/* * Platform device support for Au1x00 SoCs. * * Copyright 2004, Matt Porter <mporter@kernel.crashing.org> * * (C) Copyright Embedded Alley Solutions, Inc 2005 * Author: Pantelis Antoniou <pantelis@embeddedalley.com> * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include <linux/dma-mapping.h> #include <linux/etherdevice.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/serial_8250.h> #include <linux/slab.h> #include <linux/usb/ehci_pdriver.h> #include <linux/usb/ohci_pdriver.h> #include <asm/mach-au1x00/au1000.h> #include <asm/mach-au1x00/au1xxx_dbdma.h> #include <asm/mach-au1x00/au1100_mmc.h> #include <asm/mach-au1x00/au1xxx_eth.h> #include <prom.h> static void alchemy_8250_pm(struct uart_port *port, unsigned int state, unsigned int old_state) { #ifdef CONFIG_SERIAL_8250 switch (state) { case 0: alchemy_uart_enable(CPHYSADDR(port->membase)); serial8250_do_pm(port, state, old_state); break; case 3: /* power off */ serial8250_do_pm(port, state, old_state); alchemy_uart_disable(CPHYSADDR(port->membase)); break; default: serial8250_do_pm(port, state, old_state); break; } #endif } #define PORT(_base, _irq) \ { \ .mapbase = _base, \ .irq = _irq, \ .regshift = 2, \ .iotype = UPIO_AU, \ .flags = UPF_SKIP_TEST | UPF_IOREMAP | \ UPF_FIXED_TYPE, \ .type = PORT_16550A, \ .pm = alchemy_8250_pm, \ } static struct plat_serial8250_port au1x00_uart_data[][4] __initdata = { [ALCHEMY_CPU_AU1000] = { PORT(AU1000_UART0_PHYS_ADDR, AU1000_UART0_INT), PORT(AU1000_UART1_PHYS_ADDR, AU1000_UART1_INT), PORT(AU1000_UART2_PHYS_ADDR, AU1000_UART2_INT), PORT(AU1000_UART3_PHYS_ADDR, AU1000_UART3_INT), }, [ALCHEMY_CPU_AU1500] = { PORT(AU1000_UART0_PHYS_ADDR, AU1500_UART0_INT), PORT(AU1000_UART3_PHYS_ADDR, AU1500_UART3_INT), }, [ALCHEMY_CPU_AU1100] = { PORT(AU1000_UART0_PHYS_ADDR, AU1100_UART0_INT), PORT(AU1000_UART1_PHYS_ADDR, AU1100_UART1_INT), PORT(AU1000_UART3_PHYS_ADDR, AU1100_UART3_INT), }, [ALCHEMY_CPU_AU1550] = { PORT(AU1000_UART0_PHYS_ADDR, AU1550_UART0_INT), PORT(AU1000_UART1_PHYS_ADDR, AU1550_UART1_INT), PORT(AU1000_UART3_PHYS_ADDR, AU1550_UART3_INT), }, [ALCHEMY_CPU_AU1200] = { PORT(AU1000_UART0_PHYS_ADDR, AU1200_UART0_INT), PORT(AU1000_UART1_PHYS_ADDR, AU1200_UART1_INT), }, [ALCHEMY_CPU_AU1300] = { PORT(AU1300_UART0_PHYS_ADDR, AU1300_UART0_INT), PORT(AU1300_UART1_PHYS_ADDR, AU1300_UART1_INT), PORT(AU1300_UART2_PHYS_ADDR, AU1300_UART2_INT), PORT(AU1300_UART3_PHYS_ADDR, AU1300_UART3_INT), }, }; static struct platform_device au1xx0_uart_device = { .name = "serial8250", .id = PLAT8250_DEV_AU1X00, }; static void __init alchemy_setup_uarts(int ctype) { unsigned int uartclk = get_au1x00_uart_baud_base() * 16; int s = sizeof(struct plat_serial8250_port); int c = alchemy_get_uarts(ctype); struct plat_serial8250_port *ports; ports = kzalloc(s * (c + 1), GFP_KERNEL); if (!ports) { printk(KERN_INFO "Alchemy: no memory for UART data\n"); return; } memcpy(ports, au1x00_uart_data[ctype], s * c); au1xx0_uart_device.dev.platform_data = ports; /* Fill up uartclk. */ for (s = 0; s < c; s++) ports[s].uartclk = uartclk; if (platform_device_register(&au1xx0_uart_device)) printk(KERN_INFO "Alchemy: failed to register UARTs\n"); } /* The dmamask must be set for OHCI/EHCI to work */ static u64 alchemy_ohci_dmamask = DMA_BIT_MASK(32); static u64 __maybe_unused alchemy_ehci_dmamask = DMA_BIT_MASK(32); /* Power on callback for the ehci platform driver */ static int alchemy_ehci_power_on(struct platform_device *pdev) { return alchemy_usb_control(ALCHEMY_USB_EHCI0, 1); } /* Power off/suspend callback for the ehci platform driver */ static void alchemy_ehci_power_off(struct platform_device *pdev) { alchemy_usb_control(ALCHEMY_USB_EHCI0, 0); } static struct usb_ehci_pdata alchemy_ehci_pdata = { .no_io_watchdog = 1, .power_on = alchemy_ehci_power_on, .power_off = alchemy_ehci_power_off, .power_suspend = alchemy_ehci_power_off, }; /* Power on callback for the ohci platform driver */ static int alchemy_ohci_power_on(struct platform_device *pdev) { int unit; unit = (pdev->id == 1) ? ALCHEMY_USB_OHCI1 : ALCHEMY_USB_OHCI0; return alchemy_usb_control(unit, 1); } /* Power off/suspend callback for the ohci platform driver */ static void alchemy_ohci_power_off(struct platform_device *pdev) { int unit; unit = (pdev->id == 1) ? ALCHEMY_USB_OHCI1 : ALCHEMY_USB_OHCI0; alchemy_usb_control(unit, 0); } static struct usb_ohci_pdata alchemy_ohci_pdata = { .power_on = alchemy_ohci_power_on, .power_off = alchemy_ohci_power_off, .power_suspend = alchemy_ohci_power_off, }; static unsigned long alchemy_ohci_data[][2] __initdata = { [ALCHEMY_CPU_AU1000] = { AU1000_USB_OHCI_PHYS_ADDR, AU1000_USB_HOST_INT }, [ALCHEMY_CPU_AU1500] = { AU1000_USB_OHCI_PHYS_ADDR, AU1500_USB_HOST_INT }, [ALCHEMY_CPU_AU1100] = { AU1000_USB_OHCI_PHYS_ADDR, AU1100_USB_HOST_INT }, [ALCHEMY_CPU_AU1550] = { AU1550_USB_OHCI_PHYS_ADDR, AU1550_USB_HOST_INT }, [ALCHEMY_CPU_AU1200] = { AU1200_USB_OHCI_PHYS_ADDR, AU1200_USB_INT }, [ALCHEMY_CPU_AU1300] = { AU1300_USB_OHCI0_PHYS_ADDR, AU1300_USB_INT }, }; static unsigned long alchemy_ehci_data[][2] __initdata = { [ALCHEMY_CPU_AU1200] = { AU1200_USB_EHCI_PHYS_ADDR, AU1200_USB_INT }, [ALCHEMY_CPU_AU1300] = { AU1300_USB_EHCI_PHYS_ADDR, AU1300_USB_INT }, }; static int __init _new_usbres(struct resource **r, struct platform_device **d) { *r = kzalloc(sizeof(struct resource) * 2, GFP_KERNEL); if (!*r) return -ENOMEM; *d = kzalloc(sizeof(struct platform_device), GFP_KERNEL); if (!*d) { kfree(*r); return -ENOMEM; } (*d)->dev.coherent_dma_mask = DMA_BIT_MASK(32); (*d)->num_resources = 2; (*d)->resource = *r; return 0; } static void __init alchemy_setup_usb(int ctype) { struct resource *res; struct platform_device *pdev; /* setup OHCI0. Every variant has one */ if (_new_usbres(&res, &pdev)) return; res[0].start = alchemy_ohci_data[ctype][0]; res[0].end = res[0].start + 0x100 - 1; res[0].flags = IORESOURCE_MEM; res[1].start = alchemy_ohci_data[ctype][1]; res[1].end = res[1].start; res[1].flags = IORESOURCE_IRQ; pdev->name = "ohci-platform"; pdev->id = 0; pdev->dev.dma_mask = &alchemy_ohci_dmamask; pdev->dev.platform_data = &alchemy_ohci_pdata; if (platform_device_register(pdev)) printk(KERN_INFO "Alchemy USB: cannot add OHCI0\n"); /* setup EHCI0: Au1200/Au1300 */ if ((ctype == ALCHEMY_CPU_AU1200) || (ctype == ALCHEMY_CPU_AU1300)) { if (_new_usbres(&res, &pdev)) return; res[0].start = alchemy_ehci_data[ctype][0]; res[0].end = res[0].start + 0x100 - 1; res[0].flags = IORESOURCE_MEM; res[1].start = alchemy_ehci_data[ctype][1]; res[1].end = res[1].start; res[1].flags = IORESOURCE_IRQ; pdev->name = "ehci-platform"; pdev->id = 0; pdev->dev.dma_mask = &alchemy_ehci_dmamask; pdev->dev.platform_data = &alchemy_ehci_pdata; if (platform_device_register(pdev)) printk(KERN_INFO "Alchemy USB: cannot add EHCI0\n"); } /* Au1300: OHCI1 */ if (ctype == ALCHEMY_CPU_AU1300) { if (_new_usbres(&res, &pdev)) return; res[0].start = AU1300_USB_OHCI1_PHYS_ADDR; res[0].end = res[0].start + 0x100 - 1; res[0].flags = IORESOURCE_MEM; res[1].start = AU1300_USB_INT; res[1].end = res[1].start; res[1].flags = IORESOURCE_IRQ; pdev->name = "ohci-platform"; pdev->id = 1; pdev->dev.dma_mask = &alchemy_ohci_dmamask; pdev->dev.platform_data = &alchemy_ohci_pdata; if (platform_device_register(pdev)) printk(KERN_INFO "Alchemy USB: cannot add OHCI1\n"); } } /* Macro to help defining the Ethernet MAC resources */ #define MAC_RES_COUNT 4 /* MAC regs, MAC en, MAC INT, MACDMA regs */ #define MAC_RES(_base, _enable, _irq, _macdma) \ { \ .start = _base, \ .end = _base + 0xffff, \ .flags = IORESOURCE_MEM, \ }, \ { \ .start = _enable, \ .end = _enable + 0x3, \ .flags = IORESOURCE_MEM, \ }, \ { \ .start = _irq, \ .end = _irq, \ .flags = IORESOURCE_IRQ \ }, \ { \ .start = _macdma, \ .end = _macdma + 0x1ff, \ .flags = IORESOURCE_MEM, \ } static struct resource au1xxx_eth0_resources[][MAC_RES_COUNT] __initdata = { [ALCHEMY_CPU_AU1000] = { MAC_RES(AU1000_MAC0_PHYS_ADDR, AU1000_MACEN_PHYS_ADDR, AU1000_MAC0_DMA_INT, AU1000_MACDMA0_PHYS_ADDR) }, [ALCHEMY_CPU_AU1500] = { MAC_RES(AU1500_MAC0_PHYS_ADDR, AU1500_MACEN_PHYS_ADDR, AU1500_MAC0_DMA_INT, AU1000_MACDMA0_PHYS_ADDR) }, [ALCHEMY_CPU_AU1100] = { MAC_RES(AU1000_MAC0_PHYS_ADDR, AU1000_MACEN_PHYS_ADDR, AU1100_MAC0_DMA_INT, AU1000_MACDMA0_PHYS_ADDR) }, [ALCHEMY_CPU_AU1550] = { MAC_RES(AU1000_MAC0_PHYS_ADDR, AU1000_MACEN_PHYS_ADDR, AU1550_MAC0_DMA_INT, AU1000_MACDMA0_PHYS_ADDR) }, }; static struct au1000_eth_platform_data au1xxx_eth0_platform_data = { .phy1_search_mac0 = 1, }; static struct platform_device au1xxx_eth0_device = { .name = "au1000-eth", .id = 0, .num_resources = MAC_RES_COUNT, .dev.platform_data = &au1xxx_eth0_platform_data, }; static struct resource au1xxx_eth1_resources[][MAC_RES_COUNT] __initdata = { [ALCHEMY_CPU_AU1000] = { MAC_RES(AU1000_MAC1_PHYS_ADDR, AU1000_MACEN_PHYS_ADDR + 4, AU1000_MAC1_DMA_INT, AU1000_MACDMA1_PHYS_ADDR) }, [ALCHEMY_CPU_AU1500] = { MAC_RES(AU1500_MAC1_PHYS_ADDR, AU1500_MACEN_PHYS_ADDR + 4, AU1500_MAC1_DMA_INT, AU1000_MACDMA1_PHYS_ADDR) }, [ALCHEMY_CPU_AU1550] = { MAC_RES(AU1000_MAC1_PHYS_ADDR, AU1000_MACEN_PHYS_ADDR + 4, AU1550_MAC1_DMA_INT, AU1000_MACDMA1_PHYS_ADDR) }, }; static struct au1000_eth_platform_data au1xxx_eth1_platform_data = { .phy1_search_mac0 = 1, }; static struct platform_device au1xxx_eth1_device = { .name = "au1000-eth", .id = 1, .num_resources = MAC_RES_COUNT, .dev.platform_data = &au1xxx_eth1_platform_data, }; void __init au1xxx_override_eth_cfg(unsigned int port, struct au1000_eth_platform_data *eth_data) { if (!eth_data || port > 1) return; if (port == 0) memcpy(&au1xxx_eth0_platform_data, eth_data, sizeof(struct au1000_eth_platform_data)); else memcpy(&au1xxx_eth1_platform_data, eth_data, sizeof(struct au1000_eth_platform_data)); } static void __init alchemy_setup_macs(int ctype) { int ret, i; unsigned char ethaddr[6]; struct resource *macres; /* Handle 1st MAC */ if (alchemy_get_macs(ctype) < 1) return; macres = kmemdup(au1xxx_eth0_resources[ctype], sizeof(struct resource) * MAC_RES_COUNT, GFP_KERNEL); if (!macres) { printk(KERN_INFO "Alchemy: no memory for MAC0 resources\n"); return; } au1xxx_eth0_device.resource = macres; i = prom_get_ethernet_addr(ethaddr); if (!i && !is_valid_ether_addr(au1xxx_eth0_platform_data.mac)) memcpy(au1xxx_eth0_platform_data.mac, ethaddr, 6); ret = platform_device_register(&au1xxx_eth0_device); if (ret) printk(KERN_INFO "Alchemy: failed to register MAC0\n"); /* Handle 2nd MAC */ if (alchemy_get_macs(ctype) < 2) return; macres = kmemdup(au1xxx_eth1_resources[ctype], sizeof(struct resource) * MAC_RES_COUNT, GFP_KERNEL); if (!macres) { printk(KERN_INFO "Alchemy: no memory for MAC1 resources\n"); return; } au1xxx_eth1_device.resource = macres; ethaddr[5] += 1; /* next addr for 2nd MAC */ if (!i && !is_valid_ether_addr(au1xxx_eth1_platform_data.mac)) memcpy(au1xxx_eth1_platform_data.mac, ethaddr, 6); /* Register second MAC if enabled in pinfunc */ if (!(au_readl(SYS_PINFUNC) & (u32)SYS_PF_NI2)) { ret = platform_device_register(&au1xxx_eth1_device); if (ret) printk(KERN_INFO "Alchemy: failed to register MAC1\n"); } } static int __init au1xxx_platform_init(void) { int ctype = alchemy_get_cputype(); alchemy_setup_uarts(ctype); alchemy_setup_macs(ctype); alchemy_setup_usb(ctype); return 0; } arch_initcall(au1xxx_platform_init);