/* * vtlb.c: guest virtual tlb handling module. * Copyright (c) 2004, Intel Corporation. * Yaozu Dong (Eddie Dong) <Eddie.dong@intel.com> * Xuefei Xu (Anthony Xu) <anthony.xu@intel.com> * * Copyright (c) 2007, Intel Corporation. * Xuefei Xu (Anthony Xu) <anthony.xu@intel.com> * Xiantao Zhang <xiantao.zhang@intel.com> * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. * */ #include "vcpu.h" #include <linux/rwsem.h> #include <asm/tlb.h> /* * Check to see if the address rid:va is translated by the TLB */ static int __is_tr_translated(struct thash_data *trp, u64 rid, u64 va) { return ((trp->p) && (trp->rid == rid) && ((va-trp->vadr) < PSIZE(trp->ps))); } /* * Only for GUEST TR format. */ static int __is_tr_overlap(struct thash_data *trp, u64 rid, u64 sva, u64 eva) { u64 sa1, ea1; if (!trp->p || trp->rid != rid) return 0; sa1 = trp->vadr; ea1 = sa1 + PSIZE(trp->ps) - 1; eva -= 1; if ((sva > ea1) || (sa1 > eva)) return 0; else return 1; } void machine_tlb_purge(u64 va, u64 ps) { ia64_ptcl(va, ps << 2); } void local_flush_tlb_all(void) { int i, j; unsigned long flags, count0, count1; unsigned long stride0, stride1, addr; addr = current_vcpu->arch.ptce_base; count0 = current_vcpu->arch.ptce_count[0]; count1 = current_vcpu->arch.ptce_count[1]; stride0 = current_vcpu->arch.ptce_stride[0]; stride1 = current_vcpu->arch.ptce_stride[1]; local_irq_save(flags); for (i = 0; i < count0; ++i) { for (j = 0; j < count1; ++j) { ia64_ptce(addr); addr += stride1; } addr += stride0; } local_irq_restore(flags); ia64_srlz_i(); /* srlz.i implies srlz.d */ } int vhpt_enabled(struct kvm_vcpu *vcpu, u64 vadr, enum vhpt_ref ref) { union ia64_rr vrr; union ia64_pta vpta; struct ia64_psr vpsr; vpsr = *(struct ia64_psr *)&VCPU(vcpu, vpsr); vrr.val = vcpu_get_rr(vcpu, vadr); vpta.val = vcpu_get_pta(vcpu); if (vrr.ve & vpta.ve) { switch (ref) { case DATA_REF: case NA_REF: return vpsr.dt; case INST_REF: return vpsr.dt && vpsr.it && vpsr.ic; case RSE_REF: return vpsr.dt && vpsr.rt; } } return 0; } struct thash_data *vsa_thash(union ia64_pta vpta, u64 va, u64 vrr, u64 *tag) { u64 index, pfn, rid, pfn_bits; pfn_bits = vpta.size - 5 - 8; pfn = REGION_OFFSET(va) >> _REGION_PAGE_SIZE(vrr); rid = _REGION_ID(vrr); index = ((rid & 0xff) << pfn_bits)|(pfn & ((1UL << pfn_bits) - 1)); *tag = ((rid >> 8) & 0xffff) | ((pfn >> pfn_bits) << 16); return (struct thash_data *)((vpta.base << PTA_BASE_SHIFT) + (index << 5)); } struct thash_data *__vtr_lookup(struct kvm_vcpu *vcpu, u64 va, int type) { struct thash_data *trp; int i; u64 rid; rid = vcpu_get_rr(vcpu, va); rid = rid & RR_RID_MASK; if (type == D_TLB) { if (vcpu_quick_region_check(vcpu->arch.dtr_regions, va)) { for (trp = (struct thash_data *)&vcpu->arch.dtrs, i = 0; i < NDTRS; i++, trp++) { if (__is_tr_translated(trp, rid, va)) return trp; } } } else { if (vcpu_quick_region_check(vcpu->arch.itr_regions, va)) { for (trp = (struct thash_data *)&vcpu->arch.itrs, i = 0; i < NITRS; i++, trp++) { if (__is_tr_translated(trp, rid, va)) return trp; } } } return NULL; } static void vhpt_insert(u64 pte, u64 itir, u64 ifa, u64 gpte) { union ia64_rr rr; struct thash_data *head; unsigned long ps, gpaddr; ps = itir_ps(itir); rr.val = ia64_get_rr(ifa); gpaddr = ((gpte & _PAGE_PPN_MASK) >> ps << ps) | (ifa & ((1UL << ps) - 1)); head = (struct thash_data *)ia64_thash(ifa); head->etag = INVALID_TI_TAG; ia64_mf(); head->page_flags = pte & ~PAGE_FLAGS_RV_MASK; head->itir = rr.ps << 2; head->etag = ia64_ttag(ifa); head->gpaddr = gpaddr; } void mark_pages_dirty(struct kvm_vcpu *v, u64 pte, u64 ps) { u64 i, dirty_pages = 1; u64 base_gfn = (pte&_PAGE_PPN_MASK) >> PAGE_SHIFT; vmm_spinlock_t *lock = __kvm_va(v->arch.dirty_log_lock_pa); void *dirty_bitmap = (void *)KVM_MEM_DIRTY_LOG_BASE; dirty_pages <<= ps <= PAGE_SHIFT ? 0 : ps - PAGE_SHIFT; vmm_spin_lock(lock); for (i = 0; i < dirty_pages; i++) { /* avoid RMW */ if (!test_bit(base_gfn + i, dirty_bitmap)) set_bit(base_gfn + i , dirty_bitmap); } vmm_spin_unlock(lock); } void thash_vhpt_insert(struct kvm_vcpu *v, u64 pte, u64 itir, u64 va, int type) { u64 phy_pte, psr; union ia64_rr mrr; mrr.val = ia64_get_rr(va); phy_pte = translate_phy_pte(&pte, itir, va); if (itir_ps(itir) >= mrr.ps) { vhpt_insert(phy_pte, itir, va, pte); } else { phy_pte &= ~PAGE_FLAGS_RV_MASK; psr = ia64_clear_ic(); ia64_itc(type, va, phy_pte, itir_ps(itir)); paravirt_dv_serialize_data(); ia64_set_psr(psr); } if (!(pte&VTLB_PTE_IO)) mark_pages_dirty(v, pte, itir_ps(itir)); } /* * vhpt lookup */ struct thash_data *vhpt_lookup(u64 va) { struct thash_data *head; u64 tag; head = (struct thash_data *)ia64_thash(va); tag = ia64_ttag(va); if (head->etag == tag) return head; return NULL; } u64 guest_vhpt_lookup(u64 iha, u64 *pte) { u64 ret; struct thash_data *data; data = __vtr_lookup(current_vcpu, iha, D_TLB); if (data != NULL) thash_vhpt_insert(current_vcpu, data->page_flags, data->itir, iha, D_TLB); asm volatile ("rsm psr.ic|psr.i;;" "srlz.d;;" "ld8.s r9=[%1];;" "tnat.nz p6,p7=r9;;" "(p6) mov %0=1;" "(p6) mov r9=r0;" "(p7) extr.u r9=r9,0,53;;" "(p7) mov %0=r0;" "(p7) st8 [%2]=r9;;" "ssm psr.ic;;" "srlz.d;;" "ssm psr.i;;" "srlz.d;;" : "=&r"(ret) : "r"(iha), "r"(pte) : "memory"); return ret; } /* * purge software guest tlb */ static void vtlb_purge(struct kvm_vcpu *v, u64 va, u64 ps) { struct thash_data *cur; u64 start, curadr, size, psbits, tag, rr_ps, num; union ia64_rr vrr; struct thash_cb *hcb = &v->arch.vtlb; vrr.val = vcpu_get_rr(v, va); psbits = VMX(v, psbits[(va >> 61)]); start = va & ~((1UL << ps) - 1); while (psbits) { curadr = start; rr_ps = __ffs(psbits); psbits &= ~(1UL << rr_ps); num = 1UL << ((ps < rr_ps) ? 0 : (ps - rr_ps)); size = PSIZE(rr_ps); vrr.ps = rr_ps; while (num) { cur = vsa_thash(hcb->pta, curadr, vrr.val, &tag); if (cur->etag == tag && cur->ps == rr_ps) cur->etag = INVALID_TI_TAG; curadr += size; num--; } } } /* * purge VHPT and machine TLB */ static void vhpt_purge(struct kvm_vcpu *v, u64 va, u64 ps) { struct thash_data *cur; u64 start, size, tag, num; union ia64_rr rr; start = va & ~((1UL << ps) - 1); rr.val = ia64_get_rr(va); size = PSIZE(rr.ps); num = 1UL << ((ps < rr.ps) ? 0 : (ps - rr.ps)); while (num) { cur = (struct thash_data *)ia64_thash(start); tag = ia64_ttag(start); if (cur->etag == tag) cur->etag = INVALID_TI_TAG; start += size; num--; } machine_tlb_purge(va, ps); } /* * Insert an entry into hash TLB or VHPT. * NOTES: * 1: When inserting VHPT to thash, "va" is a must covered * address by the inserted machine VHPT entry. * 2: The format of entry is always in TLB. * 3: The caller need to make sure the new entry will not overlap * with any existed entry. */ void vtlb_insert(struct kvm_vcpu *v, u64 pte, u64 itir, u64 va) { struct thash_data *head; union ia64_rr vrr; u64 tag; struct thash_cb *hcb = &v->arch.vtlb; vrr.val = vcpu_get_rr(v, va); vrr.ps = itir_ps(itir); VMX(v, psbits[va >> 61]) |= (1UL << vrr.ps); head = vsa_thash(hcb->pta, va, vrr.val, &tag); head->page_flags = pte; head->itir = itir; head->etag = tag; } int vtr_find_overlap(struct kvm_vcpu *vcpu, u64 va, u64 ps, int type) { struct thash_data *trp; int i; u64 end, rid; rid = vcpu_get_rr(vcpu, va); rid = rid & RR_RID_MASK; end = va + PSIZE(ps); if (type == D_TLB) { if (vcpu_quick_region_check(vcpu->arch.dtr_regions, va)) { for (trp = (struct thash_data *)&vcpu->arch.dtrs, i = 0; i < NDTRS; i++, trp++) { if (__is_tr_overlap(trp, rid, va, end)) return i; } } } else { if (vcpu_quick_region_check(vcpu->arch.itr_regions, va)) { for (trp = (struct thash_data *)&vcpu->arch.itrs, i = 0; i < NITRS; i++, trp++) { if (__is_tr_overlap(trp, rid, va, end)) return i; } } } return -1; } /* * Purge entries in VTLB and VHPT */ void thash_purge_entries(struct kvm_vcpu *v, u64 va, u64 ps) { if (vcpu_quick_region_check(v->arch.tc_regions, va)) vtlb_purge(v, va, ps); vhpt_purge(v, va, ps); } void thash_purge_entries_remote(struct kvm_vcpu *v, u64 va, u64 ps) { u64 old_va = va; va = REGION_OFFSET(va); if (vcpu_quick_region_check(v->arch.tc_regions, old_va)) vtlb_purge(v, va, ps); vhpt_purge(v, va, ps); } u64 translate_phy_pte(u64 *pte, u64 itir, u64 va) { u64 ps, ps_mask, paddr, maddr, io_mask; union pte_flags phy_pte; ps = itir_ps(itir); ps_mask = ~((1UL << ps) - 1); phy_pte.val = *pte; paddr = *pte; paddr = ((paddr & _PAGE_PPN_MASK) & ps_mask) | (va & ~ps_mask); maddr = kvm_get_mpt_entry(paddr >> PAGE_SHIFT); io_mask = maddr & GPFN_IO_MASK; if (io_mask && (io_mask != GPFN_PHYS_MMIO)) { *pte |= VTLB_PTE_IO; return -1; } maddr = ((maddr & _PAGE_PPN_MASK) & PAGE_MASK) | (paddr & ~PAGE_MASK); phy_pte.ppn = maddr >> ARCH_PAGE_SHIFT; return phy_pte.val; } /* * Purge overlap TCs and then insert the new entry to emulate itc ops. * Notes: Only TC entry can purge and insert. */ void thash_purge_and_insert(struct kvm_vcpu *v, u64 pte, u64 itir, u64 ifa, int type) { u64 ps; u64 phy_pte, io_mask, index; union ia64_rr vrr, mrr; ps = itir_ps(itir); vrr.val = vcpu_get_rr(v, ifa); mrr.val = ia64_get_rr(ifa); index = (pte & _PAGE_PPN_MASK) >> PAGE_SHIFT; io_mask = kvm_get_mpt_entry(index) & GPFN_IO_MASK; phy_pte = translate_phy_pte(&pte, itir, ifa); /* Ensure WB attribute if pte is related to a normal mem page, * which is required by vga acceleration since qemu maps shared * vram buffer with WB. */ if (!(pte & VTLB_PTE_IO) && ((pte & _PAGE_MA_MASK) != _PAGE_MA_NAT) && io_mask != GPFN_PHYS_MMIO) { pte &= ~_PAGE_MA_MASK; phy_pte &= ~_PAGE_MA_MASK; } vtlb_purge(v, ifa, ps); vhpt_purge(v, ifa, ps); if ((ps != mrr.ps) || (pte & VTLB_PTE_IO)) { vtlb_insert(v, pte, itir, ifa); vcpu_quick_region_set(VMX(v, tc_regions), ifa); } if (pte & VTLB_PTE_IO) return; if (ps >= mrr.ps) vhpt_insert(phy_pte, itir, ifa, pte); else { u64 psr; phy_pte &= ~PAGE_FLAGS_RV_MASK; psr = ia64_clear_ic(); ia64_itc(type, ifa, phy_pte, ps); paravirt_dv_serialize_data(); ia64_set_psr(psr); } if (!(pte&VTLB_PTE_IO)) mark_pages_dirty(v, pte, ps); } /* * Purge all TCs or VHPT entries including those in Hash table. * */ void thash_purge_all(struct kvm_vcpu *v) { int i; struct thash_data *head; struct thash_cb *vtlb, *vhpt; vtlb = &v->arch.vtlb; vhpt = &v->arch.vhpt; for (i = 0; i < 8; i++) VMX(v, psbits[i]) = 0; head = vtlb->hash; for (i = 0; i < vtlb->num; i++) { head->page_flags = 0; head->etag = INVALID_TI_TAG; head->itir = 0; head->next = 0; head++; }; head = vhpt->hash; for (i = 0; i < vhpt->num; i++) { head->page_flags = 0; head->etag = INVALID_TI_TAG; head->itir = 0; head->next = 0; head++; }; local_flush_tlb_all(); } /* * Lookup the hash table and its collision chain to find an entry * covering this address rid:va or the entry. * * INPUT: * in: TLB format for both VHPT & TLB. */ struct thash_data *vtlb_lookup(struct kvm_vcpu *v, u64 va, int is_data) { struct thash_data *cch; u64 psbits, ps, tag; union ia64_rr vrr; struct thash_cb *hcb = &v->arch.vtlb; cch = __vtr_lookup(v, va, is_data); if (cch) return cch; if (vcpu_quick_region_check(v->arch.tc_regions, va) == 0) return NULL; psbits = VMX(v, psbits[(va >> 61)]); vrr.val = vcpu_get_rr(v, va); while (psbits) { ps = __ffs(psbits); psbits &= ~(1UL << ps); vrr.ps = ps; cch = vsa_thash(hcb->pta, va, vrr.val, &tag); if (cch->etag == tag && cch->ps == ps) return cch; } return NULL; } /* * Initialize internal control data before service. */ void thash_init(struct thash_cb *hcb, u64 sz) { int i; struct thash_data *head; hcb->pta.val = (unsigned long)hcb->hash; hcb->pta.vf = 1; hcb->pta.ve = 1; hcb->pta.size = sz; head = hcb->hash; for (i = 0; i < hcb->num; i++) { head->page_flags = 0; head->itir = 0; head->etag = INVALID_TI_TAG; head->next = 0; head++; } } u64 kvm_get_mpt_entry(u64 gpfn) { u64 *base = (u64 *) KVM_P2M_BASE; if (gpfn >= (KVM_P2M_SIZE >> 3)) panic_vm(current_vcpu, "Invalid gpfn =%lx\n", gpfn); return *(base + gpfn); } u64 kvm_lookup_mpa(u64 gpfn) { u64 maddr; maddr = kvm_get_mpt_entry(gpfn); return maddr&_PAGE_PPN_MASK; } u64 kvm_gpa_to_mpa(u64 gpa) { u64 pte = kvm_lookup_mpa(gpa >> PAGE_SHIFT); return (pte >> PAGE_SHIFT << PAGE_SHIFT) | (gpa & ~PAGE_MASK); } /* * Fetch guest bundle code. * INPUT: * gip: guest ip * pbundle: used to return fetched bundle. */ int fetch_code(struct kvm_vcpu *vcpu, u64 gip, IA64_BUNDLE *pbundle) { u64 gpip = 0; /* guest physical IP*/ u64 *vpa; struct thash_data *tlb; u64 maddr; if (!(VCPU(vcpu, vpsr) & IA64_PSR_IT)) { /* I-side physical mode */ gpip = gip; } else { tlb = vtlb_lookup(vcpu, gip, I_TLB); if (tlb) gpip = (tlb->ppn >> (tlb->ps - 12) << tlb->ps) | (gip & (PSIZE(tlb->ps) - 1)); } if (gpip) { maddr = kvm_gpa_to_mpa(gpip); } else { tlb = vhpt_lookup(gip); if (tlb == NULL) { ia64_ptcl(gip, ARCH_PAGE_SHIFT << 2); return IA64_FAULT; } maddr = (tlb->ppn >> (tlb->ps - 12) << tlb->ps) | (gip & (PSIZE(tlb->ps) - 1)); } vpa = (u64 *)__kvm_va(maddr); pbundle->i64[0] = *vpa++; pbundle->i64[1] = *vpa; return IA64_NO_FAULT; } void kvm_init_vhpt(struct kvm_vcpu *v) { v->arch.vhpt.num = VHPT_NUM_ENTRIES; thash_init(&v->arch.vhpt, VHPT_SHIFT); ia64_set_pta(v->arch.vhpt.pta.val); /*Enable VHPT here?*/ } void kvm_init_vtlb(struct kvm_vcpu *v) { v->arch.vtlb.num = VTLB_NUM_ENTRIES; thash_init(&v->arch.vtlb, VTLB_SHIFT); }