/* * GPIO functions for Au1000, Au1500, Au1100, Au1550, Au1200 * * Copyright (c) 2009 Manuel Lauss. * * Licensed under the terms outlined in the file COPYING. */ #ifndef _ALCHEMY_GPIO_AU1000_H_ #define _ALCHEMY_GPIO_AU1000_H_ #include <asm/mach-au1x00/au1000.h> /* The default GPIO numberspace as documented in the Alchemy manuals. * GPIO0-31 from GPIO1 block, GPIO200-215 from GPIO2 block. */ #define ALCHEMY_GPIO1_BASE 0 #define ALCHEMY_GPIO2_BASE 200 #define ALCHEMY_GPIO1_NUM 32 #define ALCHEMY_GPIO2_NUM 16 #define ALCHEMY_GPIO1_MAX (ALCHEMY_GPIO1_BASE + ALCHEMY_GPIO1_NUM - 1) #define ALCHEMY_GPIO2_MAX (ALCHEMY_GPIO2_BASE + ALCHEMY_GPIO2_NUM - 1) #define MAKE_IRQ(intc, off) (AU1000_INTC##intc##_INT_BASE + (off)) /* GPIO1 registers within SYS_ area */ #define SYS_TRIOUTRD 0x100 #define SYS_TRIOUTCLR 0x100 #define SYS_OUTPUTRD 0x108 #define SYS_OUTPUTSET 0x108 #define SYS_OUTPUTCLR 0x10C #define SYS_PINSTATERD 0x110 #define SYS_PININPUTEN 0x110 /* register offsets within GPIO2 block */ #define GPIO2_DIR 0x00 #define GPIO2_OUTPUT 0x08 #define GPIO2_PINSTATE 0x0C #define GPIO2_INTENABLE 0x10 #define GPIO2_ENABLE 0x14 struct gpio; static inline int au1000_gpio1_to_irq(int gpio) { return MAKE_IRQ(1, gpio - ALCHEMY_GPIO1_BASE); } static inline int au1000_gpio2_to_irq(int gpio) { return -ENXIO; } static inline int au1000_irq_to_gpio(int irq) { if ((irq >= AU1000_GPIO0_INT) && (irq <= AU1000_GPIO31_INT)) return ALCHEMY_GPIO1_BASE + (irq - AU1000_GPIO0_INT) + 0; return -ENXIO; } static inline int au1500_gpio1_to_irq(int gpio) { gpio -= ALCHEMY_GPIO1_BASE; switch (gpio) { case 0 ... 15: case 20: case 23 ... 28: return MAKE_IRQ(1, gpio); } return -ENXIO; } static inline int au1500_gpio2_to_irq(int gpio) { gpio -= ALCHEMY_GPIO2_BASE; switch (gpio) { case 0 ... 3: return MAKE_IRQ(1, 16 + gpio - 0); case 4 ... 5: return MAKE_IRQ(1, 21 + gpio - 4); case 6 ... 7: return MAKE_IRQ(1, 29 + gpio - 6); } return -ENXIO; } static inline int au1500_irq_to_gpio(int irq) { switch (irq) { case AU1500_GPIO0_INT ... AU1500_GPIO15_INT: case AU1500_GPIO20_INT: case AU1500_GPIO23_INT ... AU1500_GPIO28_INT: return ALCHEMY_GPIO1_BASE + (irq - AU1500_GPIO0_INT) + 0; case AU1500_GPIO200_INT ... AU1500_GPIO203_INT: return ALCHEMY_GPIO2_BASE + (irq - AU1500_GPIO200_INT) + 0; case AU1500_GPIO204_INT ... AU1500_GPIO205_INT: return ALCHEMY_GPIO2_BASE + (irq - AU1500_GPIO204_INT) + 4; case AU1500_GPIO206_INT ... AU1500_GPIO207_INT: return ALCHEMY_GPIO2_BASE + (irq - AU1500_GPIO206_INT) + 6; case AU1500_GPIO208_215_INT: return ALCHEMY_GPIO2_BASE + 8; } return -ENXIO; } static inline int au1100_gpio1_to_irq(int gpio) { return MAKE_IRQ(1, gpio - ALCHEMY_GPIO1_BASE); } static inline int au1100_gpio2_to_irq(int gpio) { gpio -= ALCHEMY_GPIO2_BASE; if ((gpio >= 8) && (gpio <= 15)) return MAKE_IRQ(0, 29); /* shared GPIO208_215 */ return -ENXIO; } static inline int au1100_irq_to_gpio(int irq) { switch (irq) { case AU1100_GPIO0_INT ... AU1100_GPIO31_INT: return ALCHEMY_GPIO1_BASE + (irq - AU1100_GPIO0_INT) + 0; case AU1100_GPIO208_215_INT: return ALCHEMY_GPIO2_BASE + 8; } return -ENXIO; } static inline int au1550_gpio1_to_irq(int gpio) { gpio -= ALCHEMY_GPIO1_BASE; switch (gpio) { case 0 ... 15: case 20 ... 28: return MAKE_IRQ(1, gpio); case 16 ... 17: return MAKE_IRQ(1, 18 + gpio - 16); } return -ENXIO; } static inline int au1550_gpio2_to_irq(int gpio) { gpio -= ALCHEMY_GPIO2_BASE; switch (gpio) { case 0: return MAKE_IRQ(1, 16); case 1 ... 5: return MAKE_IRQ(1, 17); /* shared GPIO201_205 */ case 6 ... 7: return MAKE_IRQ(1, 29 + gpio - 6); case 8 ... 15: return MAKE_IRQ(1, 31); /* shared GPIO208_215 */ } return -ENXIO; } static inline int au1550_irq_to_gpio(int irq) { switch (irq) { case AU1550_GPIO0_INT ... AU1550_GPIO15_INT: return ALCHEMY_GPIO1_BASE + (irq - AU1550_GPIO0_INT) + 0; case AU1550_GPIO200_INT: case AU1550_GPIO201_205_INT: return ALCHEMY_GPIO2_BASE + (irq - AU1550_GPIO200_INT) + 0; case AU1550_GPIO16_INT ... AU1550_GPIO28_INT: return ALCHEMY_GPIO1_BASE + (irq - AU1550_GPIO16_INT) + 16; case AU1550_GPIO206_INT ... AU1550_GPIO208_215_INT: return ALCHEMY_GPIO2_BASE + (irq - AU1550_GPIO206_INT) + 6; } return -ENXIO; } static inline int au1200_gpio1_to_irq(int gpio) { return MAKE_IRQ(1, gpio - ALCHEMY_GPIO1_BASE); } static inline int au1200_gpio2_to_irq(int gpio) { gpio -= ALCHEMY_GPIO2_BASE; switch (gpio) { case 0 ... 2: return MAKE_IRQ(0, 5 + gpio - 0); case 3: return MAKE_IRQ(0, 22); case 4 ... 7: return MAKE_IRQ(0, 24 + gpio - 4); case 8 ... 15: return MAKE_IRQ(0, 28); /* shared GPIO208_215 */ } return -ENXIO; } static inline int au1200_irq_to_gpio(int irq) { switch (irq) { case AU1200_GPIO0_INT ... AU1200_GPIO31_INT: return ALCHEMY_GPIO1_BASE + (irq - AU1200_GPIO0_INT) + 0; case AU1200_GPIO200_INT ... AU1200_GPIO202_INT: return ALCHEMY_GPIO2_BASE + (irq - AU1200_GPIO200_INT) + 0; case AU1200_GPIO203_INT: return ALCHEMY_GPIO2_BASE + 3; case AU1200_GPIO204_INT ... AU1200_GPIO208_215_INT: return ALCHEMY_GPIO2_BASE + (irq - AU1200_GPIO204_INT) + 4; } return -ENXIO; } /* * GPIO1 block macros for common linux gpio functions. */ static inline void alchemy_gpio1_set_value(int gpio, int v) { void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_SYS_PHYS_ADDR); unsigned long mask = 1 << (gpio - ALCHEMY_GPIO1_BASE); unsigned long r = v ? SYS_OUTPUTSET : SYS_OUTPUTCLR; __raw_writel(mask, base + r); wmb(); } static inline int alchemy_gpio1_get_value(int gpio) { void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_SYS_PHYS_ADDR); unsigned long mask = 1 << (gpio - ALCHEMY_GPIO1_BASE); return __raw_readl(base + SYS_PINSTATERD) & mask; } static inline int alchemy_gpio1_direction_input(int gpio) { void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_SYS_PHYS_ADDR); unsigned long mask = 1 << (gpio - ALCHEMY_GPIO1_BASE); __raw_writel(mask, base + SYS_TRIOUTCLR); wmb(); return 0; } static inline int alchemy_gpio1_direction_output(int gpio, int v) { /* hardware switches to "output" mode when one of the two * "set_value" registers is accessed. */ alchemy_gpio1_set_value(gpio, v); return 0; } static inline int alchemy_gpio1_is_valid(int gpio) { return ((gpio >= ALCHEMY_GPIO1_BASE) && (gpio <= ALCHEMY_GPIO1_MAX)); } static inline int alchemy_gpio1_to_irq(int gpio) { switch (alchemy_get_cputype()) { case ALCHEMY_CPU_AU1000: return au1000_gpio1_to_irq(gpio); case ALCHEMY_CPU_AU1100: return au1100_gpio1_to_irq(gpio); case ALCHEMY_CPU_AU1500: return au1500_gpio1_to_irq(gpio); case ALCHEMY_CPU_AU1550: return au1550_gpio1_to_irq(gpio); case ALCHEMY_CPU_AU1200: return au1200_gpio1_to_irq(gpio); } return -ENXIO; } /* * GPIO2 block macros for common linux GPIO functions. The 'gpio' * parameter must be in range of ALCHEMY_GPIO2_BASE..ALCHEMY_GPIO2_MAX. */ static inline void __alchemy_gpio2_mod_dir(int gpio, int to_out) { void __iomem *base = (void __iomem *)KSEG1ADDR(AU1500_GPIO2_PHYS_ADDR); unsigned long mask = 1 << (gpio - ALCHEMY_GPIO2_BASE); unsigned long d = __raw_readl(base + GPIO2_DIR); if (to_out) d |= mask; else d &= ~mask; __raw_writel(d, base + GPIO2_DIR); wmb(); } static inline void alchemy_gpio2_set_value(int gpio, int v) { void __iomem *base = (void __iomem *)KSEG1ADDR(AU1500_GPIO2_PHYS_ADDR); unsigned long mask; mask = ((v) ? 0x00010001 : 0x00010000) << (gpio - ALCHEMY_GPIO2_BASE); __raw_writel(mask, base + GPIO2_OUTPUT); wmb(); } static inline int alchemy_gpio2_get_value(int gpio) { void __iomem *base = (void __iomem *)KSEG1ADDR(AU1500_GPIO2_PHYS_ADDR); return __raw_readl(base + GPIO2_PINSTATE) & (1 << (gpio - ALCHEMY_GPIO2_BASE)); } static inline int alchemy_gpio2_direction_input(int gpio) { unsigned long flags; local_irq_save(flags); __alchemy_gpio2_mod_dir(gpio, 0); local_irq_restore(flags); return 0; } static inline int alchemy_gpio2_direction_output(int gpio, int v) { unsigned long flags; alchemy_gpio2_set_value(gpio, v); local_irq_save(flags); __alchemy_gpio2_mod_dir(gpio, 1); local_irq_restore(flags); return 0; } static inline int alchemy_gpio2_is_valid(int gpio) { return ((gpio >= ALCHEMY_GPIO2_BASE) && (gpio <= ALCHEMY_GPIO2_MAX)); } static inline int alchemy_gpio2_to_irq(int gpio) { switch (alchemy_get_cputype()) { case ALCHEMY_CPU_AU1000: return au1000_gpio2_to_irq(gpio); case ALCHEMY_CPU_AU1100: return au1100_gpio2_to_irq(gpio); case ALCHEMY_CPU_AU1500: return au1500_gpio2_to_irq(gpio); case ALCHEMY_CPU_AU1550: return au1550_gpio2_to_irq(gpio); case ALCHEMY_CPU_AU1200: return au1200_gpio2_to_irq(gpio); } return -ENXIO; } /**********************************************************************/ /* GPIO2 shared interrupts and control */ static inline void __alchemy_gpio2_mod_int(int gpio2, int en) { void __iomem *base = (void __iomem *)KSEG1ADDR(AU1500_GPIO2_PHYS_ADDR); unsigned long r = __raw_readl(base + GPIO2_INTENABLE); if (en) r |= 1 << gpio2; else r &= ~(1 << gpio2); __raw_writel(r, base + GPIO2_INTENABLE); wmb(); } /** * alchemy_gpio2_enable_int - Enable a GPIO2 pins' shared irq contribution. * @gpio2: The GPIO2 pin to activate (200...215). * * GPIO208-215 have one shared interrupt line to the INTC. They are * and'ed with a per-pin enable bit and finally or'ed together to form * a single irq request (useful for active-high sources). * With this function, a pins' individual contribution to the int request * can be enabled. As with all other GPIO-based interrupts, the INTC * must be programmed to accept the GPIO208_215 interrupt as well. * * NOTE: Calling this macro is only necessary for GPIO208-215; all other * GPIO2-based interrupts have their own request to the INTC. Please * consult your Alchemy databook for more information! * * NOTE: On the Au1550, GPIOs 201-205 also have a shared interrupt request * line to the INTC, GPIO201_205. This function can be used for those * as well. * * NOTE: 'gpio2' parameter must be in range of the GPIO2 numberspace * (200-215 by default). No sanity checks are made, */ static inline void alchemy_gpio2_enable_int(int gpio2) { unsigned long flags; gpio2 -= ALCHEMY_GPIO2_BASE; /* Au1100/Au1500 have GPIO208-215 enable bits at 0..7 */ switch (alchemy_get_cputype()) { case ALCHEMY_CPU_AU1100: case ALCHEMY_CPU_AU1500: gpio2 -= 8; } local_irq_save(flags); __alchemy_gpio2_mod_int(gpio2, 1); local_irq_restore(flags); } /** * alchemy_gpio2_disable_int - Disable a GPIO2 pins' shared irq contribution. * @gpio2: The GPIO2 pin to activate (200...215). * * see function alchemy_gpio2_enable_int() for more information. */ static inline void alchemy_gpio2_disable_int(int gpio2) { unsigned long flags; gpio2 -= ALCHEMY_GPIO2_BASE; /* Au1100/Au1500 have GPIO208-215 enable bits at 0..7 */ switch (alchemy_get_cputype()) { case ALCHEMY_CPU_AU1100: case ALCHEMY_CPU_AU1500: gpio2 -= 8; } local_irq_save(flags); __alchemy_gpio2_mod_int(gpio2, 0); local_irq_restore(flags); } /** * alchemy_gpio2_enable - Activate GPIO2 block. * * The GPIO2 block must be enabled excplicitly to work. On systems * where this isn't done by the bootloader, this macro can be used. */ static inline void alchemy_gpio2_enable(void) { void __iomem *base = (void __iomem *)KSEG1ADDR(AU1500_GPIO2_PHYS_ADDR); __raw_writel(3, base + GPIO2_ENABLE); /* reset, clock enabled */ wmb(); __raw_writel(1, base + GPIO2_ENABLE); /* clock enabled */ wmb(); } /** * alchemy_gpio2_disable - disable GPIO2 block. * * Disable and put GPIO2 block in low-power mode. */ static inline void alchemy_gpio2_disable(void) { void __iomem *base = (void __iomem *)KSEG1ADDR(AU1500_GPIO2_PHYS_ADDR); __raw_writel(2, base + GPIO2_ENABLE); /* reset, clock disabled */ wmb(); } /**********************************************************************/ /* wrappers for on-chip gpios; can be used before gpio chips have been * registered with gpiolib. */ static inline int alchemy_gpio_direction_input(int gpio) { return (gpio >= ALCHEMY_GPIO2_BASE) ? alchemy_gpio2_direction_input(gpio) : alchemy_gpio1_direction_input(gpio); } static inline int alchemy_gpio_direction_output(int gpio, int v) { return (gpio >= ALCHEMY_GPIO2_BASE) ? alchemy_gpio2_direction_output(gpio, v) : alchemy_gpio1_direction_output(gpio, v); } static inline int alchemy_gpio_get_value(int gpio) { return (gpio >= ALCHEMY_GPIO2_BASE) ? alchemy_gpio2_get_value(gpio) : alchemy_gpio1_get_value(gpio); } static inline void alchemy_gpio_set_value(int gpio, int v) { if (gpio >= ALCHEMY_GPIO2_BASE) alchemy_gpio2_set_value(gpio, v); else alchemy_gpio1_set_value(gpio, v); } static inline int alchemy_gpio_is_valid(int gpio) { return (gpio >= ALCHEMY_GPIO2_BASE) ? alchemy_gpio2_is_valid(gpio) : alchemy_gpio1_is_valid(gpio); } static inline int alchemy_gpio_cansleep(int gpio) { return 0; /* Alchemy never gets tired */ } static inline int alchemy_gpio_to_irq(int gpio) { return (gpio >= ALCHEMY_GPIO2_BASE) ? alchemy_gpio2_to_irq(gpio) : alchemy_gpio1_to_irq(gpio); } static inline int alchemy_irq_to_gpio(int irq) { switch (alchemy_get_cputype()) { case ALCHEMY_CPU_AU1000: return au1000_irq_to_gpio(irq); case ALCHEMY_CPU_AU1100: return au1100_irq_to_gpio(irq); case ALCHEMY_CPU_AU1500: return au1500_irq_to_gpio(irq); case ALCHEMY_CPU_AU1550: return au1550_irq_to_gpio(irq); case ALCHEMY_CPU_AU1200: return au1200_irq_to_gpio(irq); } return -ENXIO; } /**********************************************************************/ /* Linux gpio framework integration. * * 4 use cases of Au1000-Au1200 GPIOS: *(1) GPIOLIB=y, ALCHEMY_GPIO_INDIRECT=y: * Board must register gpiochips. *(2) GPIOLIB=y, ALCHEMY_GPIO_INDIRECT=n: * 2 (1 for Au1000) gpio_chips are registered. * *(3) GPIOLIB=n, ALCHEMY_GPIO_INDIRECT=y: * the boards' gpio.h must provide the linux gpio wrapper functions, * *(4) GPIOLIB=n, ALCHEMY_GPIO_INDIRECT=n: * inlinable gpio functions are provided which enable access to the * Au1000 gpios only by using the numbers straight out of the data- * sheets. * Cases 1 and 3 are intended for boards which want to provide their own * GPIO namespace and -operations (i.e. for example you have 8 GPIOs * which are in part provided by spare Au1000 GPIO pins and in part by * an external FPGA but you still want them to be accssible in linux * as gpio0-7. The board can of course use the alchemy_gpioX_* functions * as required). */ #ifndef CONFIG_GPIOLIB #ifdef CONFIG_ALCHEMY_GPIOINT_AU1000 #ifndef CONFIG_ALCHEMY_GPIO_INDIRECT /* case (4) */ static inline int gpio_direction_input(int gpio) { return alchemy_gpio_direction_input(gpio); } static inline int gpio_direction_output(int gpio, int v) { return alchemy_gpio_direction_output(gpio, v); } static inline int gpio_get_value(int gpio) { return alchemy_gpio_get_value(gpio); } static inline void gpio_set_value(int gpio, int v) { alchemy_gpio_set_value(gpio, v); } static inline int gpio_get_value_cansleep(unsigned gpio) { return gpio_get_value(gpio); } static inline void gpio_set_value_cansleep(unsigned gpio, int value) { gpio_set_value(gpio, value); } static inline int gpio_is_valid(int gpio) { return alchemy_gpio_is_valid(gpio); } static inline int gpio_cansleep(int gpio) { return alchemy_gpio_cansleep(gpio); } static inline int gpio_to_irq(int gpio) { return alchemy_gpio_to_irq(gpio); } static inline int irq_to_gpio(int irq) { return alchemy_irq_to_gpio(irq); } static inline int gpio_request(unsigned gpio, const char *label) { return 0; } static inline int gpio_request_one(unsigned gpio, unsigned long flags, const char *label) { return 0; } static inline int gpio_request_array(struct gpio *array, size_t num) { return 0; } static inline void gpio_free(unsigned gpio) { } static inline void gpio_free_array(struct gpio *array, size_t num) { } static inline int gpio_set_debounce(unsigned gpio, unsigned debounce) { return -ENOSYS; } static inline int gpio_export(unsigned gpio, bool direction_may_change) { return -ENOSYS; } static inline int gpio_export_link(struct device *dev, const char *name, unsigned gpio) { return -ENOSYS; } static inline int gpio_sysfs_set_active_low(unsigned gpio, int value) { return -ENOSYS; } static inline void gpio_unexport(unsigned gpio) { } #endif /* !CONFIG_ALCHEMY_GPIO_INDIRECT */ #endif /* CONFIG_ALCHEMY_GPIOINT_AU1000 */ #endif /* !CONFIG_GPIOLIB */ #endif /* _ALCHEMY_GPIO_AU1000_H_ */