Kernel  |  3.0

下载     查看原文件
C++程序  |  1617行  |  55.76 KB
/*
 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
 * All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * File: dpc.c
 *
 * Purpose: handle dpc rx functions
 *
 * Author: Lyndon Chen
 *
 * Date: May 20, 2003
 *
 * Functions:
 *      device_receive_frame - Rcv 802.11 frame function
 *      s_bAPModeRxCtl- AP Rcv frame filer Ctl.
 *      s_bAPModeRxData- AP Rcv data frame handle
 *      s_bHandleRxEncryption- Rcv decrypted data via on-fly
 *      s_bHostWepRxEncryption- Rcv encrypted data via host
 *      s_byGetRateIdx- get rate index
 *      s_vGetDASA- get data offset
 *      s_vProcessRxMACHeader- Rcv 802.11 and translate to 802.3
 *
 * Revision History:
 *
 */

#include "device.h"
#include "rxtx.h"
#include "tether.h"
#include "card.h"
#include "bssdb.h"
#include "mac.h"
#include "baseband.h"
#include "michael.h"
#include "tkip.h"
#include "tcrc.h"
#include "wctl.h"
#include "hostap.h"
#include "rf.h"
#include "iowpa.h"
#include "aes_ccmp.h"
#include "datarate.h"
#include "usbpipe.h"

/*---------------------  Static Definitions -------------------------*/

/*---------------------  Static Classes  ----------------------------*/

/*---------------------  Static Variables  --------------------------*/
//static int          msglevel                =MSG_LEVEL_DEBUG;
static int          msglevel                =MSG_LEVEL_INFO;

const BYTE acbyRxRate[MAX_RATE] =
{2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108};


/*---------------------  Static Functions  --------------------------*/

/*---------------------  Static Definitions -------------------------*/

/*---------------------  Static Functions  --------------------------*/

static BYTE s_byGetRateIdx(BYTE byRate);

static
void
s_vGetDASA(
      PBYTE pbyRxBufferAddr,
     unsigned int *pcbHeaderSize,
     PSEthernetHeader psEthHeader
    );

static
void
s_vProcessRxMACHeader (
      PSDevice pDevice,
      PBYTE pbyRxBufferAddr,
      unsigned int cbPacketSize,
      BOOL bIsWEP,
      BOOL bExtIV,
     unsigned int *pcbHeadSize
    );

static BOOL s_bAPModeRxCtl(
     PSDevice pDevice,
     PBYTE    pbyFrame,
     signed int      iSANodeIndex
    );



static BOOL s_bAPModeRxData (
     PSDevice pDevice,
     struct sk_buff *skb,
     unsigned int     FrameSize,
     unsigned int     cbHeaderOffset,
     signed int      iSANodeIndex,
     signed int      iDANodeIndex
    );


static BOOL s_bHandleRxEncryption(
     PSDevice     pDevice,
     PBYTE        pbyFrame,
     unsigned int         FrameSize,
     PBYTE        pbyRsr,
     PBYTE       pbyNewRsr,
     PSKeyItem   * pKeyOut,
    int *       pbExtIV,
     PWORD       pwRxTSC15_0,
     PDWORD      pdwRxTSC47_16
    );

static BOOL s_bHostWepRxEncryption(

     PSDevice     pDevice,
     PBYTE        pbyFrame,
     unsigned int         FrameSize,
     PBYTE        pbyRsr,
     BOOL         bOnFly,
     PSKeyItem    pKey,
     PBYTE       pbyNewRsr,
    int *       pbExtIV,
     PWORD       pwRxTSC15_0,
     PDWORD      pdwRxTSC47_16

    );

/*---------------------  Export Variables  --------------------------*/

/*+
 *
 * Description:
 *    Translate Rcv 802.11 header to 802.3 header with Rx buffer
 *
 * Parameters:
 *  In:
 *      pDevice
 *      dwRxBufferAddr  - Address of Rcv Buffer
 *      cbPacketSize    - Rcv Packet size
 *      bIsWEP          - If Rcv with WEP
 *  Out:
 *      pcbHeaderSize   - 802.11 header size
 *
 * Return Value: None
 *
-*/
static
void
s_vProcessRxMACHeader (
      PSDevice pDevice,
      PBYTE pbyRxBufferAddr,
      unsigned int cbPacketSize,
      BOOL bIsWEP,
      BOOL bExtIV,
     unsigned int *pcbHeadSize
    )
{
    PBYTE           pbyRxBuffer;
    unsigned int            cbHeaderSize = 0;
    PWORD           pwType;
    PS802_11Header  pMACHeader;
    int             ii;


    pMACHeader = (PS802_11Header) (pbyRxBufferAddr + cbHeaderSize);

    s_vGetDASA((PBYTE)pMACHeader, &cbHeaderSize, &pDevice->sRxEthHeader);

    if (bIsWEP) {
        if (bExtIV) {
            // strip IV&ExtIV , add 8 byte
            cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 8);
        } else {
            // strip IV , add 4 byte
            cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 4);
        }
    }
    else {
        cbHeaderSize += WLAN_HDR_ADDR3_LEN;
    };

    pbyRxBuffer = (PBYTE) (pbyRxBufferAddr + cbHeaderSize);
    if (!compare_ether_addr(pbyRxBuffer, &pDevice->abySNAP_Bridgetunnel[0])) {
        cbHeaderSize += 6;
    } else if (!compare_ether_addr(pbyRxBuffer, &pDevice->abySNAP_RFC1042[0])) {
        cbHeaderSize += 6;
        pwType = (PWORD) (pbyRxBufferAddr + cbHeaderSize);
	if ((*pwType == cpu_to_be16(ETH_P_IPX)) ||
	    (*pwType == cpu_to_le16(0xF380))) {
		cbHeaderSize -= 8;
            pwType = (PWORD) (pbyRxBufferAddr + cbHeaderSize);
            if (bIsWEP) {
                if (bExtIV) {
                    *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8);    // 8 is IV&ExtIV
                } else {
                    *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4);    // 4 is IV
                }
            }
            else {
                *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
            }
        }
    }
    else {
        cbHeaderSize -= 2;
        pwType = (PWORD) (pbyRxBufferAddr + cbHeaderSize);
        if (bIsWEP) {
            if (bExtIV) {
                *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8);    // 8 is IV&ExtIV
            } else {
                *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4);    // 4 is IV
            }
        }
        else {
            *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
        }
    }

    cbHeaderSize -= (ETH_ALEN * 2);
    pbyRxBuffer = (PBYTE) (pbyRxBufferAddr + cbHeaderSize);
    for (ii = 0; ii < ETH_ALEN; ii++)
        *pbyRxBuffer++ = pDevice->sRxEthHeader.abyDstAddr[ii];
    for (ii = 0; ii < ETH_ALEN; ii++)
        *pbyRxBuffer++ = pDevice->sRxEthHeader.abySrcAddr[ii];

    *pcbHeadSize = cbHeaderSize;
}




static BYTE s_byGetRateIdx(BYTE byRate)
{
    BYTE    byRateIdx;

    for (byRateIdx = 0; byRateIdx <MAX_RATE ; byRateIdx++) {
        if (acbyRxRate[byRateIdx%MAX_RATE] == byRate)
            return byRateIdx;
    }
    return 0;
}


static
void
s_vGetDASA (
      PBYTE pbyRxBufferAddr,
     unsigned int *pcbHeaderSize,
     PSEthernetHeader psEthHeader
    )
{
	unsigned int            cbHeaderSize = 0;
	PS802_11Header  pMACHeader;
	int             ii;

	pMACHeader = (PS802_11Header) (pbyRxBufferAddr + cbHeaderSize);

	if ((pMACHeader->wFrameCtl & FC_TODS) == 0) {
		if (pMACHeader->wFrameCtl & FC_FROMDS) {
			for (ii = 0; ii < ETH_ALEN; ii++) {
				psEthHeader->abyDstAddr[ii] =
					pMACHeader->abyAddr1[ii];
				psEthHeader->abySrcAddr[ii] =
					pMACHeader->abyAddr3[ii];
			}
		} else {
			/* IBSS mode */
			for (ii = 0; ii < ETH_ALEN; ii++) {
				psEthHeader->abyDstAddr[ii] =
					pMACHeader->abyAddr1[ii];
				psEthHeader->abySrcAddr[ii] =
					pMACHeader->abyAddr2[ii];
			}
		}
	} else {
		/* Is AP mode.. */
		if (pMACHeader->wFrameCtl & FC_FROMDS) {
			for (ii = 0; ii < ETH_ALEN; ii++) {
				psEthHeader->abyDstAddr[ii] =
					pMACHeader->abyAddr3[ii];
				psEthHeader->abySrcAddr[ii] =
					pMACHeader->abyAddr4[ii];
				cbHeaderSize += 6;
			}
		} else {
			for (ii = 0; ii < ETH_ALEN; ii++) {
				psEthHeader->abyDstAddr[ii] =
					pMACHeader->abyAddr3[ii];
				psEthHeader->abySrcAddr[ii] =
					pMACHeader->abyAddr2[ii];
			}
		}
	};
    *pcbHeaderSize = cbHeaderSize;
}




BOOL
RXbBulkInProcessData (
     PSDevice         pDevice,
     PRCB             pRCB,
     unsigned long            BytesToIndicate
    )
{

    struct net_device_stats* pStats=&pDevice->stats;
    struct sk_buff* skb;
    PSMgmtObject    pMgmt = &(pDevice->sMgmtObj);
    PSRxMgmtPacket  pRxPacket = &(pMgmt->sRxPacket);
    PS802_11Header  p802_11Header;
    PBYTE           pbyRsr;
    PBYTE           pbyNewRsr;
    PBYTE           pbyRSSI;
    PQWORD          pqwTSFTime;
    PBYTE           pbyFrame;
    BOOL            bDeFragRx = FALSE;
    unsigned int            cbHeaderOffset;
    unsigned int            FrameSize;
    WORD            wEtherType = 0;
    signed int             iSANodeIndex = -1;
    signed int             iDANodeIndex = -1;
    unsigned int            ii;
    unsigned int            cbIVOffset;
    PBYTE           pbyRxSts;
    PBYTE           pbyRxRate;
    PBYTE           pbySQ;
    PBYTE           pby3SQ;
    unsigned int            cbHeaderSize;
    PSKeyItem       pKey = NULL;
    WORD            wRxTSC15_0 = 0;
    DWORD           dwRxTSC47_16 = 0;
    SKeyItem        STempKey;
    // 802.11h RPI
    /* signed long ldBm = 0; */
    BOOL            bIsWEP = FALSE;
    BOOL            bExtIV = FALSE;
    DWORD           dwWbkStatus;
    PRCB            pRCBIndicate = pRCB;
    PBYTE           pbyDAddress;
    PWORD           pwPLCP_Length;
    BYTE            abyVaildRate[MAX_RATE] = {2,4,11,22,12,18,24,36,48,72,96,108};
    WORD            wPLCPwithPadding;
    PS802_11Header  pMACHeader;
    BOOL            bRxeapol_key = FALSE;



    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---------- RXbBulkInProcessData---\n");

    skb = pRCB->skb;

    //[31:16]RcvByteCount ( not include 4-byte Status )
    dwWbkStatus =  *( (PDWORD)(skb->data) );
    FrameSize = (unsigned int)(dwWbkStatus >> 16);
    FrameSize += 4;

    if (BytesToIndicate != FrameSize) {
        DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---------- WRONG Length 1 \n");
        return FALSE;
    }

    if ((BytesToIndicate > 2372) || (BytesToIndicate <= 40)) {
        // Frame Size error drop this packet.
	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "---------- WRONG Length 2\n");
        return FALSE;
    }

    pbyDAddress = (PBYTE)(skb->data);
    pbyRxSts = pbyDAddress+4;
    pbyRxRate = pbyDAddress+5;

    //real Frame Size = USBFrameSize -4WbkStatus - 4RxStatus - 8TSF - 4RSR - 4SQ3 - ?Padding
    //if SQ3 the range is 24~27, if no SQ3 the range is 20~23
    //real Frame size in PLCPLength field.
    pwPLCP_Length = (PWORD) (pbyDAddress + 6);
    //Fix hardware bug => PLCP_Length error
    if ( ((BytesToIndicate - (*pwPLCP_Length)) > 27) ||
         ((BytesToIndicate - (*pwPLCP_Length)) < 24) ||
         (BytesToIndicate < (*pwPLCP_Length)) ) {

        DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Wrong PLCP Length %x\n", (int) *pwPLCP_Length);
        ASSERT(0);
        return FALSE;
    }
    for ( ii=RATE_1M;ii<MAX_RATE;ii++) {
        if ( *pbyRxRate == abyVaildRate[ii] ) {
            break;
        }
    }
    if ( ii==MAX_RATE ) {
        DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Wrong RxRate %x\n",(int) *pbyRxRate);
        return FALSE;
    }

    wPLCPwithPadding = ( (*pwPLCP_Length / 4) + ( (*pwPLCP_Length % 4) ? 1:0 ) ) *4;

    pqwTSFTime = (PQWORD) (pbyDAddress + 8 + wPLCPwithPadding);
  if(pDevice->byBBType == BB_TYPE_11G)  {
      pby3SQ = pbyDAddress + 8 + wPLCPwithPadding + 12;
      pbySQ = pby3SQ;
    }
  else {
   pbySQ = pbyDAddress + 8 + wPLCPwithPadding + 8;
   pby3SQ = pbySQ;
  }
    pbyNewRsr = pbyDAddress + 8 + wPLCPwithPadding + 9;
    pbyRSSI = pbyDAddress + 8 + wPLCPwithPadding + 10;
    pbyRsr = pbyDAddress + 8 + wPLCPwithPadding + 11;

    FrameSize = *pwPLCP_Length;

    pbyFrame = pbyDAddress + 8;
    // update receive statistic counter

    STAvUpdateRDStatCounter(&pDevice->scStatistic,
                            *pbyRsr,
                            *pbyNewRsr,
                            *pbyRxSts,
                            *pbyRxRate,
                            pbyFrame,
                            FrameSize
                            );


    pMACHeader = (PS802_11Header) pbyFrame;

//mike add: to judge if current AP is activated?
    if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
        (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
       if (pMgmt->sNodeDBTable[0].bActive) {
	 if (!compare_ether_addr(pMgmt->abyCurrBSSID, pMACHeader->abyAddr2)) {
	    if (pMgmt->sNodeDBTable[0].uInActiveCount != 0)
                  pMgmt->sNodeDBTable[0].uInActiveCount = 0;
           }
       }
    }

    if (!is_multicast_ether_addr(pMACHeader->abyAddr1) && !is_broadcast_ether_addr(pMACHeader->abyAddr1)) {
        if ( WCTLbIsDuplicate(&(pDevice->sDupRxCache), (PS802_11Header) pbyFrame) ) {
            pDevice->s802_11Counter.FrameDuplicateCount++;
            return FALSE;
        }

	if (compare_ether_addr(pDevice->abyCurrentNetAddr,
			       pMACHeader->abyAddr1)) {
		return FALSE;
        }
    }


    // Use for TKIP MIC
    s_vGetDASA(pbyFrame, &cbHeaderSize, &pDevice->sRxEthHeader);

    if (!compare_ether_addr((PBYTE)&(pDevice->sRxEthHeader.abySrcAddr[0]),
			    pDevice->abyCurrentNetAddr))
        return FALSE;

    if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) || (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA)) {
        if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
            p802_11Header = (PS802_11Header) (pbyFrame);
            // get SA NodeIndex
            if (BSSbIsSTAInNodeDB(pDevice, (PBYTE)(p802_11Header->abyAddr2), &iSANodeIndex)) {
                pMgmt->sNodeDBTable[iSANodeIndex].ulLastRxJiffer = jiffies;
                pMgmt->sNodeDBTable[iSANodeIndex].uInActiveCount = 0;
            }
        }
    }

    if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
        if (s_bAPModeRxCtl(pDevice, pbyFrame, iSANodeIndex) == TRUE) {
            return FALSE;
        }
    }


    if (IS_FC_WEP(pbyFrame)) {
        BOOL     bRxDecryOK = FALSE;

        DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"rx WEP pkt\n");
        bIsWEP = TRUE;
        if ((pDevice->bEnableHostWEP) && (iSANodeIndex >= 0)) {
            pKey = &STempKey;
            pKey->byCipherSuite = pMgmt->sNodeDBTable[iSANodeIndex].byCipherSuite;
            pKey->dwKeyIndex = pMgmt->sNodeDBTable[iSANodeIndex].dwKeyIndex;
            pKey->uKeyLength = pMgmt->sNodeDBTable[iSANodeIndex].uWepKeyLength;
            pKey->dwTSC47_16 = pMgmt->sNodeDBTable[iSANodeIndex].dwTSC47_16;
            pKey->wTSC15_0 = pMgmt->sNodeDBTable[iSANodeIndex].wTSC15_0;
            memcpy(pKey->abyKey,
                &pMgmt->sNodeDBTable[iSANodeIndex].abyWepKey[0],
                pKey->uKeyLength
                );

            bRxDecryOK = s_bHostWepRxEncryption(pDevice,
                                                pbyFrame,
                                                FrameSize,
                                                pbyRsr,
                                                pMgmt->sNodeDBTable[iSANodeIndex].bOnFly,
                                                pKey,
                                                pbyNewRsr,
                                                &bExtIV,
                                                &wRxTSC15_0,
                                                &dwRxTSC47_16);
        } else {
            bRxDecryOK = s_bHandleRxEncryption(pDevice,
                                                pbyFrame,
                                                FrameSize,
                                                pbyRsr,
                                                pbyNewRsr,
                                                &pKey,
                                                &bExtIV,
                                                &wRxTSC15_0,
                                                &dwRxTSC47_16);
        }

        if (bRxDecryOK) {
            if ((*pbyNewRsr & NEWRSR_DECRYPTOK) == 0) {
                DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV Fail\n");
                if ( (pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
                    (pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
                    (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
                    (pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
                    (pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {

                    if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
                        pDevice->s802_11Counter.TKIPICVErrors++;
                    } else if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_CCMP)) {
                        pDevice->s802_11Counter.CCMPDecryptErrors++;
                    } else if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_WEP)) {
//                      pDevice->s802_11Counter.WEPICVErrorCount.QuadPart++;
                    }
                }
                return FALSE;
            }
        } else {
            DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"WEP Func Fail\n");
            return FALSE;
        }
        if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_CCMP))
            FrameSize -= 8;         // Message Integrity Code
        else
            FrameSize -= 4;         // 4 is ICV
    }


    //
    // RX OK
    //
    /* remove the FCS/CRC length */
    FrameSize -= ETH_FCS_LEN;

    if ( !(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) && // unicast address
        (IS_FRAGMENT_PKT((pbyFrame)))
        ) {
        // defragment
        bDeFragRx = WCTLbHandleFragment(pDevice, (PS802_11Header) (pbyFrame), FrameSize, bIsWEP, bExtIV);
        pDevice->s802_11Counter.ReceivedFragmentCount++;
        if (bDeFragRx) {
            // defrag complete
            // TODO skb, pbyFrame
            skb = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].skb;
            FrameSize = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].cbFrameLength;
            pbyFrame = skb->data + 8;
        }
        else {
            return FALSE;
        }
    }

    //
    // Management & Control frame Handle
    //
    if ((IS_TYPE_DATA((pbyFrame))) == FALSE) {
        // Handle Control & Manage Frame

        if (IS_TYPE_MGMT((pbyFrame))) {
            PBYTE pbyData1;
            PBYTE pbyData2;

            pRxPacket = &(pRCB->sMngPacket);
            pRxPacket->p80211Header = (PUWLAN_80211HDR)(pbyFrame);
            pRxPacket->cbMPDULen = FrameSize;
            pRxPacket->uRSSI = *pbyRSSI;
            pRxPacket->bySQ = *pbySQ;
            HIDWORD(pRxPacket->qwLocalTSF) = cpu_to_le32(HIDWORD(*pqwTSFTime));
            LODWORD(pRxPacket->qwLocalTSF) = cpu_to_le32(LODWORD(*pqwTSFTime));
            if (bIsWEP) {
                // strip IV
                pbyData1 = WLAN_HDR_A3_DATA_PTR(pbyFrame);
                pbyData2 = WLAN_HDR_A3_DATA_PTR(pbyFrame) + 4;
                for (ii = 0; ii < (FrameSize - 4); ii++) {
                    *pbyData1 = *pbyData2;
                     pbyData1++;
                     pbyData2++;
                }
            }

            pRxPacket->byRxRate = s_byGetRateIdx(*pbyRxRate);

            if ( *pbyRxSts == 0 ) {
                //Discard beacon packet which channel is 0
                if ( (WLAN_GET_FC_FSTYPE((pRxPacket->p80211Header->sA3.wFrameCtl)) == WLAN_FSTYPE_BEACON) ||
                     (WLAN_GET_FC_FSTYPE((pRxPacket->p80211Header->sA3.wFrameCtl)) == WLAN_FSTYPE_PROBERESP) ) {
                    return TRUE;
                }
            }
            pRxPacket->byRxChannel = (*pbyRxSts) >> 2;

            // hostap Deamon handle 802.11 management
            if (pDevice->bEnableHostapd) {
	            skb->dev = pDevice->apdev;
	            //skb->data += 4;
	            //skb->tail += 4;
	            skb->data += 8;
	            skb->tail += 8;
                skb_put(skb, FrameSize);
		skb_reset_mac_header(skb);
	            skb->pkt_type = PACKET_OTHERHOST;
    	        skb->protocol = htons(ETH_P_802_2);
	            memset(skb->cb, 0, sizeof(skb->cb));
	            netif_rx(skb);
                return TRUE;
	        }

            //
            // Insert the RCB in the Recv Mng list
            //
            EnqueueRCB(pDevice->FirstRecvMngList, pDevice->LastRecvMngList, pRCBIndicate);
            pDevice->NumRecvMngList++;
            if ( bDeFragRx == FALSE) {
                pRCB->Ref++;
            }
            if (pDevice->bIsRxMngWorkItemQueued == FALSE) {
                pDevice->bIsRxMngWorkItemQueued = TRUE;
                tasklet_schedule(&pDevice->RxMngWorkItem);
            }

        }
        else {
            // Control Frame
        };
        return FALSE;
    }
    else {
        if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
            //In AP mode, hw only check addr1(BSSID or RA) if equal to local MAC.
            if ( !(*pbyRsr & RSR_BSSIDOK)) {
                if (bDeFragRx) {
                    if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
                        DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
                        pDevice->dev->name);
                    }
                }
                return FALSE;
            }
        }
        else {
            // discard DATA packet while not associate || BSSID error
            if ((pDevice->bLinkPass == FALSE) ||
                !(*pbyRsr & RSR_BSSIDOK)) {
                if (bDeFragRx) {
                    if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
                        DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
                        pDevice->dev->name);
                    }
                }
                return FALSE;
            }
   //mike add:station mode check eapol-key challenge--->
   	  {
   	    BYTE  Protocol_Version;    //802.1x Authentication
	    BYTE  Packet_Type;           //802.1x Authentication
	    BYTE  Descriptor_type;
             WORD Key_info;
              if (bIsWEP)
                  cbIVOffset = 8;
              else
                  cbIVOffset = 0;
              wEtherType = (skb->data[cbIVOffset + 8 + 24 + 6] << 8) |
                          skb->data[cbIVOffset + 8 + 24 + 6 + 1];
	      Protocol_Version = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1];
	      Packet_Type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1];
	     if (wEtherType == ETH_P_PAE) {         //Protocol Type in LLC-Header
                  if(((Protocol_Version==1) ||(Protocol_Version==2)) &&
		     (Packet_Type==3)) {  //802.1x OR eapol-key challenge frame receive
                        bRxeapol_key = TRUE;
		      Descriptor_type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2];
		      Key_info = (skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2+1]<<8) |skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2+2] ;
		      if(Descriptor_type==2) {    //RSN
                         //  printk("WPA2_Rx_eapol-key_info<-----:%x\n",Key_info);
		      }
		     else  if(Descriptor_type==254) {
                        //  printk("WPA_Rx_eapol-key_info<-----:%x\n",Key_info);
		     }
                  }
	      }
   	  }
    //mike add:station mode check eapol-key challenge<---
        }
    }


// Data frame Handle


    if (pDevice->bEnablePSMode) {
        if (IS_FC_MOREDATA((pbyFrame))) {
            if (*pbyRsr & RSR_ADDROK) {
                //PSbSendPSPOLL((PSDevice)pDevice);
            }
        }
        else {
            if (pMgmt->bInTIMWake == TRUE) {
                pMgmt->bInTIMWake = FALSE;
            }
        }
    }

    // Now it only supports 802.11g Infrastructure Mode, and support rate must up to 54 Mbps
    if (pDevice->bDiversityEnable && (FrameSize>50) &&
       (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
       (pDevice->bLinkPass == TRUE)) {
        BBvAntennaDiversity(pDevice, s_byGetRateIdx(*pbyRxRate), 0);
    }

    // ++++++++ For BaseBand Algorithm +++++++++++++++
    pDevice->uCurrRSSI = *pbyRSSI;
    pDevice->byCurrSQ = *pbySQ;

    // todo
/*
    if ((*pbyRSSI != 0) &&
        (pMgmt->pCurrBSS!=NULL)) {
        RFvRSSITodBm(pDevice, *pbyRSSI, &ldBm);
        // Moniter if RSSI is too strong.
        pMgmt->pCurrBSS->byRSSIStatCnt++;
        pMgmt->pCurrBSS->byRSSIStatCnt %= RSSI_STAT_COUNT;
        pMgmt->pCurrBSS->ldBmAverage[pMgmt->pCurrBSS->byRSSIStatCnt] = ldBm;
	for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
		if (pMgmt->pCurrBSS->ldBmAverage[ii] != 0) {
			pMgmt->pCurrBSS->ldBmMAX =
				max(pMgmt->pCurrBSS->ldBmAverage[ii], ldBm);
		}
        }
    }
*/


    // -----------------------------------------------

    if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->bEnable8021x == TRUE)){
        BYTE    abyMacHdr[24];

        // Only 802.1x packet incoming allowed
        if (bIsWEP)
            cbIVOffset = 8;
        else
            cbIVOffset = 0;
        wEtherType = (skb->data[cbIVOffset + 8 + 24 + 6] << 8) |
                    skb->data[cbIVOffset + 8 + 24 + 6 + 1];

	    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"wEtherType = %04x \n", wEtherType);
        if (wEtherType == ETH_P_PAE) {
            skb->dev = pDevice->apdev;

            if (bIsWEP == TRUE) {
                // strip IV header(8)
                memcpy(&abyMacHdr[0], (skb->data + 8), 24);
                memcpy((skb->data + 8 + cbIVOffset), &abyMacHdr[0], 24);
            }

            skb->data +=  (cbIVOffset + 8);
            skb->tail +=  (cbIVOffset + 8);
            skb_put(skb, FrameSize);
	    skb_reset_mac_header(skb);
            skb->pkt_type = PACKET_OTHERHOST;
            skb->protocol = htons(ETH_P_802_2);
            memset(skb->cb, 0, sizeof(skb->cb));
            netif_rx(skb);
            return TRUE;

        }
        // check if 802.1x authorized
        if (!(pMgmt->sNodeDBTable[iSANodeIndex].dwFlags & WLAN_STA_AUTHORIZED))
            return FALSE;
    }


    if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
        if (bIsWEP) {
            FrameSize -= 8;  //MIC
        }
    }

    //--------------------------------------------------------------------------------
    // Soft MIC
    if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
        if (bIsWEP) {
            PDWORD          pdwMIC_L;
            PDWORD          pdwMIC_R;
            DWORD           dwMIC_Priority;
            DWORD           dwMICKey0 = 0, dwMICKey1 = 0;
            DWORD           dwLocalMIC_L = 0;
            DWORD           dwLocalMIC_R = 0;
            viawget_wpa_header *wpahdr;


            if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
                dwMICKey0 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[24]));
                dwMICKey1 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[28]));
            }
            else {
                if (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) {
                    dwMICKey0 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[16]));
                    dwMICKey1 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[20]));
                } else if ((pKey->dwKeyIndex & BIT28) == 0) {
                    dwMICKey0 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[16]));
                    dwMICKey1 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[20]));
                } else {
                    dwMICKey0 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[24]));
                    dwMICKey1 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[28]));
                }
            }

            MIC_vInit(dwMICKey0, dwMICKey1);
            MIC_vAppend((PBYTE)&(pDevice->sRxEthHeader.abyDstAddr[0]), 12);
            dwMIC_Priority = 0;
            MIC_vAppend((PBYTE)&dwMIC_Priority, 4);
            // 4 is Rcv buffer header, 24 is MAC Header, and 8 is IV and Ext IV.
            MIC_vAppend((PBYTE)(skb->data + 8 + WLAN_HDR_ADDR3_LEN + 8),
                        FrameSize - WLAN_HDR_ADDR3_LEN - 8);
            MIC_vGetMIC(&dwLocalMIC_L, &dwLocalMIC_R);
            MIC_vUnInit();

            pdwMIC_L = (PDWORD)(skb->data + 8 + FrameSize);
            pdwMIC_R = (PDWORD)(skb->data + 8 + FrameSize + 4);


            if ((cpu_to_le32(*pdwMIC_L) != dwLocalMIC_L) || (cpu_to_le32(*pdwMIC_R) != dwLocalMIC_R) ||
                (pDevice->bRxMICFail == TRUE)) {
                DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC comparison is fail!\n");
                pDevice->bRxMICFail = FALSE;
                //pDevice->s802_11Counter.TKIPLocalMICFailures.QuadPart++;
                pDevice->s802_11Counter.TKIPLocalMICFailures++;
                if (bDeFragRx) {
                    if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
                        DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
                            pDevice->dev->name);
                    }
                }
       #ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
				//send event to wpa_supplicant
				//if(pDevice->bWPASuppWextEnabled == TRUE)
				{
					union iwreq_data wrqu;
					struct iw_michaelmicfailure ev;
					int keyidx = pbyFrame[cbHeaderSize+3] >> 6; //top two-bits
					memset(&ev, 0, sizeof(ev));
					ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
					if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
							(pMgmt->eCurrState == WMAC_STATE_ASSOC) &&
								(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) {
						ev.flags |= IW_MICFAILURE_PAIRWISE;
					} else {
						ev.flags |= IW_MICFAILURE_GROUP;
					}

					ev.src_addr.sa_family = ARPHRD_ETHER;
					memcpy(ev.src_addr.sa_data, pMACHeader->abyAddr2, ETH_ALEN);
					memset(&wrqu, 0, sizeof(wrqu));
					wrqu.data.length = sizeof(ev);
			PRINT_K("wireless_send_event--->IWEVMICHAELMICFAILURE\n");
					wireless_send_event(pDevice->dev, IWEVMICHAELMICFAILURE, &wrqu, (char *)&ev);

				}
         #endif


                if ((pDevice->bWPADEVUp) && (pDevice->skb != NULL)) {
                     wpahdr = (viawget_wpa_header *)pDevice->skb->data;
                     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
                         (pMgmt->eCurrState == WMAC_STATE_ASSOC) &&
                         (*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) {
                         //s802_11_Status.Flags = NDIS_802_11_AUTH_REQUEST_PAIRWISE_ERROR;
                         wpahdr->type = VIAWGET_PTK_MIC_MSG;
                     } else {
                         //s802_11_Status.Flags = NDIS_802_11_AUTH_REQUEST_GROUP_ERROR;
                         wpahdr->type = VIAWGET_GTK_MIC_MSG;
                     }
                     wpahdr->resp_ie_len = 0;
                     wpahdr->req_ie_len = 0;
                     skb_put(pDevice->skb, sizeof(viawget_wpa_header));
                     pDevice->skb->dev = pDevice->wpadev;
		     skb_reset_mac_header(pDevice->skb);
                     pDevice->skb->pkt_type = PACKET_HOST;
                     pDevice->skb->protocol = htons(ETH_P_802_2);
                     memset(pDevice->skb->cb, 0, sizeof(pDevice->skb->cb));
                     netif_rx(pDevice->skb);
                     pDevice->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
                 }

                return FALSE;

            }
        }
    } //---end of SOFT MIC-----------------------------------------------------------------------

    // ++++++++++ Reply Counter Check +++++++++++++

    if ((pKey != NULL) && ((pKey->byCipherSuite == KEY_CTL_TKIP) ||
                           (pKey->byCipherSuite == KEY_CTL_CCMP))) {
        if (bIsWEP) {
            WORD        wLocalTSC15_0 = 0;
            DWORD       dwLocalTSC47_16 = 0;
	    unsigned long long       RSC = 0;
            // endian issues
	    RSC = *((unsigned long long *) &(pKey->KeyRSC));
            wLocalTSC15_0 = (WORD) RSC;
            dwLocalTSC47_16 = (DWORD) (RSC>>16);

            RSC = dwRxTSC47_16;
            RSC <<= 16;
            RSC += wRxTSC15_0;
            memcpy(&(pKey->KeyRSC), &RSC,  sizeof(QWORD));

            if ( (pDevice->sMgmtObj.eCurrMode == WMAC_MODE_ESS_STA) &&
                 (pDevice->sMgmtObj.eCurrState == WMAC_STATE_ASSOC)) {
                // check RSC
                if ( (wRxTSC15_0 < wLocalTSC15_0) &&
                     (dwRxTSC47_16 <= dwLocalTSC47_16) &&
                     !((dwRxTSC47_16 == 0) && (dwLocalTSC47_16 == 0xFFFFFFFF))) {
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC is illegal~~!\n ");
                    if (pKey->byCipherSuite == KEY_CTL_TKIP)
                        //pDevice->s802_11Counter.TKIPReplays.QuadPart++;
                        pDevice->s802_11Counter.TKIPReplays++;
                    else
                        //pDevice->s802_11Counter.CCMPReplays.QuadPart++;
                        pDevice->s802_11Counter.CCMPReplays++;

                    if (bDeFragRx) {
                        if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
                            DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
                                pDevice->dev->name);
                        }
                    }
                    return FALSE;
                }
            }
        }
    } // ----- End of Reply Counter Check --------------------------


    s_vProcessRxMACHeader(pDevice, (PBYTE)(skb->data+8), FrameSize, bIsWEP, bExtIV, &cbHeaderOffset);
    FrameSize -= cbHeaderOffset;
    cbHeaderOffset += 8;        // 8 is Rcv buffer header

    // Null data, framesize = 12
    if (FrameSize < 12)
        return FALSE;

    if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
        if (s_bAPModeRxData(pDevice,
                            skb,
                            FrameSize,
                            cbHeaderOffset,
                            iSANodeIndex,
                            iDANodeIndex
                            ) == FALSE) {

            if (bDeFragRx) {
                if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
                    DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
                    pDevice->dev->name);
                }
            }
            return FALSE;
        }

    }

	skb->data += cbHeaderOffset;
	skb->tail += cbHeaderOffset;
    skb_put(skb, FrameSize);
    skb->protocol=eth_type_trans(skb, skb->dev);
    skb->ip_summed=CHECKSUM_NONE;
    pStats->rx_bytes +=skb->len;
    pStats->rx_packets++;
    netif_rx(skb);
    if (bDeFragRx) {
        if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
            DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
                pDevice->dev->name);
        }
        return FALSE;
    }

    return TRUE;
}


static BOOL s_bAPModeRxCtl (
     PSDevice pDevice,
     PBYTE    pbyFrame,
     signed int      iSANodeIndex
    )
{
    PS802_11Header      p802_11Header;
    CMD_STATUS          Status;
    PSMgmtObject        pMgmt = &(pDevice->sMgmtObj);


    if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {

        p802_11Header = (PS802_11Header) (pbyFrame);
        if (!IS_TYPE_MGMT(pbyFrame)) {

            // Data & PS-Poll packet
            // check frame class
            if (iSANodeIndex > 0) {
                // frame class 3 fliter & checking
                if (pMgmt->sNodeDBTable[iSANodeIndex].eNodeState < NODE_AUTH) {
                    // send deauth notification
                    // reason = (6) class 2 received from nonauth sta
                    vMgrDeAuthenBeginSta(pDevice,
                                         pMgmt,
                                         (PBYTE)(p802_11Header->abyAddr2),
                                         (WLAN_MGMT_REASON_CLASS2_NONAUTH),
                                         &Status
                                         );
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDeAuthenBeginSta 1\n");
                    return TRUE;
                }
                if (pMgmt->sNodeDBTable[iSANodeIndex].eNodeState < NODE_ASSOC) {
                    // send deassoc notification
                    // reason = (7) class 3 received from nonassoc sta
                    vMgrDisassocBeginSta(pDevice,
                                         pMgmt,
                                         (PBYTE)(p802_11Header->abyAddr2),
                                         (WLAN_MGMT_REASON_CLASS3_NONASSOC),
                                         &Status
                                         );
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDisassocBeginSta 2\n");
                    return TRUE;
                }

                if (pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable) {
                    // delcare received ps-poll event
                    if (IS_CTL_PSPOLL(pbyFrame)) {
                        pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = TRUE;
			bScheduleCommand((void *) pDevice,
					 WLAN_CMD_RX_PSPOLL,
					 NULL);
                        DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 1\n");
                    }
                    else {
                        // check Data PS state
                        // if PW bit off, send out all PS bufferring packets.
                        if (!IS_FC_POWERMGT(pbyFrame)) {
                            pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = FALSE;
                            pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = TRUE;
				bScheduleCommand((void *) pDevice,
						 WLAN_CMD_RX_PSPOLL,
						 NULL);
                            DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 2\n");
                        }
                    }
                }
                else {
                   if (IS_FC_POWERMGT(pbyFrame)) {
                       pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = TRUE;
                       // Once if STA in PS state, enable multicast bufferring
                       pMgmt->sNodeDBTable[0].bPSEnable = TRUE;
                   }
                   else {
                      // clear all pending PS frame.
                      if (pMgmt->sNodeDBTable[iSANodeIndex].wEnQueueCnt > 0) {
                          pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = FALSE;
                          pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = TRUE;
			bScheduleCommand((void *) pDevice,
					 WLAN_CMD_RX_PSPOLL,
					 NULL);
                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 3\n");

                      }
                   }
                }
            }
            else {
                  vMgrDeAuthenBeginSta(pDevice,
                                       pMgmt,
                                       (PBYTE)(p802_11Header->abyAddr2),
                                       (WLAN_MGMT_REASON_CLASS2_NONAUTH),
                                       &Status
                                       );
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDeAuthenBeginSta 3\n");
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSID:%02x-%02x-%02x=%02x-%02x-%02x \n",
                                p802_11Header->abyAddr3[0],
                                p802_11Header->abyAddr3[1],
                                p802_11Header->abyAddr3[2],
                                p802_11Header->abyAddr3[3],
                                p802_11Header->abyAddr3[4],
                                p802_11Header->abyAddr3[5]
                               );
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ADDR2:%02x-%02x-%02x=%02x-%02x-%02x \n",
                                p802_11Header->abyAddr2[0],
                                p802_11Header->abyAddr2[1],
                                p802_11Header->abyAddr2[2],
                                p802_11Header->abyAddr2[3],
                                p802_11Header->abyAddr2[4],
                                p802_11Header->abyAddr2[5]
                               );
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ADDR1:%02x-%02x-%02x=%02x-%02x-%02x \n",
                                p802_11Header->abyAddr1[0],
                                p802_11Header->abyAddr1[1],
                                p802_11Header->abyAddr1[2],
                                p802_11Header->abyAddr1[3],
                                p802_11Header->abyAddr1[4],
                                p802_11Header->abyAddr1[5]
                               );
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: wFrameCtl= %x\n", p802_11Header->wFrameCtl );
                    return TRUE;
            }
        }
    }
    return FALSE;

}

static BOOL s_bHandleRxEncryption (
     PSDevice     pDevice,
     PBYTE        pbyFrame,
     unsigned int         FrameSize,
     PBYTE        pbyRsr,
     PBYTE       pbyNewRsr,
     PSKeyItem   * pKeyOut,
    int *       pbExtIV,
     PWORD       pwRxTSC15_0,
     PDWORD      pdwRxTSC47_16
    )
{
    unsigned int            PayloadLen = FrameSize;
    PBYTE           pbyIV;
    BYTE            byKeyIdx;
    PSKeyItem       pKey = NULL;
    BYTE            byDecMode = KEY_CTL_WEP;
    PSMgmtObject    pMgmt = &(pDevice->sMgmtObj);


    *pwRxTSC15_0 = 0;
    *pdwRxTSC47_16 = 0;

    pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
    if ( WLAN_GET_FC_TODS(*(PWORD)pbyFrame) &&
         WLAN_GET_FC_FROMDS(*(PWORD)pbyFrame) ) {
         pbyIV += 6;             // 6 is 802.11 address4
         PayloadLen -= 6;
    }
    byKeyIdx = (*(pbyIV+3) & 0xc0);
    byKeyIdx >>= 6;
    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);

    if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
        (pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
        (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
        (pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
        (pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
        if (((*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) &&
            (pMgmt->byCSSPK != KEY_CTL_NONE)) {
            // unicast pkt use pairwise key
            DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt\n");
            if (KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, 0xFFFFFFFF, &pKey) == TRUE) {
                if (pMgmt->byCSSPK == KEY_CTL_TKIP)
                    byDecMode = KEY_CTL_TKIP;
                else if (pMgmt->byCSSPK == KEY_CTL_CCMP)
                    byDecMode = KEY_CTL_CCMP;
            }
            DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt: %d, %p\n", byDecMode, pKey);
        } else {
            // use group key
            KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, byKeyIdx, &pKey);
            if (pMgmt->byCSSGK == KEY_CTL_TKIP)
                byDecMode = KEY_CTL_TKIP;
            else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
                byDecMode = KEY_CTL_CCMP;
            DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"group pkt: %d, %d, %p\n", byKeyIdx, byDecMode, pKey);
        }
    }
    // our WEP only support Default Key
    if (pKey == NULL) {
        // use default group key
        KeybGetKey(&(pDevice->sKey), pDevice->abyBroadcastAddr, byKeyIdx, &pKey);
        if (pMgmt->byCSSGK == KEY_CTL_TKIP)
            byDecMode = KEY_CTL_TKIP;
        else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
            byDecMode = KEY_CTL_CCMP;
    }
    *pKeyOut = pKey;

    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pMgmt->byCSSPK, pMgmt->byCSSGK, byDecMode);

    if (pKey == NULL) {
        DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pKey == NULL\n");
        if (byDecMode == KEY_CTL_WEP) {
//            pDevice->s802_11Counter.WEPUndecryptableCount.QuadPart++;
        } else if (pDevice->bLinkPass == TRUE) {
//            pDevice->s802_11Counter.DecryptFailureCount.QuadPart++;
        }
        return FALSE;
    }
    if (byDecMode != pKey->byCipherSuite) {
        if (byDecMode == KEY_CTL_WEP) {
//            pDevice->s802_11Counter.WEPUndecryptableCount.QuadPart++;
        } else if (pDevice->bLinkPass == TRUE) {
//            pDevice->s802_11Counter.DecryptFailureCount.QuadPart++;
        }
        *pKeyOut = NULL;
        return FALSE;
    }
    if (byDecMode == KEY_CTL_WEP) {
        // handle WEP
        if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
            (((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == TRUE)) {
            // Software WEP
            // 1. 3253A
            // 2. WEP 256

            PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
            memcpy(pDevice->abyPRNG, pbyIV, 3);
            memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
            rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
            rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);

            if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
                *pbyNewRsr |= NEWRSR_DECRYPTOK;
            }
        }
    } else if ((byDecMode == KEY_CTL_TKIP) ||
               (byDecMode == KEY_CTL_CCMP)) {
        // TKIP/AES

        PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
        *pdwRxTSC47_16 = cpu_to_le32(*(PDWORD)(pbyIV + 4));
	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %x\n", *pdwRxTSC47_16);
        if (byDecMode == KEY_CTL_TKIP) {
            *pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
        } else {
            *pwRxTSC15_0 = cpu_to_le16(*(PWORD)pbyIV);
        }
        DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);

        if ((byDecMode == KEY_CTL_TKIP) &&
            (pDevice->byLocalID <= REV_ID_VT3253_A1)) {
            // Software TKIP
            // 1. 3253 A
            PS802_11Header  pMACHeader = (PS802_11Header) (pbyFrame);
            TKIPvMixKey(pKey->abyKey, pMACHeader->abyAddr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
            rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
            rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
            if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
                *pbyNewRsr |= NEWRSR_DECRYPTOK;
                DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
            } else {
                DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
                DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
            }
        }
    }// end of TKIP/AES

    if ((*(pbyIV+3) & 0x20) != 0)
        *pbExtIV = TRUE;
    return TRUE;
}


static BOOL s_bHostWepRxEncryption (
     PSDevice     pDevice,
     PBYTE        pbyFrame,
     unsigned int         FrameSize,
     PBYTE        pbyRsr,
     BOOL         bOnFly,
     PSKeyItem    pKey,
     PBYTE       pbyNewRsr,
    int *       pbExtIV,
     PWORD       pwRxTSC15_0,
     PDWORD      pdwRxTSC47_16
    )
{
    PSMgmtObject    pMgmt = &(pDevice->sMgmtObj);
    unsigned int            PayloadLen = FrameSize;
    PBYTE           pbyIV;
    BYTE            byKeyIdx;
    BYTE            byDecMode = KEY_CTL_WEP;
    PS802_11Header  pMACHeader;



    *pwRxTSC15_0 = 0;
    *pdwRxTSC47_16 = 0;

    pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
    if ( WLAN_GET_FC_TODS(*(PWORD)pbyFrame) &&
         WLAN_GET_FC_FROMDS(*(PWORD)pbyFrame) ) {
         pbyIV += 6;             // 6 is 802.11 address4
         PayloadLen -= 6;
    }
    byKeyIdx = (*(pbyIV+3) & 0xc0);
    byKeyIdx >>= 6;
    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);


    if (pMgmt->byCSSGK == KEY_CTL_TKIP)
        byDecMode = KEY_CTL_TKIP;
    else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
        byDecMode = KEY_CTL_CCMP;

    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pMgmt->byCSSPK, pMgmt->byCSSGK, byDecMode);

    if (byDecMode != pKey->byCipherSuite) {
        if (byDecMode == KEY_CTL_WEP) {
//            pDevice->s802_11Counter.WEPUndecryptableCount.QuadPart++;
        } else if (pDevice->bLinkPass == TRUE) {
//            pDevice->s802_11Counter.DecryptFailureCount.QuadPart++;
        }
        return FALSE;
    }

    if (byDecMode == KEY_CTL_WEP) {
        // handle WEP
        DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"byDecMode == KEY_CTL_WEP \n");
        if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
            (((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == TRUE) ||
            (bOnFly == FALSE)) {
            // Software WEP
            // 1. 3253A
            // 2. WEP 256
            // 3. NotOnFly

            PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
            memcpy(pDevice->abyPRNG, pbyIV, 3);
            memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
            rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
            rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);

            if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
                *pbyNewRsr |= NEWRSR_DECRYPTOK;
            }
        }
    } else if ((byDecMode == KEY_CTL_TKIP) ||
               (byDecMode == KEY_CTL_CCMP)) {
        // TKIP/AES

        PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
        *pdwRxTSC47_16 = cpu_to_le32(*(PDWORD)(pbyIV + 4));
	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %x\n", *pdwRxTSC47_16);

        if (byDecMode == KEY_CTL_TKIP) {
            *pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
        } else {
            *pwRxTSC15_0 = cpu_to_le16(*(PWORD)pbyIV);
        }
        DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);

        if (byDecMode == KEY_CTL_TKIP) {

            if ((pDevice->byLocalID <= REV_ID_VT3253_A1) || (bOnFly == FALSE)) {
                // Software TKIP
                // 1. 3253 A
                // 2. NotOnFly
                DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"soft KEY_CTL_TKIP \n");
                pMACHeader = (PS802_11Header) (pbyFrame);
                TKIPvMixKey(pKey->abyKey, pMACHeader->abyAddr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
                rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
                rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
                if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
                    *pbyNewRsr |= NEWRSR_DECRYPTOK;
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
                } else {
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
                }
            }
        }

        if (byDecMode == KEY_CTL_CCMP) {
            if (bOnFly == FALSE) {
                // Software CCMP
                // NotOnFly
                DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"soft KEY_CTL_CCMP\n");
                if (AESbGenCCMP(pKey->abyKey, pbyFrame, FrameSize)) {
                    *pbyNewRsr |= NEWRSR_DECRYPTOK;
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"CCMP MIC compare OK!\n");
                } else {
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"CCMP MIC fail!\n");
                }
            }
        }

    }// end of TKIP/AES

    if ((*(pbyIV+3) & 0x20) != 0)
        *pbExtIV = TRUE;
    return TRUE;
}



static BOOL s_bAPModeRxData (
     PSDevice pDevice,
     struct sk_buff *skb,
     unsigned int     FrameSize,
     unsigned int     cbHeaderOffset,
     signed int      iSANodeIndex,
     signed int      iDANodeIndex
    )

{
    PSMgmtObject        pMgmt = &(pDevice->sMgmtObj);
    BOOL                bRelayAndForward = FALSE;
    BOOL                bRelayOnly = FALSE;
    BYTE                byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
    WORD                wAID;


    struct sk_buff* skbcpy = NULL;

    if (FrameSize > CB_MAX_BUF_SIZE)
        return FALSE;
    // check DA
    if (is_multicast_ether_addr((PBYTE)(skb->data+cbHeaderOffset))) {
       if (pMgmt->sNodeDBTable[0].bPSEnable) {

           skbcpy = dev_alloc_skb((int)pDevice->rx_buf_sz);

        // if any node in PS mode, buffer packet until DTIM.
           if (skbcpy == NULL) {
               DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "relay multicast no skb available \n");
           }
           else {
               skbcpy->dev = pDevice->dev;
               skbcpy->len = FrameSize;
               memcpy(skbcpy->data, skb->data+cbHeaderOffset, FrameSize);
               skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skbcpy);
               pMgmt->sNodeDBTable[0].wEnQueueCnt++;
               // set tx map
               pMgmt->abyPSTxMap[0] |= byMask[0];
           }
       }
       else {
           bRelayAndForward = TRUE;
       }
    }
    else {
        // check if relay
        if (BSSbIsSTAInNodeDB(pDevice, (PBYTE)(skb->data+cbHeaderOffset), &iDANodeIndex)) {
            if (pMgmt->sNodeDBTable[iDANodeIndex].eNodeState >= NODE_ASSOC) {
                if (pMgmt->sNodeDBTable[iDANodeIndex].bPSEnable) {
                    // queue this skb until next PS tx, and then release.

	                skb->data += cbHeaderOffset;
	                skb->tail += cbHeaderOffset;
                    skb_put(skb, FrameSize);
                    skb_queue_tail(&pMgmt->sNodeDBTable[iDANodeIndex].sTxPSQueue, skb);

                    pMgmt->sNodeDBTable[iDANodeIndex].wEnQueueCnt++;
                    wAID = pMgmt->sNodeDBTable[iDANodeIndex].wAID;
                    pMgmt->abyPSTxMap[wAID >> 3] |=  byMask[wAID & 7];
                    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "relay: index= %d, pMgmt->abyPSTxMap[%d]= %d\n",
                               iDANodeIndex, (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
                    return TRUE;
                }
                else {
                    bRelayOnly = TRUE;
                }
            }
        }
    }

    if (bRelayOnly || bRelayAndForward) {
        // relay this packet right now
        if (bRelayAndForward)
            iDANodeIndex = 0;

        if ((pDevice->uAssocCount > 1) && (iDANodeIndex >= 0)) {
		bRelayPacketSend(pDevice, (PBYTE) (skb->data + cbHeaderOffset),
				 FrameSize, (unsigned int) iDANodeIndex);
        }

        if (bRelayOnly)
            return FALSE;
    }
    // none associate, don't forward
    if (pDevice->uAssocCount == 0)
        return FALSE;

    return TRUE;
}




void RXvWorkItem(void *Context)
{
    PSDevice pDevice = (PSDevice) Context;
    int ntStatus;
    PRCB            pRCB=NULL;

    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Rx Polling Thread\n");
    spin_lock_irq(&pDevice->lock);

    while ((pDevice->Flags & fMP_POST_READS) &&
            MP_IS_READY(pDevice) &&
            (pDevice->NumRecvFreeList != 0) ) {
        pRCB = pDevice->FirstRecvFreeList;
        pDevice->NumRecvFreeList--;
        ASSERT(pRCB);// cannot be NULL
        DequeueRCB(pDevice->FirstRecvFreeList, pDevice->LastRecvFreeList);
        ntStatus = PIPEnsBulkInUsbRead(pDevice, pRCB);
    }
    pDevice->bIsRxWorkItemQueued = FALSE;
    spin_unlock_irq(&pDevice->lock);

}


void
RXvFreeRCB(
     PRCB pRCB,
     BOOL bReAllocSkb
    )
{
    PSDevice pDevice = (PSDevice)pRCB->pDevice;


    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->RXvFreeRCB\n");

    ASSERT(!pRCB->Ref);     // should be 0
    ASSERT(pRCB->pDevice);  // shouldn't be NULL

    if (bReAllocSkb == TRUE) {
        pRCB->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
        // todo error handling
        if (pRCB->skb == NULL) {
            DBG_PRT(MSG_LEVEL_ERR,KERN_ERR" Failed to re-alloc rx skb\n");
        }else {
            pRCB->skb->dev = pDevice->dev;
        }
    }
    //
    // Insert the RCB back in the Recv free list
    //
    EnqueueRCB(pDevice->FirstRecvFreeList, pDevice->LastRecvFreeList, pRCB);
    pDevice->NumRecvFreeList++;


    if ((pDevice->Flags & fMP_POST_READS) && MP_IS_READY(pDevice) &&
        (pDevice->bIsRxWorkItemQueued == FALSE) ) {

        pDevice->bIsRxWorkItemQueued = TRUE;
        tasklet_schedule(&pDevice->ReadWorkItem);
    }
    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"<----RXFreeRCB %d %d\n",pDevice->NumRecvFreeList, pDevice->NumRecvMngList);
}


void RXvMngWorkItem(void *Context)
{
    PSDevice pDevice = (PSDevice) Context;
    PRCB            pRCB=NULL;
    PSRxMgmtPacket  pRxPacket;
    BOOL            bReAllocSkb = FALSE;

    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Rx Mng Thread\n");

    spin_lock_irq(&pDevice->lock);
    while (pDevice->NumRecvMngList!=0)
    {
        pRCB = pDevice->FirstRecvMngList;
        pDevice->NumRecvMngList--;
        DequeueRCB(pDevice->FirstRecvMngList, pDevice->LastRecvMngList);
        if(!pRCB){
            break;
        }
        ASSERT(pRCB);// cannot be NULL
        pRxPacket = &(pRCB->sMngPacket);
	vMgrRxManagePacket((void *) pDevice, &(pDevice->sMgmtObj), pRxPacket);
        pRCB->Ref--;
        if(pRCB->Ref == 0) {
            DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"RxvFreeMng %d %d\n",pDevice->NumRecvFreeList, pDevice->NumRecvMngList);
            RXvFreeRCB(pRCB, bReAllocSkb);
        } else {
            DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Rx Mng Only we have the right to free RCB\n");
        }
    }

	pDevice->bIsRxMngWorkItemQueued = FALSE;
	spin_unlock_irq(&pDevice->lock);

}