/* * arch/arm/include/asm/io.h * * Copyright (C) 1996-2000 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Modifications: * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both * constant addresses and variable addresses. * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture * specific IO header files. * 27-Mar-1999 PJB Second parameter of memcpy_toio is const.. * 04-Apr-1999 PJB Added check_signature. * 12-Dec-1999 RMK More cleanups * 18-Jun-2000 RMK Removed virt_to_* and friends definitions * 05-Oct-2004 BJD Moved memory string functions to use void __iomem */ #ifndef __ASM_ARM_IO_H #define __ASM_ARM_IO_H #ifdef __KERNEL__ #include <linux/types.h> #include <asm/byteorder.h> #include <asm/memory.h> #include <asm-generic/pci_iomap.h> /* * ISA I/O bus memory addresses are 1:1 with the physical address. */ #define isa_virt_to_bus virt_to_phys #define isa_page_to_bus page_to_phys #define isa_bus_to_virt phys_to_virt /* * Generic IO read/write. These perform native-endian accesses. Note * that some architectures will want to re-define __raw_{read,write}w. */ extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen); extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen); extern void __raw_writesl(void __iomem *addr, const void *data, int longlen); extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen); extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen); extern void __raw_readsl(const void __iomem *addr, void *data, int longlen); #if __LINUX_ARM_ARCH__ < 6 /* * Half-word accesses are problematic with RiscPC due to limitations of * the bus. Rather than special-case the machine, just let the compiler * generate the access for CPUs prior to ARMv6. */ #define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a)) #define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v))) #else /* * When running under a hypervisor, we want to avoid I/O accesses with * writeback addressing modes as these incur a significant performance * overhead (the address generation must be emulated in software). */ static inline void __raw_writew(u16 val, volatile void __iomem *addr) { asm volatile("strh %1, %0" : "+Q" (*(volatile u16 __force *)addr) : "r" (val)); } static inline u16 __raw_readw(const volatile void __iomem *addr) { u16 val; asm volatile("ldrh %1, %0" : "+Q" (*(volatile u16 __force *)addr), "=r" (val)); return val; } #endif static inline void __raw_writeb(u8 val, volatile void __iomem *addr) { asm volatile("strb %1, %0" : "+Qo" (*(volatile u8 __force *)addr) : "r" (val)); } static inline void __raw_writel(u32 val, volatile void __iomem *addr) { asm volatile("str %1, %0" : "+Qo" (*(volatile u32 __force *)addr) : "r" (val)); } static inline u8 __raw_readb(const volatile void __iomem *addr) { u8 val; asm volatile("ldrb %1, %0" : "+Qo" (*(volatile u8 __force *)addr), "=r" (val)); return val; } static inline u32 __raw_readl(const volatile void __iomem *addr) { u32 val; asm volatile("ldr %1, %0" : "+Qo" (*(volatile u32 __force *)addr), "=r" (val)); return val; } /* * Architecture ioremap implementation. */ #define MT_DEVICE 0 #define MT_DEVICE_NONSHARED 1 #define MT_DEVICE_CACHED 2 #define MT_DEVICE_WC 3 /* * types 4 onwards can be found in asm/mach/map.h and are undefined * for ioremap */ /* * __arm_ioremap takes CPU physical address. * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page * The _caller variety takes a __builtin_return_address(0) value for * /proc/vmalloc to use - and should only be used in non-inline functions. */ extern void __iomem *__arm_ioremap_pfn_caller(unsigned long, unsigned long, size_t, unsigned int, void *); extern void __iomem *__arm_ioremap_caller(unsigned long, size_t, unsigned int, void *); extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int); extern void __iomem *__arm_ioremap(unsigned long, size_t, unsigned int); extern void __iomem *__arm_ioremap_exec(unsigned long, size_t, bool cached); extern void __iounmap(volatile void __iomem *addr); extern void __arm_iounmap(volatile void __iomem *addr); extern void __iomem * (*arch_ioremap_caller)(unsigned long, size_t, unsigned int, void *); extern void (*arch_iounmap)(volatile void __iomem *); /* * Bad read/write accesses... */ extern void __readwrite_bug(const char *fn); /* * A typesafe __io() helper */ static inline void __iomem *__typesafe_io(unsigned long addr) { return (void __iomem *)addr; } #define IOMEM(x) ((void __force __iomem *)(x)) /* IO barriers */ #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE #include <asm/barrier.h> #define __iormb() rmb() #define __iowmb() wmb() #else #define __iormb() do { } while (0) #define __iowmb() do { } while (0) #endif /* PCI fixed i/o mapping */ #define PCI_IO_VIRT_BASE 0xfee00000 extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr); /* * Now, pick up the machine-defined IO definitions */ #ifdef CONFIG_NEED_MACH_IO_H #include <mach/io.h> #elif defined(CONFIG_PCI) #define IO_SPACE_LIMIT ((resource_size_t)0xfffff) #define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT)) #else #define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT) #endif /* * This is the limit of PC card/PCI/ISA IO space, which is by default * 64K if we have PC card, PCI or ISA support. Otherwise, default to * zero to prevent ISA/PCI drivers claiming IO space (and potentially * oopsing.) * * Only set this larger if you really need inb() et.al. to operate over * a larger address space. Note that SOC_COMMON ioremaps each sockets * IO space area, and so inb() et.al. must be defined to operate as per * readb() et.al. on such platforms. */ #ifndef IO_SPACE_LIMIT #if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE) #define IO_SPACE_LIMIT ((resource_size_t)0xffffffff) #elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD) #define IO_SPACE_LIMIT ((resource_size_t)0xffff) #else #define IO_SPACE_LIMIT ((resource_size_t)0) #endif #endif /* * IO port access primitives * ------------------------- * * The ARM doesn't have special IO access instructions; all IO is memory * mapped. Note that these are defined to perform little endian accesses * only. Their primary purpose is to access PCI and ISA peripherals. * * Note that for a big endian machine, this implies that the following * big endian mode connectivity is in place, as described by numerous * ARM documents: * * PCI: D0-D7 D8-D15 D16-D23 D24-D31 * ARM: D24-D31 D16-D23 D8-D15 D0-D7 * * The machine specific io.h include defines __io to translate an "IO" * address to a memory address. * * Note that we prevent GCC re-ordering or caching values in expressions * by introducing sequence points into the in*() definitions. Note that * __raw_* do not guarantee this behaviour. * * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space. */ #ifdef __io #define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); }) #define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \ cpu_to_le16(v),__io(p)); }) #define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \ cpu_to_le32(v),__io(p)); }) #define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; }) #define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \ __raw_readw(__io(p))); __iormb(); __v; }) #define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \ __raw_readl(__io(p))); __iormb(); __v; }) #define outsb(p,d,l) __raw_writesb(__io(p),d,l) #define outsw(p,d,l) __raw_writesw(__io(p),d,l) #define outsl(p,d,l) __raw_writesl(__io(p),d,l) #define insb(p,d,l) __raw_readsb(__io(p),d,l) #define insw(p,d,l) __raw_readsw(__io(p),d,l) #define insl(p,d,l) __raw_readsl(__io(p),d,l) #endif #define outb_p(val,port) outb((val),(port)) #define outw_p(val,port) outw((val),(port)) #define outl_p(val,port) outl((val),(port)) #define inb_p(port) inb((port)) #define inw_p(port) inw((port)) #define inl_p(port) inl((port)) #define outsb_p(port,from,len) outsb(port,from,len) #define outsw_p(port,from,len) outsw(port,from,len) #define outsl_p(port,from,len) outsl(port,from,len) #define insb_p(port,to,len) insb(port,to,len) #define insw_p(port,to,len) insw(port,to,len) #define insl_p(port,to,len) insl(port,to,len) /* * String version of IO memory access ops: */ extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t); extern void _memcpy_toio(volatile void __iomem *, const void *, size_t); extern void _memset_io(volatile void __iomem *, int, size_t); #define mmiowb() /* * Memory access primitives * ------------------------ * * These perform PCI memory accesses via an ioremap region. They don't * take an address as such, but a cookie. * * Again, this are defined to perform little endian accesses. See the * IO port primitives for more information. */ #ifndef readl #define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; }) #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \ __raw_readw(c)); __r; }) #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \ __raw_readl(c)); __r; }) #define writeb_relaxed(v,c) __raw_writeb(v,c) #define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c) #define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c) #define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; }) #define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; }) #define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; }) #define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); }) #define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); }) #define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); }) #define readsb(p,d,l) __raw_readsb(p,d,l) #define readsw(p,d,l) __raw_readsw(p,d,l) #define readsl(p,d,l) __raw_readsl(p,d,l) #define writesb(p,d,l) __raw_writesb(p,d,l) #define writesw(p,d,l) __raw_writesw(p,d,l) #define writesl(p,d,l) __raw_writesl(p,d,l) #define memset_io(c,v,l) _memset_io(c,(v),(l)) #define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l)) #define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l)) #endif /* readl */ /* * ioremap and friends. * * ioremap takes a PCI memory address, as specified in * Documentation/io-mapping.txt. * */ #define ioremap(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE) #define ioremap_nocache(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE) #define ioremap_cached(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE_CACHED) #define ioremap_wc(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE_WC) #define iounmap __arm_iounmap /* * io{read,write}{8,16,32} macros */ #ifndef ioread8 #define ioread8(p) ({ unsigned int __v = __raw_readb(p); __iormb(); __v; }) #define ioread16(p) ({ unsigned int __v = le16_to_cpu((__force __le16)__raw_readw(p)); __iormb(); __v; }) #define ioread32(p) ({ unsigned int __v = le32_to_cpu((__force __le32)__raw_readl(p)); __iormb(); __v; }) #define ioread16be(p) ({ unsigned int __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; }) #define ioread32be(p) ({ unsigned int __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; }) #define iowrite8(v,p) ({ __iowmb(); __raw_writeb(v, p); }) #define iowrite16(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_le16(v), p); }) #define iowrite32(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_le32(v), p); }) #define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); }) #define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); }) #define ioread8_rep(p,d,c) __raw_readsb(p,d,c) #define ioread16_rep(p,d,c) __raw_readsw(p,d,c) #define ioread32_rep(p,d,c) __raw_readsl(p,d,c) #define iowrite8_rep(p,s,c) __raw_writesb(p,s,c) #define iowrite16_rep(p,s,c) __raw_writesw(p,s,c) #define iowrite32_rep(p,s,c) __raw_writesl(p,s,c) extern void __iomem *ioport_map(unsigned long port, unsigned int nr); extern void ioport_unmap(void __iomem *addr); #endif struct pci_dev; extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr); /* * can the hardware map this into one segment or not, given no other * constraints. */ #define BIOVEC_MERGEABLE(vec1, vec2) \ ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2))) #ifdef CONFIG_MMU #define ARCH_HAS_VALID_PHYS_ADDR_RANGE extern int valid_phys_addr_range(phys_addr_t addr, size_t size); extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); extern int devmem_is_allowed(unsigned long pfn); #endif /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ #define xlate_dev_mem_ptr(p) __va(p) /* * Convert a virtual cached pointer to an uncached pointer */ #define xlate_dev_kmem_ptr(p) p /* * Register ISA memory and port locations for glibc iopl/inb/outb * emulation. */ extern void register_isa_ports(unsigned int mmio, unsigned int io, unsigned int io_shift); #endif /* __KERNEL__ */ #endif /* __ASM_ARM_IO_H */