/* * This file contains Xilinx specific SMP code, used to start up * the second processor. * * Copyright (C) 2011-2013 Xilinx * * based on linux/arch/arm/mach-realview/platsmp.c * * Copyright (C) 2002 ARM Ltd. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/export.h> #include <linux/jiffies.h> #include <linux/init.h> #include <linux/io.h> #include <asm/cacheflush.h> #include <asm/smp_scu.h> #include <linux/irqchip/arm-gic.h> #include "common.h" /* * Store number of cores in the system * Because of scu_get_core_count() must be in __init section and can't * be called from zynq_cpun_start() because it is in __cpuinit section. */ static int ncores; int __cpuinit zynq_cpun_start(u32 address, int cpu) { u32 trampoline_code_size = &zynq_secondary_trampoline_end - &zynq_secondary_trampoline; if (cpu > ncores) { pr_warn("CPU No. is not available in the system\n"); return -1; } /* MS: Expectation that SLCR are directly map and accessible */ /* Not possible to jump to non aligned address */ if (!(address & 3) && (!address || (address >= trampoline_code_size))) { /* Store pointer to ioremap area which points to address 0x0 */ static u8 __iomem *zero; u32 trampoline_size = &zynq_secondary_trampoline_jump - &zynq_secondary_trampoline; zynq_slcr_cpu_stop(cpu); if (__pa(PAGE_OFFSET)) { zero = ioremap(0, trampoline_code_size); if (!zero) { pr_warn("BOOTUP jump vectors not accessible\n"); return -1; } } else { zero = (__force u8 __iomem *)PAGE_OFFSET; } /* * This is elegant way how to jump to any address * 0x0: Load address at 0x8 to r0 * 0x4: Jump by mov instruction * 0x8: Jumping address */ memcpy((__force void *)zero, &zynq_secondary_trampoline, trampoline_size); writel(address, zero + trampoline_size); flush_cache_all(); outer_flush_range(0, trampoline_code_size); smp_wmb(); if (__pa(PAGE_OFFSET)) iounmap(zero); zynq_slcr_cpu_start(cpu); return 0; } pr_warn("Can't start CPU%d: Wrong starting address %x\n", cpu, address); return -1; } EXPORT_SYMBOL(zynq_cpun_start); static int __cpuinit zynq_boot_secondary(unsigned int cpu, struct task_struct *idle) { return zynq_cpun_start(virt_to_phys(secondary_startup), cpu); } /* * Initialise the CPU possible map early - this describes the CPUs * which may be present or become present in the system. */ static void __init zynq_smp_init_cpus(void) { int i; ncores = scu_get_core_count(zynq_scu_base); for (i = 0; i < ncores && i < CONFIG_NR_CPUS; i++) set_cpu_possible(i, true); } static void __init zynq_smp_prepare_cpus(unsigned int max_cpus) { int i; /* * Initialise the present map, which describes the set of CPUs * actually populated at the present time. */ for (i = 0; i < max_cpus; i++) set_cpu_present(i, true); scu_enable(zynq_scu_base); } struct smp_operations zynq_smp_ops __initdata = { .smp_init_cpus = zynq_smp_init_cpus, .smp_prepare_cpus = zynq_smp_prepare_cpus, .smp_boot_secondary = zynq_boot_secondary, #ifdef CONFIG_HOTPLUG_CPU .cpu_die = zynq_platform_cpu_die, #endif };