMU setup only for first thread in core */ li t0, 0x400 mfcr t1, t0 li t2, 6 /* XLR thread mode mask */ nor t3, t2, zero and t2, t1, t2 /* t2 - current thread mode */ li v0, CKSEG1ADDR(RESET_DATA_PHYS) lw v1, BOOT_THREAD_MODE(v0) /* v1 - new thread mode */ sll v1, 1 beq v1, t2, 1f /* same as request value */ nop /* nothing to do */ and t2, t1, t3 /* mask out old thread mode */ or t1, t2, v1 /* put in new value */ mtcr t1, t0 /* update core control */ 1: wait j 1b nop END(nlm_rmiboot_preboot) __FINIT