/* * SN2 Platform specific SMP Support * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/spinlock.h> #include <linux/threads.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/mmzone.h> #include <linux/module.h> #include <linux/bitops.h> #include <linux/nodemask.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <asm/processor.h> #include <asm/irq.h> #include <asm/sal.h> #include <asm/delay.h> #include <asm/io.h> #include <asm/smp.h> #include <asm/tlb.h> #include <asm/numa.h> #include <asm/hw_irq.h> #include <asm/current.h> #include <asm/sn/sn_cpuid.h> #include <asm/sn/sn_sal.h> #include <asm/sn/addrs.h> #include <asm/sn/shub_mmr.h> #include <asm/sn/nodepda.h> #include <asm/sn/rw_mmr.h> #include <asm/sn/sn_feature_sets.h> DEFINE_PER_CPU(struct ptc_stats, ptcstats); DECLARE_PER_CPU(struct ptc_stats, ptcstats); static __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock); /* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */ static int sn2_flush_opt = 0; extern unsigned long sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long, volatile unsigned long *, unsigned long, volatile unsigned long *, unsigned long); void sn2_ptc_deadlock_recovery(short *, short, short, int, volatile unsigned long *, unsigned long, volatile unsigned long *, unsigned long); /* * Note: some is the following is captured here to make degugging easier * (the macros make more sense if you see the debug patch - not posted) */ #define sn2_ptctest 0 #define local_node_uses_ptc_ga(sh1) ((sh1) ? 1 : 0) #define max_active_pio(sh1) ((sh1) ? 32 : 7) #define reset_max_active_on_deadlock() 1 #define PTC_LOCK(sh1) ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock) struct ptc_stats { unsigned long ptc_l; unsigned long change_rid; unsigned long shub_ptc_flushes; unsigned long nodes_flushed; unsigned long deadlocks; unsigned long deadlocks2; unsigned long lock_itc_clocks; unsigned long shub_itc_clocks; unsigned long shub_itc_clocks_max; unsigned long shub_ptc_flushes_not_my_mm; unsigned long shub_ipi_flushes; unsigned long shub_ipi_flushes_itc_clocks; }; #define sn2_ptctest 0 static inline unsigned long wait_piowc(void) { volatile unsigned long *piows; unsigned long zeroval, ws; piows = pda->pio_write_status_addr; zeroval = pda->pio_write_status_val; do { cpu_relax(); } while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval); return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0; } /** * sn_migrate - SN-specific task migration actions * @task: Task being migrated to new CPU * * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order. * Context switching user threads which have memory-mapped MMIO may cause * PIOs to issue from separate CPUs, thus the PIO writes must be drained * from the previous CPU's Shub before execution resumes on the new CPU. */ void sn_migrate(struct task_struct *task) { pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu); volatile unsigned long *adr = last_pda->pio_write_status_addr; unsigned long val = last_pda->pio_write_status_val; /* Drain PIO writes from old CPU's Shub */ while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != val)) cpu_relax(); } void sn_tlb_migrate_finish(struct mm_struct *mm) { /* flush_tlb_mm is inefficient if more than 1 users of mm */ if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1) flush_tlb_mm(mm); } static void sn2_ipi_flush_all_tlb(struct mm_struct *mm) { unsigned long itc; itc = ia64_get_itc(); smp_flush_tlb_cpumask(*mm_cpumask(mm)); itc = ia64_get_itc() - itc; __get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc; __get_cpu_var(ptcstats).shub_ipi_flushes++; } /** * sn2_global_tlb_purge - globally purge translation cache of virtual address range * @mm: mm_struct containing virtual address range * @start: start of virtual address range * @end: end of virtual address range * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc)) * * Purges the translation caches of all processors of the given virtual address * range. * * Note: * - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context. * - cpu_vm_mask is converted into a nodemask of the nodes containing the * cpus in cpu_vm_mask. * - if only one bit is set in cpu_vm_mask & it is the current cpu & the * process is purging its own virtual address range, then only the * local TLB needs to be flushed. This flushing can be done using * ptc.l. This is the common case & avoids the global spinlock. * - if multiple cpus have loaded the context, then flushing has to be * done with ptc.g/MMRs under protection of the global ptc_lock. */ void sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned long nbits) { int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid; int mymm = (mm == current->active_mm && mm == current->mm); int use_cpu_ptcga; volatile unsigned long *ptc0, *ptc1; unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0; short nasids[MAX_NUMNODES], nix; nodemask_t nodes_flushed; int active, max_active, deadlock, flush_opt = sn2_flush_opt; if (flush_opt > 2) { sn2_ipi_flush_all_tlb(mm); return; } nodes_clear(nodes_flushed); i = 0; for_each_cpu(cpu, mm_cpumask(mm)) { cnode = cpu_to_node(cpu); node_set(cnode, nodes_flushed); lcpu = cpu; i++; } if (i == 0) return; preempt_disable(); if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) { do { ia64_ptcl(start, nbits << 2); start += (1UL << nbits); } while (start < end); ia64_srlz_i(); __get_cpu_var(ptcstats).ptc_l++; preempt_enable(); return; } if (atomic_read(&mm->mm_users) == 1 && mymm) { flush_tlb_mm(mm); __get_cpu_var(ptcstats).change_rid++; preempt_enable(); return; } if (flush_opt == 2) { sn2_ipi_flush_all_tlb(mm); preempt_enable(); return; } itc = ia64_get_itc(); nix = 0; for_each_node_mask(cnode, nodes_flushed) nasids[nix++] = cnodeid_to_nasid(cnode); rr_value = (mm->context << 3) | REGION_NUMBER(start); shub1 = is_shub1(); if (shub1) { data0 = (1UL << SH1_PTC_0_A_SHFT) | (nbits << SH1_PTC_0_PS_SHFT) | (rr_value << SH1_PTC_0_RID_SHFT) | (1UL << SH1_PTC_0_START_SHFT); ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0); ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1); } else { data0 = (1UL << SH2_PTC_A_SHFT) | (nbits << SH2_PTC_PS_SHFT) | (1UL << SH2_PTC_START_SHFT); ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC + (rr_value << SH2_PTC_RID_SHFT)); ptc1 = NULL; } mynasid = get_nasid(); use_cpu_ptcga = local_node_uses_ptc_ga(shub1); max_active = max_active_pio(shub1); itc = ia64_get_itc(); spin_lock_irqsave(PTC_LOCK(shub1), flags); itc2 = ia64_get_itc(); __get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc; __get_cpu_var(ptcstats).shub_ptc_flushes++; __get_cpu_var(ptcstats).nodes_flushed += nix; if (!mymm) __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++; if (use_cpu_ptcga && !mymm) { old_rr = ia64_get_rr(start); ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8)); ia64_srlz_d(); } wait_piowc(); do { if (shub1) data1 = start | (1UL << SH1_PTC_1_START_SHFT); else data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK); deadlock = 0; active = 0; for (ibegin = 0, i = 0; i < nix; i++) { nasid = nasids[i]; if (use_cpu_ptcga && unlikely(nasid == mynasid)) { ia64_ptcga(start, nbits << 2); ia64_srlz_i(); } else { ptc0 = CHANGE_NASID(nasid, ptc0); if (ptc1) ptc1 = CHANGE_NASID(nasid, ptc1); pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1); active++; } if (active >= max_active || i == (nix - 1)) { if ((deadlock = wait_piowc())) { if (flush_opt == 1) goto done; sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1); if (reset_max_active_on_deadlock()) max_active = 1; } active = 0; ibegin = i + 1; } } start += (1UL << nbits); } while (start < end); done: itc2 = ia64_get_itc() - itc2; __get_cpu_var(ptcstats).shub_itc_clocks += itc2; if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max) __get_cpu_var(ptcstats).shub_itc_clocks_max = itc2; if (old_rr) { ia64_set_rr(start, old_rr); ia64_srlz_d(); } spin_unlock_irqrestore(PTC_LOCK(shub1), flags); if (flush_opt == 1 && deadlock) { __get_cpu_var(ptcstats).deadlocks++; sn2_ipi_flush_all_tlb(mm); } preempt_enable(); } /* * sn2_ptc_deadlock_recovery * * Recover from PTC deadlocks conditions. Recovery requires stepping thru each * TLB flush transaction. The recovery sequence is somewhat tricky & is * coded in assembly language. */ void sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid, volatile unsigned long *ptc0, unsigned long data0, volatile unsigned long *ptc1, unsigned long data1) { short nasid, i; unsigned long *piows, zeroval, n; __get_cpu_var(ptcstats).deadlocks++; piows = (unsigned long *) pda->pio_write_status_addr; zeroval = pda->pio_write_status_val; for (i=ib; i <= ie; i++) { nasid = nasids[i]; if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid) continue; ptc0 = CHANGE_NASID(nasid, ptc0); if (ptc1) ptc1 = CHANGE_NASID(nasid, ptc1); n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval); __get_cpu_var(ptcstats).deadlocks2 += n; } } /** * sn_send_IPI_phys - send an IPI to a Nasid and slice * @nasid: nasid to receive the interrupt (may be outside partition) * @physid: physical cpuid to receive the interrupt. * @vector: command to send * @delivery_mode: delivery mechanism * * Sends an IPI (interprocessor interrupt) to the processor specified by * @physid * * @delivery_mode can be one of the following * * %IA64_IPI_DM_INT - pend an interrupt * %IA64_IPI_DM_PMI - pend a PMI * %IA64_IPI_DM_NMI - pend an NMI * %IA64_IPI_DM_INIT - pend an INIT interrupt */ void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode) { long val; unsigned long flags = 0; volatile long *p; p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT); val = (1UL << SH_IPI_INT_SEND_SHFT) | (physid << SH_IPI_INT_PID_SHFT) | ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) | ((long)vector << SH_IPI_INT_IDX_SHFT) | (0x000feeUL << SH_IPI_INT_BASE_SHFT); mb(); if (enable_shub_wars_1_1()) { spin_lock_irqsave(&sn2_global_ptc_lock, flags); } pio_phys_write_mmr(p, val); if (enable_shub_wars_1_1()) { wait_piowc(); spin_unlock_irqrestore(&sn2_global_ptc_lock, flags); } } EXPORT_SYMBOL(sn_send_IPI_phys); /** * sn2_send_IPI - send an IPI to a processor * @cpuid: target of the IPI * @vector: command to send * @delivery_mode: delivery mechanism * @redirect: redirect the IPI? * * Sends an IPI (InterProcessor Interrupt) to the processor specified by * @cpuid. @vector specifies the command to send, while @delivery_mode can * be one of the following * * %IA64_IPI_DM_INT - pend an interrupt * %IA64_IPI_DM_PMI - pend a PMI * %IA64_IPI_DM_NMI - pend an NMI * %IA64_IPI_DM_INIT - pend an INIT interrupt */ void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect) { long physid; int nasid; physid = cpu_physical_id(cpuid); nasid = cpuid_to_nasid(cpuid); /* the following is used only when starting cpus at boot time */ if (unlikely(nasid == -1)) ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL); sn_send_IPI_phys(nasid, physid, vector, delivery_mode); } #ifdef CONFIG_HOTPLUG_CPU /** * sn_cpu_disable_allowed - Determine if a CPU can be disabled. * @cpu - CPU that is requested to be disabled. * * CPU disable is only allowed on SHub2 systems running with a PROM * that supports CPU disable. It is not permitted to disable the boot processor. */ bool sn_cpu_disable_allowed(int cpu) { if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) { if (cpu != 0) return true; else printk(KERN_WARNING "Disabling the boot processor is not allowed.\n"); } else printk(KERN_WARNING "CPU disable is not supported on this system.\n"); return false; } #endif /* CONFIG_HOTPLUG_CPU */ #ifdef CONFIG_PROC_FS #define PTC_BASENAME "sgi_sn/ptc_statistics" static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset) { if (*offset < nr_cpu_ids) return offset; return NULL; } static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset) { (*offset)++; if (*offset < nr_cpu_ids) return offset; return NULL; } static void sn2_ptc_seq_stop(struct seq_file *file, void *data) { } static int sn2_ptc_seq_show(struct seq_file *file, void *data) { struct ptc_stats *stat; int cpu; cpu = *(loff_t *) data; if (!cpu) { seq_printf(file, "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n"); seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt); } if (cpu < nr_cpu_ids && cpu_online(cpu)) { stat = &per_cpu(ptcstats, cpu); seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l, stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed, stat->deadlocks, 1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec, 1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec, 1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec, stat->shub_ptc_flushes_not_my_mm, stat->deadlocks2, stat->shub_ipi_flushes, 1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec); } return 0; } static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data) { int cpu; char optstr[64]; if (count == 0 || count > sizeof(optstr)) return -EINVAL; if (copy_from_user(optstr, user, count)) return -EFAULT; optstr[count - 1] = '\0'; sn2_flush_opt = simple_strtoul(optstr, NULL, 0); for_each_online_cpu(cpu) memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats)); return count; } static const struct seq_operations sn2_ptc_seq_ops = { .start = sn2_ptc_seq_start, .next = sn2_ptc_seq_next, .stop = sn2_ptc_seq_stop, .show = sn2_ptc_seq_show }; static int sn2_ptc_proc_open(struct inode *inode, struct file *file) { return seq_open(file, &sn2_ptc_seq_ops); } static const struct file_operations proc_sn2_ptc_operations = { .open = sn2_ptc_proc_open, .read = seq_read, .write = sn2_ptc_proc_write, .llseek = seq_lseek, .release = seq_release, }; static struct proc_dir_entry *proc_sn2_ptc; static int __init sn2_ptc_init(void) { if (!ia64_platform_is("sn2")) return 0; proc_sn2_ptc = proc_create(PTC_BASENAME, 0444, NULL, &proc_sn2_ptc_operations); if (!proc_sn2_ptc) { printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME); return -EINVAL; } spin_lock_init(&sn2_global_ptc_lock); return 0; } static void __exit sn2_ptc_exit(void) { remove_proc_entry(PTC_BASENAME, NULL); } module_init(sn2_ptc_init); module_exit(sn2_ptc_exit); #endif /* CONFIG_PROC_FS */