Kernel  |  3.0

下载     查看原文件
C++程序  |  2913行  |  80.98 KB
/*
 * Copyright(c) 2008 - 2009 Atheros Corporation. All rights reserved.
 *
 * Derived from Intel e1000 driver
 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */

#include "atl1c.h"

#define ATL1C_DRV_VERSION "1.0.1.0-NAPI"
char atl1c_driver_name[] = "atl1c";
char atl1c_driver_version[] = ATL1C_DRV_VERSION;
#define PCI_DEVICE_ID_ATTANSIC_L2C      0x1062
#define PCI_DEVICE_ID_ATTANSIC_L1C      0x1063
#define PCI_DEVICE_ID_ATHEROS_L2C_B	0x2060 /* AR8152 v1.1 Fast 10/100 */
#define PCI_DEVICE_ID_ATHEROS_L2C_B2	0x2062 /* AR8152 v2.0 Fast 10/100 */
#define PCI_DEVICE_ID_ATHEROS_L1D	0x1073 /* AR8151 v1.0 Gigabit 1000 */
#define PCI_DEVICE_ID_ATHEROS_L1D_2_0	0x1083 /* AR8151 v2.0 Gigabit 1000 */
#define L2CB_V10			0xc0
#define L2CB_V11			0xc1

/*
 * atl1c_pci_tbl - PCI Device ID Table
 *
 * Wildcard entries (PCI_ANY_ID) should come last
 * Last entry must be all 0s
 *
 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 *   Class, Class Mask, private data (not used) }
 */
static DEFINE_PCI_DEVICE_TABLE(atl1c_pci_tbl) = {
	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1C)},
	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2C)},
	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATHEROS_L2C_B)},
	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATHEROS_L2C_B2)},
	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATHEROS_L1D)},
	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATHEROS_L1D_2_0)},
	/* required last entry */
	{ 0 }
};
MODULE_DEVICE_TABLE(pci, atl1c_pci_tbl);

MODULE_AUTHOR("Jie Yang <jie.yang@atheros.com>");
MODULE_DESCRIPTION("Atheros 1000M Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(ATL1C_DRV_VERSION);

static int atl1c_stop_mac(struct atl1c_hw *hw);
static void atl1c_enable_rx_ctrl(struct atl1c_hw *hw);
static void atl1c_enable_tx_ctrl(struct atl1c_hw *hw);
static void atl1c_disable_l0s_l1(struct atl1c_hw *hw);
static void atl1c_set_aspm(struct atl1c_hw *hw, bool linkup);
static void atl1c_setup_mac_ctrl(struct atl1c_adapter *adapter);
static void atl1c_clean_rx_irq(struct atl1c_adapter *adapter, u8 que,
		   int *work_done, int work_to_do);
static int atl1c_up(struct atl1c_adapter *adapter);
static void atl1c_down(struct atl1c_adapter *adapter);

static const u16 atl1c_pay_load_size[] = {
	128, 256, 512, 1024, 2048, 4096,
};

static const u16 atl1c_rfd_prod_idx_regs[AT_MAX_RECEIVE_QUEUE] =
{
	REG_MB_RFD0_PROD_IDX,
	REG_MB_RFD1_PROD_IDX,
	REG_MB_RFD2_PROD_IDX,
	REG_MB_RFD3_PROD_IDX
};

static const u16 atl1c_rfd_addr_lo_regs[AT_MAX_RECEIVE_QUEUE] =
{
	REG_RFD0_HEAD_ADDR_LO,
	REG_RFD1_HEAD_ADDR_LO,
	REG_RFD2_HEAD_ADDR_LO,
	REG_RFD3_HEAD_ADDR_LO
};

static const u16 atl1c_rrd_addr_lo_regs[AT_MAX_RECEIVE_QUEUE] =
{
	REG_RRD0_HEAD_ADDR_LO,
	REG_RRD1_HEAD_ADDR_LO,
	REG_RRD2_HEAD_ADDR_LO,
	REG_RRD3_HEAD_ADDR_LO
};

static const u32 atl1c_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
	NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
static void atl1c_pcie_patch(struct atl1c_hw *hw)
{
	u32 data;

	AT_READ_REG(hw, REG_PCIE_PHYMISC, &data);
	data |= PCIE_PHYMISC_FORCE_RCV_DET;
	AT_WRITE_REG(hw, REG_PCIE_PHYMISC, data);

	if (hw->nic_type == athr_l2c_b && hw->revision_id == L2CB_V10) {
		AT_READ_REG(hw, REG_PCIE_PHYMISC2, &data);

		data &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK <<
			PCIE_PHYMISC2_SERDES_CDR_SHIFT);
		data |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
		data &= ~(PCIE_PHYMISC2_SERDES_TH_MASK <<
			PCIE_PHYMISC2_SERDES_TH_SHIFT);
		data |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
		AT_WRITE_REG(hw, REG_PCIE_PHYMISC2, data);
	}
}

/* FIXME: no need any more ? */
/*
 * atl1c_init_pcie - init PCIE module
 */
static void atl1c_reset_pcie(struct atl1c_hw *hw, u32 flag)
{
	u32 data;
	u32 pci_cmd;
	struct pci_dev *pdev = hw->adapter->pdev;

	AT_READ_REG(hw, PCI_COMMAND, &pci_cmd);
	pci_cmd &= ~PCI_COMMAND_INTX_DISABLE;
	pci_cmd |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
		PCI_COMMAND_IO);
	AT_WRITE_REG(hw, PCI_COMMAND, pci_cmd);

	/*
	 * Clear any PowerSaveing Settings
	 */
	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

	/*
	 * Mask some pcie error bits
	 */
	AT_READ_REG(hw, REG_PCIE_UC_SEVERITY, &data);
	data &= ~PCIE_UC_SERVRITY_DLP;
	data &= ~PCIE_UC_SERVRITY_FCP;
	AT_WRITE_REG(hw, REG_PCIE_UC_SEVERITY, data);

	AT_READ_REG(hw, REG_LTSSM_ID_CTRL, &data);
	data &= ~LTSSM_ID_EN_WRO;
	AT_WRITE_REG(hw, REG_LTSSM_ID_CTRL, data);

	atl1c_pcie_patch(hw);
	if (flag & ATL1C_PCIE_L0S_L1_DISABLE)
		atl1c_disable_l0s_l1(hw);
	if (flag & ATL1C_PCIE_PHY_RESET)
		AT_WRITE_REG(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
	else
		AT_WRITE_REG(hw, REG_GPHY_CTRL,
			GPHY_CTRL_DEFAULT | GPHY_CTRL_EXT_RESET);

	msleep(5);
}

/*
 * atl1c_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 */
static inline void atl1c_irq_enable(struct atl1c_adapter *adapter)
{
	if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
		AT_WRITE_REG(&adapter->hw, REG_ISR, 0x7FFFFFFF);
		AT_WRITE_REG(&adapter->hw, REG_IMR, adapter->hw.intr_mask);
		AT_WRITE_FLUSH(&adapter->hw);
	}
}

/*
 * atl1c_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 */
static inline void atl1c_irq_disable(struct atl1c_adapter *adapter)
{
	atomic_inc(&adapter->irq_sem);
	AT_WRITE_REG(&adapter->hw, REG_IMR, 0);
	AT_WRITE_REG(&adapter->hw, REG_ISR, ISR_DIS_INT);
	AT_WRITE_FLUSH(&adapter->hw);
	synchronize_irq(adapter->pdev->irq);
}

/*
 * atl1c_irq_reset - reset interrupt confiure on the NIC
 * @adapter: board private structure
 */
static inline void atl1c_irq_reset(struct atl1c_adapter *adapter)
{
	atomic_set(&adapter->irq_sem, 1);
	atl1c_irq_enable(adapter);
}

/*
 * atl1c_wait_until_idle - wait up to AT_HW_MAX_IDLE_DELAY reads
 * of the idle status register until the device is actually idle
 */
static u32 atl1c_wait_until_idle(struct atl1c_hw *hw)
{
	int timeout;
	u32 data;

	for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
		AT_READ_REG(hw, REG_IDLE_STATUS, &data);
		if ((data & IDLE_STATUS_MASK) == 0)
			return 0;
		msleep(1);
	}
	return data;
}

/*
 * atl1c_phy_config - Timer Call-back
 * @data: pointer to netdev cast into an unsigned long
 */
static void atl1c_phy_config(unsigned long data)
{
	struct atl1c_adapter *adapter = (struct atl1c_adapter *) data;
	struct atl1c_hw *hw = &adapter->hw;
	unsigned long flags;

	spin_lock_irqsave(&adapter->mdio_lock, flags);
	atl1c_restart_autoneg(hw);
	spin_unlock_irqrestore(&adapter->mdio_lock, flags);
}

void atl1c_reinit_locked(struct atl1c_adapter *adapter)
{
	WARN_ON(in_interrupt());
	atl1c_down(adapter);
	atl1c_up(adapter);
	clear_bit(__AT_RESETTING, &adapter->flags);
}

static void atl1c_check_link_status(struct atl1c_adapter *adapter)
{
	struct atl1c_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev    *pdev   = adapter->pdev;
	int err;
	unsigned long flags;
	u16 speed, duplex, phy_data;

	spin_lock_irqsave(&adapter->mdio_lock, flags);
	/* MII_BMSR must read twise */
	atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
	atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
	spin_unlock_irqrestore(&adapter->mdio_lock, flags);

	if ((phy_data & BMSR_LSTATUS) == 0) {
		/* link down */
		hw->hibernate = true;
		if (atl1c_stop_mac(hw) != 0)
			if (netif_msg_hw(adapter))
				dev_warn(&pdev->dev, "stop mac failed\n");
		atl1c_set_aspm(hw, false);
		netif_carrier_off(netdev);
		netif_stop_queue(netdev);
		atl1c_phy_reset(hw);
		atl1c_phy_init(&adapter->hw);
	} else {
		/* Link Up */
		hw->hibernate = false;
		spin_lock_irqsave(&adapter->mdio_lock, flags);
		err = atl1c_get_speed_and_duplex(hw, &speed, &duplex);
		spin_unlock_irqrestore(&adapter->mdio_lock, flags);
		if (unlikely(err))
			return;
		/* link result is our setting */
		if (adapter->link_speed != speed ||
		    adapter->link_duplex != duplex) {
			adapter->link_speed  = speed;
			adapter->link_duplex = duplex;
			atl1c_set_aspm(hw, true);
			atl1c_enable_tx_ctrl(hw);
			atl1c_enable_rx_ctrl(hw);
			atl1c_setup_mac_ctrl(adapter);
			if (netif_msg_link(adapter))
				dev_info(&pdev->dev,
					"%s: %s NIC Link is Up<%d Mbps %s>\n",
					atl1c_driver_name, netdev->name,
					adapter->link_speed,
					adapter->link_duplex == FULL_DUPLEX ?
					"Full Duplex" : "Half Duplex");
		}
		if (!netif_carrier_ok(netdev))
			netif_carrier_on(netdev);
	}
}

static void atl1c_link_chg_event(struct atl1c_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev    *pdev   = adapter->pdev;
	u16 phy_data;
	u16 link_up;

	spin_lock(&adapter->mdio_lock);
	atl1c_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
	atl1c_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
	spin_unlock(&adapter->mdio_lock);
	link_up = phy_data & BMSR_LSTATUS;
	/* notify upper layer link down ASAP */
	if (!link_up) {
		if (netif_carrier_ok(netdev)) {
			/* old link state: Up */
			netif_carrier_off(netdev);
			if (netif_msg_link(adapter))
				dev_info(&pdev->dev,
					"%s: %s NIC Link is Down\n",
					atl1c_driver_name, netdev->name);
			adapter->link_speed = SPEED_0;
		}
	}

	set_bit(ATL1C_WORK_EVENT_LINK_CHANGE, &adapter->work_event);
	schedule_work(&adapter->common_task);
}

static void atl1c_common_task(struct work_struct *work)
{
	struct atl1c_adapter *adapter;
	struct net_device *netdev;

	adapter = container_of(work, struct atl1c_adapter, common_task);
	netdev = adapter->netdev;

	if (test_and_clear_bit(ATL1C_WORK_EVENT_RESET, &adapter->work_event)) {
		netif_device_detach(netdev);
		atl1c_down(adapter);
		atl1c_up(adapter);
		netif_device_attach(netdev);
	}

	if (test_and_clear_bit(ATL1C_WORK_EVENT_LINK_CHANGE,
		&adapter->work_event))
		atl1c_check_link_status(adapter);
}


static void atl1c_del_timer(struct atl1c_adapter *adapter)
{
	del_timer_sync(&adapter->phy_config_timer);
}


/*
 * atl1c_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 */
static void atl1c_tx_timeout(struct net_device *netdev)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	set_bit(ATL1C_WORK_EVENT_RESET, &adapter->work_event);
	schedule_work(&adapter->common_task);
}

/*
 * atl1c_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 */
static void atl1c_set_multi(struct net_device *netdev)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);
	struct atl1c_hw *hw = &adapter->hw;
	struct netdev_hw_addr *ha;
	u32 mac_ctrl_data;
	u32 hash_value;

	/* Check for Promiscuous and All Multicast modes */
	AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl_data);

	if (netdev->flags & IFF_PROMISC) {
		mac_ctrl_data |= MAC_CTRL_PROMIS_EN;
	} else if (netdev->flags & IFF_ALLMULTI) {
		mac_ctrl_data |= MAC_CTRL_MC_ALL_EN;
		mac_ctrl_data &= ~MAC_CTRL_PROMIS_EN;
	} else {
		mac_ctrl_data &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
	}

	AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);

	/* clear the old settings from the multicast hash table */
	AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);

	/* comoute mc addresses' hash value ,and put it into hash table */
	netdev_for_each_mc_addr(ha, netdev) {
		hash_value = atl1c_hash_mc_addr(hw, ha->addr);
		atl1c_hash_set(hw, hash_value);
	}
}

static void atl1c_vlan_rx_register(struct net_device *netdev,
				   struct vlan_group *grp)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;
	u32 mac_ctrl_data = 0;

	if (netif_msg_pktdata(adapter))
		dev_dbg(&pdev->dev, "atl1c_vlan_rx_register\n");

	atl1c_irq_disable(adapter);

	adapter->vlgrp = grp;
	AT_READ_REG(&adapter->hw, REG_MAC_CTRL, &mac_ctrl_data);

	if (grp) {
		/* enable VLAN tag insert/strip */
		mac_ctrl_data |= MAC_CTRL_RMV_VLAN;
	} else {
		/* disable VLAN tag insert/strip */
		mac_ctrl_data &= ~MAC_CTRL_RMV_VLAN;
	}

	AT_WRITE_REG(&adapter->hw, REG_MAC_CTRL, mac_ctrl_data);
	atl1c_irq_enable(adapter);
}

static void atl1c_restore_vlan(struct atl1c_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;

	if (netif_msg_pktdata(adapter))
		dev_dbg(&pdev->dev, "atl1c_restore_vlan !");
	atl1c_vlan_rx_register(adapter->netdev, adapter->vlgrp);
}
/*
 * atl1c_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 */
static int atl1c_set_mac_addr(struct net_device *netdev, void *p)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	if (netif_running(netdev))
		return -EBUSY;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);

	atl1c_hw_set_mac_addr(&adapter->hw);

	return 0;
}

static void atl1c_set_rxbufsize(struct atl1c_adapter *adapter,
				struct net_device *dev)
{
	int mtu = dev->mtu;

	adapter->rx_buffer_len = mtu > AT_RX_BUF_SIZE ?
		roundup(mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN, 8) : AT_RX_BUF_SIZE;
}

static u32 atl1c_fix_features(struct net_device *netdev, u32 features)
{
	if (netdev->mtu > MAX_TSO_FRAME_SIZE)
		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);

	return features;
}

/*
 * atl1c_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 */
static int atl1c_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);
	int old_mtu   = netdev->mtu;
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;

	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
			(max_frame > MAX_JUMBO_FRAME_SIZE)) {
		if (netif_msg_link(adapter))
			dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
		return -EINVAL;
	}
	/* set MTU */
	if (old_mtu != new_mtu && netif_running(netdev)) {
		while (test_and_set_bit(__AT_RESETTING, &adapter->flags))
			msleep(1);
		netdev->mtu = new_mtu;
		adapter->hw.max_frame_size = new_mtu;
		atl1c_set_rxbufsize(adapter, netdev);
		atl1c_down(adapter);
		netdev_update_features(netdev);
		atl1c_up(adapter);
		clear_bit(__AT_RESETTING, &adapter->flags);
		if (adapter->hw.ctrl_flags & ATL1C_FPGA_VERSION) {
			u32 phy_data;

			AT_READ_REG(&adapter->hw, 0x1414, &phy_data);
			phy_data |= 0x10000000;
			AT_WRITE_REG(&adapter->hw, 0x1414, phy_data);
		}

	}
	return 0;
}

/*
 *  caller should hold mdio_lock
 */
static int atl1c_mdio_read(struct net_device *netdev, int phy_id, int reg_num)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);
	u16 result;

	atl1c_read_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, &result);
	return result;
}

static void atl1c_mdio_write(struct net_device *netdev, int phy_id,
			     int reg_num, int val)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);

	atl1c_write_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, val);
}

/*
 * atl1c_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 */
static int atl1c_mii_ioctl(struct net_device *netdev,
			   struct ifreq *ifr, int cmd)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;
	struct mii_ioctl_data *data = if_mii(ifr);
	unsigned long flags;
	int retval = 0;

	if (!netif_running(netdev))
		return -EINVAL;

	spin_lock_irqsave(&adapter->mdio_lock, flags);
	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = 0;
		break;

	case SIOCGMIIREG:
		if (atl1c_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
				    &data->val_out)) {
			retval = -EIO;
			goto out;
		}
		break;

	case SIOCSMIIREG:
		if (data->reg_num & ~(0x1F)) {
			retval = -EFAULT;
			goto out;
		}

		dev_dbg(&pdev->dev, "<atl1c_mii_ioctl> write %x %x",
				data->reg_num, data->val_in);
		if (atl1c_write_phy_reg(&adapter->hw,
				     data->reg_num, data->val_in)) {
			retval = -EIO;
			goto out;
		}
		break;

	default:
		retval = -EOPNOTSUPP;
		break;
	}
out:
	spin_unlock_irqrestore(&adapter->mdio_lock, flags);
	return retval;
}

/*
 * atl1c_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 */
static int atl1c_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return atl1c_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

/*
 * atl1c_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 */
static int __devinit atl1c_alloc_queues(struct atl1c_adapter *adapter)
{
	return 0;
}

static void atl1c_set_mac_type(struct atl1c_hw *hw)
{
	switch (hw->device_id) {
	case PCI_DEVICE_ID_ATTANSIC_L2C:
		hw->nic_type = athr_l2c;
		break;
	case PCI_DEVICE_ID_ATTANSIC_L1C:
		hw->nic_type = athr_l1c;
		break;
	case PCI_DEVICE_ID_ATHEROS_L2C_B:
		hw->nic_type = athr_l2c_b;
		break;
	case PCI_DEVICE_ID_ATHEROS_L2C_B2:
		hw->nic_type = athr_l2c_b2;
		break;
	case PCI_DEVICE_ID_ATHEROS_L1D:
		hw->nic_type = athr_l1d;
		break;
	case PCI_DEVICE_ID_ATHEROS_L1D_2_0:
		hw->nic_type = athr_l1d_2;
		break;
	default:
		break;
	}
}

static int atl1c_setup_mac_funcs(struct atl1c_hw *hw)
{
	u32 phy_status_data;
	u32 link_ctrl_data;

	atl1c_set_mac_type(hw);
	AT_READ_REG(hw, REG_PHY_STATUS, &phy_status_data);
	AT_READ_REG(hw, REG_LINK_CTRL, &link_ctrl_data);

	hw->ctrl_flags = ATL1C_INTR_MODRT_ENABLE  |
			 ATL1C_TXQ_MODE_ENHANCE;
	if (link_ctrl_data & LINK_CTRL_L0S_EN)
		hw->ctrl_flags |= ATL1C_ASPM_L0S_SUPPORT;
	if (link_ctrl_data & LINK_CTRL_L1_EN)
		hw->ctrl_flags |= ATL1C_ASPM_L1_SUPPORT;
	if (link_ctrl_data & LINK_CTRL_EXT_SYNC)
		hw->ctrl_flags |= ATL1C_LINK_EXT_SYNC;
	hw->ctrl_flags |= ATL1C_ASPM_CTRL_MON;

	if (hw->nic_type == athr_l1c ||
	    hw->nic_type == athr_l1d ||
	    hw->nic_type == athr_l1d_2)
		hw->link_cap_flags |= ATL1C_LINK_CAP_1000M;
	return 0;
}
/*
 * atl1c_sw_init - Initialize general software structures (struct atl1c_adapter)
 * @adapter: board private structure to initialize
 *
 * atl1c_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 */
static int __devinit atl1c_sw_init(struct atl1c_adapter *adapter)
{
	struct atl1c_hw *hw   = &adapter->hw;
	struct pci_dev	*pdev = adapter->pdev;
	u32 revision;


	adapter->wol = 0;
	device_set_wakeup_enable(&pdev->dev, false);
	adapter->link_speed = SPEED_0;
	adapter->link_duplex = FULL_DUPLEX;
	adapter->num_rx_queues = AT_DEF_RECEIVE_QUEUE;
	adapter->tpd_ring[0].count = 1024;
	adapter->rfd_ring[0].count = 512;

	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_id = pdev->subsystem_device;
	AT_READ_REG(hw, PCI_CLASS_REVISION, &revision);
	hw->revision_id = revision & 0xFF;
	/* before link up, we assume hibernate is true */
	hw->hibernate = true;
	hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
	if (atl1c_setup_mac_funcs(hw) != 0) {
		dev_err(&pdev->dev, "set mac function pointers failed\n");
		return -1;
	}
	hw->intr_mask = IMR_NORMAL_MASK;
	hw->phy_configured = false;
	hw->preamble_len = 7;
	hw->max_frame_size = adapter->netdev->mtu;
	if (adapter->num_rx_queues < 2) {
		hw->rss_type = atl1c_rss_disable;
		hw->rss_mode = atl1c_rss_mode_disable;
	} else {
		hw->rss_type = atl1c_rss_ipv4;
		hw->rss_mode = atl1c_rss_mul_que_mul_int;
		hw->rss_hash_bits = 16;
	}
	hw->autoneg_advertised = ADVERTISED_Autoneg;
	hw->indirect_tab = 0xE4E4E4E4;
	hw->base_cpu = 0;

	hw->ict = 50000;		/* 100ms */
	hw->smb_timer = 200000;	  	/* 400ms */
	hw->cmb_tpd = 4;
	hw->cmb_tx_timer = 1;		/* 2 us  */
	hw->rx_imt = 200;
	hw->tx_imt = 1000;

	hw->tpd_burst = 5;
	hw->rfd_burst = 8;
	hw->dma_order = atl1c_dma_ord_out;
	hw->dmar_block = atl1c_dma_req_1024;
	hw->dmaw_block = atl1c_dma_req_1024;
	hw->dmar_dly_cnt = 15;
	hw->dmaw_dly_cnt = 4;

	if (atl1c_alloc_queues(adapter)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}
	/* TODO */
	atl1c_set_rxbufsize(adapter, adapter->netdev);
	atomic_set(&adapter->irq_sem, 1);
	spin_lock_init(&adapter->mdio_lock);
	spin_lock_init(&adapter->tx_lock);
	set_bit(__AT_DOWN, &adapter->flags);

	return 0;
}

static inline void atl1c_clean_buffer(struct pci_dev *pdev,
				struct atl1c_buffer *buffer_info, int in_irq)
{
	u16 pci_driection;
	if (buffer_info->flags & ATL1C_BUFFER_FREE)
		return;
	if (buffer_info->dma) {
		if (buffer_info->flags & ATL1C_PCIMAP_FROMDEVICE)
			pci_driection = PCI_DMA_FROMDEVICE;
		else
			pci_driection = PCI_DMA_TODEVICE;

		if (buffer_info->flags & ATL1C_PCIMAP_SINGLE)
			pci_unmap_single(pdev, buffer_info->dma,
					buffer_info->length, pci_driection);
		else if (buffer_info->flags & ATL1C_PCIMAP_PAGE)
			pci_unmap_page(pdev, buffer_info->dma,
					buffer_info->length, pci_driection);
	}
	if (buffer_info->skb) {
		if (in_irq)
			dev_kfree_skb_irq(buffer_info->skb);
		else
			dev_kfree_skb(buffer_info->skb);
	}
	buffer_info->dma = 0;
	buffer_info->skb = NULL;
	ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_FREE);
}
/*
 * atl1c_clean_tx_ring - Free Tx-skb
 * @adapter: board private structure
 */
static void atl1c_clean_tx_ring(struct atl1c_adapter *adapter,
				enum atl1c_trans_queue type)
{
	struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type];
	struct atl1c_buffer *buffer_info;
	struct pci_dev *pdev = adapter->pdev;
	u16 index, ring_count;

	ring_count = tpd_ring->count;
	for (index = 0; index < ring_count; index++) {
		buffer_info = &tpd_ring->buffer_info[index];
		atl1c_clean_buffer(pdev, buffer_info, 0);
	}

	/* Zero out Tx-buffers */
	memset(tpd_ring->desc, 0, sizeof(struct atl1c_tpd_desc) *
		ring_count);
	atomic_set(&tpd_ring->next_to_clean, 0);
	tpd_ring->next_to_use = 0;
}

/*
 * atl1c_clean_rx_ring - Free rx-reservation skbs
 * @adapter: board private structure
 */
static void atl1c_clean_rx_ring(struct atl1c_adapter *adapter)
{
	struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring;
	struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring;
	struct atl1c_buffer *buffer_info;
	struct pci_dev *pdev = adapter->pdev;
	int i, j;

	for (i = 0; i < adapter->num_rx_queues; i++) {
		for (j = 0; j < rfd_ring[i].count; j++) {
			buffer_info = &rfd_ring[i].buffer_info[j];
			atl1c_clean_buffer(pdev, buffer_info, 0);
		}
		/* zero out the descriptor ring */
		memset(rfd_ring[i].desc, 0, rfd_ring[i].size);
		rfd_ring[i].next_to_clean = 0;
		rfd_ring[i].next_to_use = 0;
		rrd_ring[i].next_to_use = 0;
		rrd_ring[i].next_to_clean = 0;
	}
}

/*
 * Read / Write Ptr Initialize:
 */
static void atl1c_init_ring_ptrs(struct atl1c_adapter *adapter)
{
	struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring;
	struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring;
	struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring;
	struct atl1c_buffer *buffer_info;
	int i, j;

	for (i = 0; i < AT_MAX_TRANSMIT_QUEUE; i++) {
		tpd_ring[i].next_to_use = 0;
		atomic_set(&tpd_ring[i].next_to_clean, 0);
		buffer_info = tpd_ring[i].buffer_info;
		for (j = 0; j < tpd_ring->count; j++)
			ATL1C_SET_BUFFER_STATE(&buffer_info[i],
					ATL1C_BUFFER_FREE);
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		rfd_ring[i].next_to_use = 0;
		rfd_ring[i].next_to_clean = 0;
		rrd_ring[i].next_to_use = 0;
		rrd_ring[i].next_to_clean = 0;
		for (j = 0; j < rfd_ring[i].count; j++) {
			buffer_info = &rfd_ring[i].buffer_info[j];
			ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_FREE);
		}
	}
}

/*
 * atl1c_free_ring_resources - Free Tx / RX descriptor Resources
 * @adapter: board private structure
 *
 * Free all transmit software resources
 */
static void atl1c_free_ring_resources(struct atl1c_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;

	pci_free_consistent(pdev, adapter->ring_header.size,
					adapter->ring_header.desc,
					adapter->ring_header.dma);
	adapter->ring_header.desc = NULL;

	/* Note: just free tdp_ring.buffer_info,
	*  it contain rfd_ring.buffer_info, do not double free */
	if (adapter->tpd_ring[0].buffer_info) {
		kfree(adapter->tpd_ring[0].buffer_info);
		adapter->tpd_ring[0].buffer_info = NULL;
	}
}

/*
 * atl1c_setup_mem_resources - allocate Tx / RX descriptor resources
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 */
static int atl1c_setup_ring_resources(struct atl1c_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring;
	struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring;
	struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring;
	struct atl1c_ring_header *ring_header = &adapter->ring_header;
	int num_rx_queues = adapter->num_rx_queues;
	int size;
	int i;
	int count = 0;
	int rx_desc_count = 0;
	u32 offset = 0;

	rrd_ring[0].count = rfd_ring[0].count;
	for (i = 1; i < AT_MAX_TRANSMIT_QUEUE; i++)
		tpd_ring[i].count = tpd_ring[0].count;

	for (i = 1; i < adapter->num_rx_queues; i++)
		rfd_ring[i].count = rrd_ring[i].count = rfd_ring[0].count;

	/* 2 tpd queue, one high priority queue,
	 * another normal priority queue */
	size = sizeof(struct atl1c_buffer) * (tpd_ring->count * 2 +
		rfd_ring->count * num_rx_queues);
	tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
	if (unlikely(!tpd_ring->buffer_info)) {
		dev_err(&pdev->dev, "kzalloc failed, size = %d\n",
			size);
		goto err_nomem;
	}
	for (i = 0; i < AT_MAX_TRANSMIT_QUEUE; i++) {
		tpd_ring[i].buffer_info =
			(struct atl1c_buffer *) (tpd_ring->buffer_info + count);
		count += tpd_ring[i].count;
	}

	for (i = 0; i < num_rx_queues; i++) {
		rfd_ring[i].buffer_info =
			(struct atl1c_buffer *) (tpd_ring->buffer_info + count);
		count += rfd_ring[i].count;
		rx_desc_count += rfd_ring[i].count;
	}
	/*
	 * real ring DMA buffer
	 * each ring/block may need up to 8 bytes for alignment, hence the
	 * additional bytes tacked onto the end.
	 */
	ring_header->size = size =
		sizeof(struct atl1c_tpd_desc) * tpd_ring->count * 2 +
		sizeof(struct atl1c_rx_free_desc) * rx_desc_count +
		sizeof(struct atl1c_recv_ret_status) * rx_desc_count +
		sizeof(struct atl1c_hw_stats) +
		8 * 4 + 8 * 2 * num_rx_queues;

	ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
				&ring_header->dma);
	if (unlikely(!ring_header->desc)) {
		dev_err(&pdev->dev, "pci_alloc_consistend failed\n");
		goto err_nomem;
	}
	memset(ring_header->desc, 0, ring_header->size);
	/* init TPD ring */

	tpd_ring[0].dma = roundup(ring_header->dma, 8);
	offset = tpd_ring[0].dma - ring_header->dma;
	for (i = 0; i < AT_MAX_TRANSMIT_QUEUE; i++) {
		tpd_ring[i].dma = ring_header->dma + offset;
		tpd_ring[i].desc = (u8 *) ring_header->desc + offset;
		tpd_ring[i].size =
			sizeof(struct atl1c_tpd_desc) * tpd_ring[i].count;
		offset += roundup(tpd_ring[i].size, 8);
	}
	/* init RFD ring */
	for (i = 0; i < num_rx_queues; i++) {
		rfd_ring[i].dma = ring_header->dma + offset;
		rfd_ring[i].desc = (u8 *) ring_header->desc + offset;
		rfd_ring[i].size = sizeof(struct atl1c_rx_free_desc) *
				rfd_ring[i].count;
		offset += roundup(rfd_ring[i].size, 8);
	}

	/* init RRD ring */
	for (i = 0; i < num_rx_queues; i++) {
		rrd_ring[i].dma = ring_header->dma + offset;
		rrd_ring[i].desc = (u8 *) ring_header->desc + offset;
		rrd_ring[i].size = sizeof(struct atl1c_recv_ret_status) *
				rrd_ring[i].count;
		offset += roundup(rrd_ring[i].size, 8);
	}

	adapter->smb.dma = ring_header->dma + offset;
	adapter->smb.smb = (u8 *)ring_header->desc + offset;
	return 0;

err_nomem:
	kfree(tpd_ring->buffer_info);
	return -ENOMEM;
}

static void atl1c_configure_des_ring(struct atl1c_adapter *adapter)
{
	struct atl1c_hw *hw = &adapter->hw;
	struct atl1c_rfd_ring *rfd_ring = (struct atl1c_rfd_ring *)
				adapter->rfd_ring;
	struct atl1c_rrd_ring *rrd_ring = (struct atl1c_rrd_ring *)
				adapter->rrd_ring;
	struct atl1c_tpd_ring *tpd_ring = (struct atl1c_tpd_ring *)
				adapter->tpd_ring;
	struct atl1c_cmb *cmb = (struct atl1c_cmb *) &adapter->cmb;
	struct atl1c_smb *smb = (struct atl1c_smb *) &adapter->smb;
	int i;
	u32 data;

	/* TPD */
	AT_WRITE_REG(hw, REG_TX_BASE_ADDR_HI,
			(u32)((tpd_ring[atl1c_trans_normal].dma &
				AT_DMA_HI_ADDR_MASK) >> 32));
	/* just enable normal priority TX queue */
	AT_WRITE_REG(hw, REG_NTPD_HEAD_ADDR_LO,
			(u32)(tpd_ring[atl1c_trans_normal].dma &
				AT_DMA_LO_ADDR_MASK));
	AT_WRITE_REG(hw, REG_HTPD_HEAD_ADDR_LO,
			(u32)(tpd_ring[atl1c_trans_high].dma &
				AT_DMA_LO_ADDR_MASK));
	AT_WRITE_REG(hw, REG_TPD_RING_SIZE,
			(u32)(tpd_ring[0].count & TPD_RING_SIZE_MASK));


	/* RFD */
	AT_WRITE_REG(hw, REG_RX_BASE_ADDR_HI,
			(u32)((rfd_ring[0].dma & AT_DMA_HI_ADDR_MASK) >> 32));
	for (i = 0; i < adapter->num_rx_queues; i++)
		AT_WRITE_REG(hw, atl1c_rfd_addr_lo_regs[i],
			(u32)(rfd_ring[i].dma & AT_DMA_LO_ADDR_MASK));

	AT_WRITE_REG(hw, REG_RFD_RING_SIZE,
			rfd_ring[0].count & RFD_RING_SIZE_MASK);
	AT_WRITE_REG(hw, REG_RX_BUF_SIZE,
			adapter->rx_buffer_len & RX_BUF_SIZE_MASK);

	/* RRD */
	for (i = 0; i < adapter->num_rx_queues; i++)
		AT_WRITE_REG(hw, atl1c_rrd_addr_lo_regs[i],
			(u32)(rrd_ring[i].dma & AT_DMA_LO_ADDR_MASK));
	AT_WRITE_REG(hw, REG_RRD_RING_SIZE,
			(rrd_ring[0].count & RRD_RING_SIZE_MASK));

	/* CMB */
	AT_WRITE_REG(hw, REG_CMB_BASE_ADDR_LO, cmb->dma & AT_DMA_LO_ADDR_MASK);

	/* SMB */
	AT_WRITE_REG(hw, REG_SMB_BASE_ADDR_HI,
			(u32)((smb->dma & AT_DMA_HI_ADDR_MASK) >> 32));
	AT_WRITE_REG(hw, REG_SMB_BASE_ADDR_LO,
			(u32)(smb->dma & AT_DMA_LO_ADDR_MASK));
	if (hw->nic_type == athr_l2c_b) {
		AT_WRITE_REG(hw, REG_SRAM_RXF_LEN, 0x02a0L);
		AT_WRITE_REG(hw, REG_SRAM_TXF_LEN, 0x0100L);
		AT_WRITE_REG(hw, REG_SRAM_RXF_ADDR, 0x029f0000L);
		AT_WRITE_REG(hw, REG_SRAM_RFD0_INFO, 0x02bf02a0L);
		AT_WRITE_REG(hw, REG_SRAM_TXF_ADDR, 0x03bf02c0L);
		AT_WRITE_REG(hw, REG_SRAM_TRD_ADDR, 0x03df03c0L);
		AT_WRITE_REG(hw, REG_TXF_WATER_MARK, 0);	/* TX watermark, to enter l1 state.*/
		AT_WRITE_REG(hw, REG_RXD_DMA_CTRL, 0);		/* RXD threshold.*/
	}
	if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l1d_2) {
			/* Power Saving for L2c_B */
		AT_READ_REG(hw, REG_SERDES_LOCK, &data);
		data |= SERDES_MAC_CLK_SLOWDOWN;
		data |= SERDES_PYH_CLK_SLOWDOWN;
		AT_WRITE_REG(hw, REG_SERDES_LOCK, data);
	}
	/* Load all of base address above */
	AT_WRITE_REG(hw, REG_LOAD_PTR, 1);
}

static void atl1c_configure_tx(struct atl1c_adapter *adapter)
{
	struct atl1c_hw *hw = &adapter->hw;
	u32 dev_ctrl_data;
	u32 max_pay_load;
	u16 tx_offload_thresh;
	u32 txq_ctrl_data;
	u32 max_pay_load_data;

	tx_offload_thresh = MAX_TX_OFFLOAD_THRESH;
	AT_WRITE_REG(hw, REG_TX_TSO_OFFLOAD_THRESH,
		(tx_offload_thresh >> 3) & TX_TSO_OFFLOAD_THRESH_MASK);
	AT_READ_REG(hw, REG_DEVICE_CTRL, &dev_ctrl_data);
	max_pay_load  = (dev_ctrl_data >> DEVICE_CTRL_MAX_PAYLOAD_SHIFT) &
			DEVICE_CTRL_MAX_PAYLOAD_MASK;
	hw->dmaw_block = min_t(u32, max_pay_load, hw->dmaw_block);
	max_pay_load  = (dev_ctrl_data >> DEVICE_CTRL_MAX_RREQ_SZ_SHIFT) &
			DEVICE_CTRL_MAX_RREQ_SZ_MASK;
	hw->dmar_block = min_t(u32, max_pay_load, hw->dmar_block);

	txq_ctrl_data = (hw->tpd_burst & TXQ_NUM_TPD_BURST_MASK) <<
			TXQ_NUM_TPD_BURST_SHIFT;
	if (hw->ctrl_flags & ATL1C_TXQ_MODE_ENHANCE)
		txq_ctrl_data |= TXQ_CTRL_ENH_MODE;
	max_pay_load_data = (atl1c_pay_load_size[hw->dmar_block] &
			TXQ_TXF_BURST_NUM_MASK) << TXQ_TXF_BURST_NUM_SHIFT;
	if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2)
		max_pay_load_data >>= 1;
	txq_ctrl_data |= max_pay_load_data;

	AT_WRITE_REG(hw, REG_TXQ_CTRL, txq_ctrl_data);
}

static void atl1c_configure_rx(struct atl1c_adapter *adapter)
{
	struct atl1c_hw *hw = &adapter->hw;
	u32 rxq_ctrl_data;

	rxq_ctrl_data = (hw->rfd_burst & RXQ_RFD_BURST_NUM_MASK) <<
			RXQ_RFD_BURST_NUM_SHIFT;

	if (hw->ctrl_flags & ATL1C_RX_IPV6_CHKSUM)
		rxq_ctrl_data |= IPV6_CHKSUM_CTRL_EN;
	if (hw->rss_type == atl1c_rss_ipv4)
		rxq_ctrl_data |= RSS_HASH_IPV4;
	if (hw->rss_type == atl1c_rss_ipv4_tcp)
		rxq_ctrl_data |= RSS_HASH_IPV4_TCP;
	if (hw->rss_type == atl1c_rss_ipv6)
		rxq_ctrl_data |= RSS_HASH_IPV6;
	if (hw->rss_type == atl1c_rss_ipv6_tcp)
		rxq_ctrl_data |= RSS_HASH_IPV6_TCP;
	if (hw->rss_type != atl1c_rss_disable)
		rxq_ctrl_data |= RRS_HASH_CTRL_EN;

	rxq_ctrl_data |= (hw->rss_mode & RSS_MODE_MASK) <<
			RSS_MODE_SHIFT;
	rxq_ctrl_data |= (hw->rss_hash_bits & RSS_HASH_BITS_MASK) <<
			RSS_HASH_BITS_SHIFT;
	if (hw->ctrl_flags & ATL1C_ASPM_CTRL_MON)
		rxq_ctrl_data |= (ASPM_THRUPUT_LIMIT_1M &
			ASPM_THRUPUT_LIMIT_MASK) << ASPM_THRUPUT_LIMIT_SHIFT;

	AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq_ctrl_data);
}

static void atl1c_configure_rss(struct atl1c_adapter *adapter)
{
	struct atl1c_hw *hw = &adapter->hw;

	AT_WRITE_REG(hw, REG_IDT_TABLE, hw->indirect_tab);
	AT_WRITE_REG(hw, REG_BASE_CPU_NUMBER, hw->base_cpu);
}

static void atl1c_configure_dma(struct atl1c_adapter *adapter)
{
	struct atl1c_hw *hw = &adapter->hw;
	u32 dma_ctrl_data;

	dma_ctrl_data = DMA_CTRL_DMAR_REQ_PRI;
	if (hw->ctrl_flags & ATL1C_CMB_ENABLE)
		dma_ctrl_data |= DMA_CTRL_CMB_EN;
	if (hw->ctrl_flags & ATL1C_SMB_ENABLE)
		dma_ctrl_data |= DMA_CTRL_SMB_EN;
	else
		dma_ctrl_data |= MAC_CTRL_SMB_DIS;

	switch (hw->dma_order) {
	case atl1c_dma_ord_in:
		dma_ctrl_data |= DMA_CTRL_DMAR_IN_ORDER;
		break;
	case atl1c_dma_ord_enh:
		dma_ctrl_data |= DMA_CTRL_DMAR_ENH_ORDER;
		break;
	case atl1c_dma_ord_out:
		dma_ctrl_data |= DMA_CTRL_DMAR_OUT_ORDER;
		break;
	default:
		break;
	}

	dma_ctrl_data |= (((u32)hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT;
	dma_ctrl_data |= (((u32)hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT;
	dma_ctrl_data |= (((u32)hw->dmar_dly_cnt) & DMA_CTRL_DMAR_DLY_CNT_MASK)
		<< DMA_CTRL_DMAR_DLY_CNT_SHIFT;
	dma_ctrl_data |= (((u32)hw->dmaw_dly_cnt) & DMA_CTRL_DMAW_DLY_CNT_MASK)
		<< DMA_CTRL_DMAW_DLY_CNT_SHIFT;

	AT_WRITE_REG(hw, REG_DMA_CTRL, dma_ctrl_data);
}

/*
 * Stop the mac, transmit and receive units
 * hw - Struct containing variables accessed by shared code
 * return : 0  or  idle status (if error)
 */
static int atl1c_stop_mac(struct atl1c_hw *hw)
{
	u32 data;

	AT_READ_REG(hw, REG_RXQ_CTRL, &data);
	data &= ~(RXQ1_CTRL_EN | RXQ2_CTRL_EN |
		  RXQ3_CTRL_EN | RXQ_CTRL_EN);
	AT_WRITE_REG(hw, REG_RXQ_CTRL, data);

	AT_READ_REG(hw, REG_TXQ_CTRL, &data);
	data &= ~TXQ_CTRL_EN;
	AT_WRITE_REG(hw, REG_TWSI_CTRL, data);

	atl1c_wait_until_idle(hw);

	AT_READ_REG(hw, REG_MAC_CTRL, &data);
	data &= ~(MAC_CTRL_TX_EN | MAC_CTRL_RX_EN);
	AT_WRITE_REG(hw, REG_MAC_CTRL, data);

	return (int)atl1c_wait_until_idle(hw);
}

static void atl1c_enable_rx_ctrl(struct atl1c_hw *hw)
{
	u32 data;

	AT_READ_REG(hw, REG_RXQ_CTRL, &data);
	switch (hw->adapter->num_rx_queues) {
	case 4:
		data |= (RXQ3_CTRL_EN | RXQ2_CTRL_EN | RXQ1_CTRL_EN);
		break;
	case 3:
		data |= (RXQ2_CTRL_EN | RXQ1_CTRL_EN);
		break;
	case 2:
		data |= RXQ1_CTRL_EN;
		break;
	default:
		break;
	}
	data |= RXQ_CTRL_EN;
	AT_WRITE_REG(hw, REG_RXQ_CTRL, data);
}

static void atl1c_enable_tx_ctrl(struct atl1c_hw *hw)
{
	u32 data;

	AT_READ_REG(hw, REG_TXQ_CTRL, &data);
	data |= TXQ_CTRL_EN;
	AT_WRITE_REG(hw, REG_TXQ_CTRL, data);
}

/*
 * Reset the transmit and receive units; mask and clear all interrupts.
 * hw - Struct containing variables accessed by shared code
 * return : 0  or  idle status (if error)
 */
static int atl1c_reset_mac(struct atl1c_hw *hw)
{
	struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
	struct pci_dev *pdev = adapter->pdev;
	u32 master_ctrl_data = 0;

	AT_WRITE_REG(hw, REG_IMR, 0);
	AT_WRITE_REG(hw, REG_ISR, ISR_DIS_INT);

	atl1c_stop_mac(hw);
	/*
	 * Issue Soft Reset to the MAC.  This will reset the chip's
	 * transmit, receive, DMA.  It will not effect
	 * the current PCI configuration.  The global reset bit is self-
	 * clearing, and should clear within a microsecond.
	 */
	AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl_data);
	master_ctrl_data |= MASTER_CTRL_OOB_DIS_OFF;
	AT_WRITE_REGW(hw, REG_MASTER_CTRL, ((master_ctrl_data | MASTER_CTRL_SOFT_RST)
			& 0xFFFF));

	AT_WRITE_FLUSH(hw);
	msleep(10);
	/* Wait at least 10ms for All module to be Idle */

	if (atl1c_wait_until_idle(hw)) {
		dev_err(&pdev->dev,
			"MAC state machine can't be idle since"
			" disabled for 10ms second\n");
		return -1;
	}
	return 0;
}

static void atl1c_disable_l0s_l1(struct atl1c_hw *hw)
{
	u32 pm_ctrl_data;

	AT_READ_REG(hw, REG_PM_CTRL, &pm_ctrl_data);
	pm_ctrl_data &= ~(PM_CTRL_L1_ENTRY_TIMER_MASK <<
			PM_CTRL_L1_ENTRY_TIMER_SHIFT);
	pm_ctrl_data &= ~PM_CTRL_CLK_SWH_L1;
	pm_ctrl_data &= ~PM_CTRL_ASPM_L0S_EN;
	pm_ctrl_data &= ~PM_CTRL_ASPM_L1_EN;
	pm_ctrl_data &= ~PM_CTRL_MAC_ASPM_CHK;
	pm_ctrl_data &= ~PM_CTRL_SERDES_PD_EX_L1;

	pm_ctrl_data |= PM_CTRL_SERDES_BUDS_RX_L1_EN;
	pm_ctrl_data |= PM_CTRL_SERDES_PLL_L1_EN;
	pm_ctrl_data |=	PM_CTRL_SERDES_L1_EN;
	AT_WRITE_REG(hw, REG_PM_CTRL, pm_ctrl_data);
}

/*
 * Set ASPM state.
 * Enable/disable L0s/L1 depend on link state.
 */
static void atl1c_set_aspm(struct atl1c_hw *hw, bool linkup)
{
	u32 pm_ctrl_data;
	u32 link_ctrl_data;
	u32 link_l1_timer = 0xF;

	AT_READ_REG(hw, REG_PM_CTRL, &pm_ctrl_data);
	AT_READ_REG(hw, REG_LINK_CTRL, &link_ctrl_data);

	pm_ctrl_data &= ~PM_CTRL_SERDES_PD_EX_L1;
	pm_ctrl_data &=  ~(PM_CTRL_L1_ENTRY_TIMER_MASK <<
			PM_CTRL_L1_ENTRY_TIMER_SHIFT);
	pm_ctrl_data &= ~(PM_CTRL_LCKDET_TIMER_MASK <<
			PM_CTRL_LCKDET_TIMER_SHIFT);
	pm_ctrl_data |= AT_LCKDET_TIMER	<< PM_CTRL_LCKDET_TIMER_SHIFT;

	if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l1d ||
		hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) {
		link_ctrl_data &= ~LINK_CTRL_EXT_SYNC;
		if (!(hw->ctrl_flags & ATL1C_APS_MODE_ENABLE)) {
			if (hw->nic_type == athr_l2c_b && hw->revision_id == L2CB_V10)
				link_ctrl_data |= LINK_CTRL_EXT_SYNC;
		}

		AT_WRITE_REG(hw, REG_LINK_CTRL, link_ctrl_data);

		pm_ctrl_data |= PM_CTRL_RCVR_WT_TIMER;
		pm_ctrl_data &= ~(PM_CTRL_PM_REQ_TIMER_MASK <<
			PM_CTRL_PM_REQ_TIMER_SHIFT);
		pm_ctrl_data |= AT_ASPM_L1_TIMER <<
			PM_CTRL_PM_REQ_TIMER_SHIFT;
		pm_ctrl_data &= ~PM_CTRL_SA_DLY_EN;
		pm_ctrl_data &= ~PM_CTRL_HOTRST;
		pm_ctrl_data |= 1 << PM_CTRL_L1_ENTRY_TIMER_SHIFT;
		pm_ctrl_data |= PM_CTRL_SERDES_PD_EX_L1;
	}
	pm_ctrl_data |= PM_CTRL_MAC_ASPM_CHK;
	if (linkup) {
		pm_ctrl_data &= ~PM_CTRL_ASPM_L1_EN;
		pm_ctrl_data &= ~PM_CTRL_ASPM_L0S_EN;
		if (hw->ctrl_flags & ATL1C_ASPM_L1_SUPPORT)
			pm_ctrl_data |= PM_CTRL_ASPM_L1_EN;
		if (hw->ctrl_flags & ATL1C_ASPM_L0S_SUPPORT)
			pm_ctrl_data |= PM_CTRL_ASPM_L0S_EN;

		if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l1d ||
			hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) {
			if (hw->nic_type == athr_l2c_b)
				if (!(hw->ctrl_flags & ATL1C_APS_MODE_ENABLE))
					pm_ctrl_data &= ~PM_CTRL_ASPM_L0S_EN;
			pm_ctrl_data &= ~PM_CTRL_SERDES_L1_EN;
			pm_ctrl_data &= ~PM_CTRL_SERDES_PLL_L1_EN;
			pm_ctrl_data &= ~PM_CTRL_SERDES_BUDS_RX_L1_EN;
			pm_ctrl_data |= PM_CTRL_CLK_SWH_L1;
		if (hw->adapter->link_speed == SPEED_100 ||
				hw->adapter->link_speed == SPEED_1000) {
				pm_ctrl_data &=  ~(PM_CTRL_L1_ENTRY_TIMER_MASK <<
					PM_CTRL_L1_ENTRY_TIMER_SHIFT);
				if (hw->nic_type == athr_l2c_b)
					link_l1_timer = 7;
				else if (hw->nic_type == athr_l2c_b2 ||
					hw->nic_type == athr_l1d_2)
					link_l1_timer = 4;
				pm_ctrl_data |= link_l1_timer <<
					PM_CTRL_L1_ENTRY_TIMER_SHIFT;
			}
		} else {
			pm_ctrl_data |= PM_CTRL_SERDES_L1_EN;
			pm_ctrl_data |= PM_CTRL_SERDES_PLL_L1_EN;
			pm_ctrl_data |= PM_CTRL_SERDES_BUDS_RX_L1_EN;
			pm_ctrl_data &= ~PM_CTRL_CLK_SWH_L1;
			pm_ctrl_data &= ~PM_CTRL_ASPM_L0S_EN;
			pm_ctrl_data &= ~PM_CTRL_ASPM_L1_EN;

		}
	} else {
		pm_ctrl_data &= ~PM_CTRL_SERDES_L1_EN;
		pm_ctrl_data &= ~PM_CTRL_ASPM_L0S_EN;
		pm_ctrl_data &= ~PM_CTRL_SERDES_PLL_L1_EN;
		pm_ctrl_data |= PM_CTRL_CLK_SWH_L1;

		if (hw->ctrl_flags & ATL1C_ASPM_L1_SUPPORT)
			pm_ctrl_data |= PM_CTRL_ASPM_L1_EN;
		else
			pm_ctrl_data &= ~PM_CTRL_ASPM_L1_EN;
	}
	AT_WRITE_REG(hw, REG_PM_CTRL, pm_ctrl_data);

	return;
}

static void atl1c_setup_mac_ctrl(struct atl1c_adapter *adapter)
{
	struct atl1c_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	u32 mac_ctrl_data;

	mac_ctrl_data = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
	mac_ctrl_data |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);

	if (adapter->link_duplex == FULL_DUPLEX) {
		hw->mac_duplex = true;
		mac_ctrl_data |= MAC_CTRL_DUPLX;
	}

	if (adapter->link_speed == SPEED_1000)
		hw->mac_speed = atl1c_mac_speed_1000;
	else
		hw->mac_speed = atl1c_mac_speed_10_100;

	mac_ctrl_data |= (hw->mac_speed & MAC_CTRL_SPEED_MASK) <<
			MAC_CTRL_SPEED_SHIFT;

	mac_ctrl_data |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
	mac_ctrl_data |= ((hw->preamble_len & MAC_CTRL_PRMLEN_MASK) <<
			MAC_CTRL_PRMLEN_SHIFT);

	if (adapter->vlgrp)
		mac_ctrl_data |= MAC_CTRL_RMV_VLAN;

	mac_ctrl_data |= MAC_CTRL_BC_EN;
	if (netdev->flags & IFF_PROMISC)
		mac_ctrl_data |= MAC_CTRL_PROMIS_EN;
	if (netdev->flags & IFF_ALLMULTI)
		mac_ctrl_data |= MAC_CTRL_MC_ALL_EN;

	mac_ctrl_data |= MAC_CTRL_SINGLE_PAUSE_EN;
	if (hw->nic_type == athr_l1d || hw->nic_type == athr_l2c_b2 ||
	    hw->nic_type == athr_l1d_2) {
		mac_ctrl_data |= MAC_CTRL_SPEED_MODE_SW;
		mac_ctrl_data |= MAC_CTRL_HASH_ALG_CRC32;
	}
	AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);
}

/*
 * atl1c_configure - Configure Transmit&Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx /Rx unit of the MAC after a reset.
 */
static int atl1c_configure(struct atl1c_adapter *adapter)
{
	struct atl1c_hw *hw = &adapter->hw;
	u32 master_ctrl_data = 0;
	u32 intr_modrt_data;
	u32 data;

	/* clear interrupt status */
	AT_WRITE_REG(hw, REG_ISR, 0xFFFFFFFF);
	/*  Clear any WOL status */
	AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
	/* set Interrupt Clear Timer
	 * HW will enable self to assert interrupt event to system after
	 * waiting x-time for software to notify it accept interrupt.
	 */

	data = CLK_GATING_EN_ALL;
	if (hw->ctrl_flags & ATL1C_CLK_GATING_EN) {
		if (hw->nic_type == athr_l2c_b)
			data &= ~CLK_GATING_RXMAC_EN;
	} else
		data = 0;
	AT_WRITE_REG(hw, REG_CLK_GATING_CTRL, data);

	AT_WRITE_REG(hw, REG_INT_RETRIG_TIMER,
		hw->ict & INT_RETRIG_TIMER_MASK);

	atl1c_configure_des_ring(adapter);

	if (hw->ctrl_flags & ATL1C_INTR_MODRT_ENABLE) {
		intr_modrt_data = (hw->tx_imt & IRQ_MODRT_TIMER_MASK) <<
					IRQ_MODRT_TX_TIMER_SHIFT;
		intr_modrt_data |= (hw->rx_imt & IRQ_MODRT_TIMER_MASK) <<
					IRQ_MODRT_RX_TIMER_SHIFT;
		AT_WRITE_REG(hw, REG_IRQ_MODRT_TIMER_INIT, intr_modrt_data);
		master_ctrl_data |=
			MASTER_CTRL_TX_ITIMER_EN | MASTER_CTRL_RX_ITIMER_EN;
	}

	if (hw->ctrl_flags & ATL1C_INTR_CLEAR_ON_READ)
		master_ctrl_data |= MASTER_CTRL_INT_RDCLR;

	master_ctrl_data |= MASTER_CTRL_SA_TIMER_EN;
	AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl_data);

	if (hw->ctrl_flags & ATL1C_CMB_ENABLE) {
		AT_WRITE_REG(hw, REG_CMB_TPD_THRESH,
			hw->cmb_tpd & CMB_TPD_THRESH_MASK);
		AT_WRITE_REG(hw, REG_CMB_TX_TIMER,
			hw->cmb_tx_timer & CMB_TX_TIMER_MASK);
	}

	if (hw->ctrl_flags & ATL1C_SMB_ENABLE)
		AT_WRITE_REG(hw, REG_SMB_STAT_TIMER,
			hw->smb_timer & SMB_STAT_TIMER_MASK);
	/* set MTU */
	AT_WRITE_REG(hw, REG_MTU, hw->max_frame_size + ETH_HLEN +
			VLAN_HLEN + ETH_FCS_LEN);
	/* HDS, disable */
	AT_WRITE_REG(hw, REG_HDS_CTRL, 0);

	atl1c_configure_tx(adapter);
	atl1c_configure_rx(adapter);
	atl1c_configure_rss(adapter);
	atl1c_configure_dma(adapter);

	return 0;
}

static void atl1c_update_hw_stats(struct atl1c_adapter *adapter)
{
	u16 hw_reg_addr = 0;
	unsigned long *stats_item = NULL;
	u32 data;

	/* update rx status */
	hw_reg_addr = REG_MAC_RX_STATUS_BIN;
	stats_item  = &adapter->hw_stats.rx_ok;
	while (hw_reg_addr <= REG_MAC_RX_STATUS_END) {
		AT_READ_REG(&adapter->hw, hw_reg_addr, &data);
		*stats_item += data;
		stats_item++;
		hw_reg_addr += 4;
	}
/* update tx status */
	hw_reg_addr = REG_MAC_TX_STATUS_BIN;
	stats_item  = &adapter->hw_stats.tx_ok;
	while (hw_reg_addr <= REG_MAC_TX_STATUS_END) {
		AT_READ_REG(&adapter->hw, hw_reg_addr, &data);
		*stats_item += data;
		stats_item++;
		hw_reg_addr += 4;
	}
}

/*
 * atl1c_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 */
static struct net_device_stats *atl1c_get_stats(struct net_device *netdev)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);
	struct atl1c_hw_stats  *hw_stats = &adapter->hw_stats;
	struct net_device_stats *net_stats = &netdev->stats;

	atl1c_update_hw_stats(adapter);
	net_stats->rx_packets = hw_stats->rx_ok;
	net_stats->tx_packets = hw_stats->tx_ok;
	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
	net_stats->multicast  = hw_stats->rx_mcast;
	net_stats->collisions = hw_stats->tx_1_col +
				hw_stats->tx_2_col * 2 +
				hw_stats->tx_late_col + hw_stats->tx_abort_col;
	net_stats->rx_errors  = hw_stats->rx_frag + hw_stats->rx_fcs_err +
				hw_stats->rx_len_err + hw_stats->rx_sz_ov +
				hw_stats->rx_rrd_ov + hw_stats->rx_align_err;
	net_stats->rx_fifo_errors   = hw_stats->rx_rxf_ov;
	net_stats->rx_length_errors = hw_stats->rx_len_err;
	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
	net_stats->rx_over_errors   = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov;

	net_stats->rx_missed_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov;

	net_stats->tx_errors = hw_stats->tx_late_col + hw_stats->tx_abort_col +
				hw_stats->tx_underrun + hw_stats->tx_trunc;
	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
	net_stats->tx_window_errors  = hw_stats->tx_late_col;

	return net_stats;
}

static inline void atl1c_clear_phy_int(struct atl1c_adapter *adapter)
{
	u16 phy_data;

	spin_lock(&adapter->mdio_lock);
	atl1c_read_phy_reg(&adapter->hw, MII_ISR, &phy_data);
	spin_unlock(&adapter->mdio_lock);
}

static bool atl1c_clean_tx_irq(struct atl1c_adapter *adapter,
				enum atl1c_trans_queue type)
{
	struct atl1c_tpd_ring *tpd_ring = (struct atl1c_tpd_ring *)
				&adapter->tpd_ring[type];
	struct atl1c_buffer *buffer_info;
	struct pci_dev *pdev = adapter->pdev;
	u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
	u16 hw_next_to_clean;
	u16 shift;
	u32 data;

	if (type == atl1c_trans_high)
		shift = MB_HTPD_CONS_IDX_SHIFT;
	else
		shift = MB_NTPD_CONS_IDX_SHIFT;

	AT_READ_REG(&adapter->hw, REG_MB_PRIO_CONS_IDX, &data);
	hw_next_to_clean = (data >> shift) & MB_PRIO_PROD_IDX_MASK;

	while (next_to_clean != hw_next_to_clean) {
		buffer_info = &tpd_ring->buffer_info[next_to_clean];
		atl1c_clean_buffer(pdev, buffer_info, 1);
		if (++next_to_clean == tpd_ring->count)
			next_to_clean = 0;
		atomic_set(&tpd_ring->next_to_clean, next_to_clean);
	}

	if (netif_queue_stopped(adapter->netdev) &&
			netif_carrier_ok(adapter->netdev)) {
		netif_wake_queue(adapter->netdev);
	}

	return true;
}

/*
 * atl1c_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 * @pt_regs: CPU registers structure
 */
static irqreturn_t atl1c_intr(int irq, void *data)
{
	struct net_device *netdev  = data;
	struct atl1c_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;
	struct atl1c_hw *hw = &adapter->hw;
	int max_ints = AT_MAX_INT_WORK;
	int handled = IRQ_NONE;
	u32 status;
	u32 reg_data;

	do {
		AT_READ_REG(hw, REG_ISR, &reg_data);
		status = reg_data & hw->intr_mask;

		if (status == 0 || (status & ISR_DIS_INT) != 0) {
			if (max_ints != AT_MAX_INT_WORK)
				handled = IRQ_HANDLED;
			break;
		}
		/* link event */
		if (status & ISR_GPHY)
			atl1c_clear_phy_int(adapter);
		/* Ack ISR */
		AT_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
		if (status & ISR_RX_PKT) {
			if (likely(napi_schedule_prep(&adapter->napi))) {
				hw->intr_mask &= ~ISR_RX_PKT;
				AT_WRITE_REG(hw, REG_IMR, hw->intr_mask);
				__napi_schedule(&adapter->napi);
			}
		}
		if (status & ISR_TX_PKT)
			atl1c_clean_tx_irq(adapter, atl1c_trans_normal);

		handled = IRQ_HANDLED;
		/* check if PCIE PHY Link down */
		if (status & ISR_ERROR) {
			if (netif_msg_hw(adapter))
				dev_err(&pdev->dev,
					"atl1c hardware error (status = 0x%x)\n",
					status & ISR_ERROR);
			/* reset MAC */
			adapter->work_event |= ATL1C_WORK_EVENT_RESET;
			schedule_work(&adapter->common_task);
			return IRQ_HANDLED;
		}

		if (status & ISR_OVER)
			if (netif_msg_intr(adapter))
				dev_warn(&pdev->dev,
					"TX/RX overflow (status = 0x%x)\n",
					status & ISR_OVER);

		/* link event */
		if (status & (ISR_GPHY | ISR_MANUAL)) {
			netdev->stats.tx_carrier_errors++;
			atl1c_link_chg_event(adapter);
			break;
		}

	} while (--max_ints > 0);
	/* re-enable Interrupt*/
	AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
	return handled;
}

static inline void atl1c_rx_checksum(struct atl1c_adapter *adapter,
		  struct sk_buff *skb, struct atl1c_recv_ret_status *prrs)
{
	/*
	 * The pid field in RRS in not correct sometimes, so we
	 * cannot figure out if the packet is fragmented or not,
	 * so we tell the KERNEL CHECKSUM_NONE
	 */
	skb_checksum_none_assert(skb);
}

static int atl1c_alloc_rx_buffer(struct atl1c_adapter *adapter, const int ringid)
{
	struct atl1c_rfd_ring *rfd_ring = &adapter->rfd_ring[ringid];
	struct pci_dev *pdev = adapter->pdev;
	struct atl1c_buffer *buffer_info, *next_info;
	struct sk_buff *skb;
	void *vir_addr = NULL;
	u16 num_alloc = 0;
	u16 rfd_next_to_use, next_next;
	struct atl1c_rx_free_desc *rfd_desc;

	next_next = rfd_next_to_use = rfd_ring->next_to_use;
	if (++next_next == rfd_ring->count)
		next_next = 0;
	buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
	next_info = &rfd_ring->buffer_info[next_next];

	while (next_info->flags & ATL1C_BUFFER_FREE) {
		rfd_desc = ATL1C_RFD_DESC(rfd_ring, rfd_next_to_use);

		skb = dev_alloc_skb(adapter->rx_buffer_len);
		if (unlikely(!skb)) {
			if (netif_msg_rx_err(adapter))
				dev_warn(&pdev->dev, "alloc rx buffer failed\n");
			break;
		}

		/*
		 * Make buffer alignment 2 beyond a 16 byte boundary
		 * this will result in a 16 byte aligned IP header after
		 * the 14 byte MAC header is removed
		 */
		vir_addr = skb->data;
		ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_BUSY);
		buffer_info->skb = skb;
		buffer_info->length = adapter->rx_buffer_len;
		buffer_info->dma = pci_map_single(pdev, vir_addr,
						buffer_info->length,
						PCI_DMA_FROMDEVICE);
		ATL1C_SET_PCIMAP_TYPE(buffer_info, ATL1C_PCIMAP_SINGLE,
			ATL1C_PCIMAP_FROMDEVICE);
		rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		rfd_next_to_use = next_next;
		if (++next_next == rfd_ring->count)
			next_next = 0;
		buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
		next_info = &rfd_ring->buffer_info[next_next];
		num_alloc++;
	}

	if (num_alloc) {
		/* TODO: update mailbox here */
		wmb();
		rfd_ring->next_to_use = rfd_next_to_use;
		AT_WRITE_REG(&adapter->hw, atl1c_rfd_prod_idx_regs[ringid],
			rfd_ring->next_to_use & MB_RFDX_PROD_IDX_MASK);
	}

	return num_alloc;
}

static void atl1c_clean_rrd(struct atl1c_rrd_ring *rrd_ring,
			struct	atl1c_recv_ret_status *rrs, u16 num)
{
	u16 i;
	/* the relationship between rrd and rfd is one map one */
	for (i = 0; i < num; i++, rrs = ATL1C_RRD_DESC(rrd_ring,
					rrd_ring->next_to_clean)) {
		rrs->word3 &= ~RRS_RXD_UPDATED;
		if (++rrd_ring->next_to_clean == rrd_ring->count)
			rrd_ring->next_to_clean = 0;
	}
}

static void atl1c_clean_rfd(struct atl1c_rfd_ring *rfd_ring,
	struct atl1c_recv_ret_status *rrs, u16 num)
{
	u16 i;
	u16 rfd_index;
	struct atl1c_buffer *buffer_info = rfd_ring->buffer_info;

	rfd_index = (rrs->word0 >> RRS_RX_RFD_INDEX_SHIFT) &
			RRS_RX_RFD_INDEX_MASK;
	for (i = 0; i < num; i++) {
		buffer_info[rfd_index].skb = NULL;
		ATL1C_SET_BUFFER_STATE(&buffer_info[rfd_index],
					ATL1C_BUFFER_FREE);
		if (++rfd_index == rfd_ring->count)
			rfd_index = 0;
	}
	rfd_ring->next_to_clean = rfd_index;
}

static void atl1c_clean_rx_irq(struct atl1c_adapter *adapter, u8 que,
		   int *work_done, int work_to_do)
{
	u16 rfd_num, rfd_index;
	u16 count = 0;
	u16 length;
	struct pci_dev *pdev = adapter->pdev;
	struct net_device *netdev  = adapter->netdev;
	struct atl1c_rfd_ring *rfd_ring = &adapter->rfd_ring[que];
	struct atl1c_rrd_ring *rrd_ring = &adapter->rrd_ring[que];
	struct sk_buff *skb;
	struct atl1c_recv_ret_status *rrs;
	struct atl1c_buffer *buffer_info;

	while (1) {
		if (*work_done >= work_to_do)
			break;
		rrs = ATL1C_RRD_DESC(rrd_ring, rrd_ring->next_to_clean);
		if (likely(RRS_RXD_IS_VALID(rrs->word3))) {
			rfd_num = (rrs->word0 >> RRS_RX_RFD_CNT_SHIFT) &
				RRS_RX_RFD_CNT_MASK;
			if (unlikely(rfd_num != 1))
				/* TODO support mul rfd*/
				if (netif_msg_rx_err(adapter))
					dev_warn(&pdev->dev,
						"Multi rfd not support yet!\n");
			goto rrs_checked;
		} else {
			break;
		}
rrs_checked:
		atl1c_clean_rrd(rrd_ring, rrs, rfd_num);
		if (rrs->word3 & (RRS_RX_ERR_SUM | RRS_802_3_LEN_ERR)) {
			atl1c_clean_rfd(rfd_ring, rrs, rfd_num);
				if (netif_msg_rx_err(adapter))
					dev_warn(&pdev->dev,
						"wrong packet! rrs word3 is %x\n",
						rrs->word3);
			continue;
		}

		length = le16_to_cpu((rrs->word3 >> RRS_PKT_SIZE_SHIFT) &
				RRS_PKT_SIZE_MASK);
		/* Good Receive */
		if (likely(rfd_num == 1)) {
			rfd_index = (rrs->word0 >> RRS_RX_RFD_INDEX_SHIFT) &
					RRS_RX_RFD_INDEX_MASK;
			buffer_info = &rfd_ring->buffer_info[rfd_index];
			pci_unmap_single(pdev, buffer_info->dma,
				buffer_info->length, PCI_DMA_FROMDEVICE);
			skb = buffer_info->skb;
		} else {
			/* TODO */
			if (netif_msg_rx_err(adapter))
				dev_warn(&pdev->dev,
					"Multi rfd not support yet!\n");
			break;
		}
		atl1c_clean_rfd(rfd_ring, rrs, rfd_num);
		skb_put(skb, length - ETH_FCS_LEN);
		skb->protocol = eth_type_trans(skb, netdev);
		atl1c_rx_checksum(adapter, skb, rrs);
		if (unlikely(adapter->vlgrp) && rrs->word3 & RRS_VLAN_INS) {
			u16 vlan;

			AT_TAG_TO_VLAN(rrs->vlan_tag, vlan);
			vlan = le16_to_cpu(vlan);
			vlan_hwaccel_receive_skb(skb, adapter->vlgrp, vlan);
		} else
			netif_receive_skb(skb);

		(*work_done)++;
		count++;
	}
	if (count)
		atl1c_alloc_rx_buffer(adapter, que);
}

/*
 * atl1c_clean - NAPI Rx polling callback
 * @adapter: board private structure
 */
static int atl1c_clean(struct napi_struct *napi, int budget)
{
	struct atl1c_adapter *adapter =
			container_of(napi, struct atl1c_adapter, napi);
	int work_done = 0;

	/* Keep link state information with original netdev */
	if (!netif_carrier_ok(adapter->netdev))
		goto quit_polling;
	/* just enable one RXQ */
	atl1c_clean_rx_irq(adapter, 0, &work_done, budget);

	if (work_done < budget) {
quit_polling:
		napi_complete(napi);
		adapter->hw.intr_mask |= ISR_RX_PKT;
		AT_WRITE_REG(&adapter->hw, REG_IMR, adapter->hw.intr_mask);
	}
	return work_done;
}

#ifdef CONFIG_NET_POLL_CONTROLLER

/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void atl1c_netpoll(struct net_device *netdev)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);

	disable_irq(adapter->pdev->irq);
	atl1c_intr(adapter->pdev->irq, netdev);
	enable_irq(adapter->pdev->irq);
}
#endif

static inline u16 atl1c_tpd_avail(struct atl1c_adapter *adapter, enum atl1c_trans_queue type)
{
	struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type];
	u16 next_to_use = 0;
	u16 next_to_clean = 0;

	next_to_clean = atomic_read(&tpd_ring->next_to_clean);
	next_to_use   = tpd_ring->next_to_use;

	return (u16)(next_to_clean > next_to_use) ?
		(next_to_clean - next_to_use - 1) :
		(tpd_ring->count + next_to_clean - next_to_use - 1);
}

/*
 * get next usable tpd
 * Note: should call atl1c_tdp_avail to make sure
 * there is enough tpd to use
 */
static struct atl1c_tpd_desc *atl1c_get_tpd(struct atl1c_adapter *adapter,
	enum atl1c_trans_queue type)
{
	struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type];
	struct atl1c_tpd_desc *tpd_desc;
	u16 next_to_use = 0;

	next_to_use = tpd_ring->next_to_use;
	if (++tpd_ring->next_to_use == tpd_ring->count)
		tpd_ring->next_to_use = 0;
	tpd_desc = ATL1C_TPD_DESC(tpd_ring, next_to_use);
	memset(tpd_desc, 0, sizeof(struct atl1c_tpd_desc));
	return	tpd_desc;
}

static struct atl1c_buffer *
atl1c_get_tx_buffer(struct atl1c_adapter *adapter, struct atl1c_tpd_desc *tpd)
{
	struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring;

	return &tpd_ring->buffer_info[tpd -
			(struct atl1c_tpd_desc *)tpd_ring->desc];
}

/* Calculate the transmit packet descript needed*/
static u16 atl1c_cal_tpd_req(const struct sk_buff *skb)
{
	u16 tpd_req;
	u16 proto_hdr_len = 0;

	tpd_req = skb_shinfo(skb)->nr_frags + 1;

	if (skb_is_gso(skb)) {
		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
		if (proto_hdr_len < skb_headlen(skb))
			tpd_req++;
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
			tpd_req++;
	}
	return tpd_req;
}

static int atl1c_tso_csum(struct atl1c_adapter *adapter,
			  struct sk_buff *skb,
			  struct atl1c_tpd_desc **tpd,
			  enum atl1c_trans_queue type)
{
	struct pci_dev *pdev = adapter->pdev;
	u8 hdr_len;
	u32 real_len;
	unsigned short offload_type;
	int err;

	if (skb_is_gso(skb)) {
		if (skb_header_cloned(skb)) {
			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
			if (unlikely(err))
				return -1;
		}
		offload_type = skb_shinfo(skb)->gso_type;

		if (offload_type & SKB_GSO_TCPV4) {
			real_len = (((unsigned char *)ip_hdr(skb) - skb->data)
					+ ntohs(ip_hdr(skb)->tot_len));

			if (real_len < skb->len)
				pskb_trim(skb, real_len);

			hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
			if (unlikely(skb->len == hdr_len)) {
				/* only xsum need */
				if (netif_msg_tx_queued(adapter))
					dev_warn(&pdev->dev,
						"IPV4 tso with zero data??\n");
				goto check_sum;
			} else {
				ip_hdr(skb)->check = 0;
				tcp_hdr(skb)->check = ~csum_tcpudp_magic(
							ip_hdr(skb)->saddr,
							ip_hdr(skb)->daddr,
							0, IPPROTO_TCP, 0);
				(*tpd)->word1 |= 1 << TPD_IPV4_PACKET_SHIFT;
			}
		}

		if (offload_type & SKB_GSO_TCPV6) {
			struct atl1c_tpd_ext_desc *etpd =
				*(struct atl1c_tpd_ext_desc **)(tpd);

			memset(etpd, 0, sizeof(struct atl1c_tpd_ext_desc));
			*tpd = atl1c_get_tpd(adapter, type);
			ipv6_hdr(skb)->payload_len = 0;
			/* check payload == 0 byte ? */
			hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
			if (unlikely(skb->len == hdr_len)) {
				/* only xsum need */
				if (netif_msg_tx_queued(adapter))
					dev_warn(&pdev->dev,
						"IPV6 tso with zero data??\n");
				goto check_sum;
			} else
				tcp_hdr(skb)->check = ~csum_ipv6_magic(
						&ipv6_hdr(skb)->saddr,
						&ipv6_hdr(skb)->daddr,
						0, IPPROTO_TCP, 0);
			etpd->word1 |= 1 << TPD_LSO_EN_SHIFT;
			etpd->word1 |= 1 << TPD_LSO_VER_SHIFT;
			etpd->pkt_len = cpu_to_le32(skb->len);
			(*tpd)->word1 |= 1 << TPD_LSO_VER_SHIFT;
		}

		(*tpd)->word1 |= 1 << TPD_LSO_EN_SHIFT;
		(*tpd)->word1 |= (skb_transport_offset(skb) & TPD_TCPHDR_OFFSET_MASK) <<
				TPD_TCPHDR_OFFSET_SHIFT;
		(*tpd)->word1 |= (skb_shinfo(skb)->gso_size & TPD_MSS_MASK) <<
				TPD_MSS_SHIFT;
		return 0;
	}

check_sum:
	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
		u8 css, cso;
		cso = skb_checksum_start_offset(skb);

		if (unlikely(cso & 0x1)) {
			if (netif_msg_tx_err(adapter))
				dev_err(&adapter->pdev->dev,
					"payload offset should not an event number\n");
			return -1;
		} else {
			css = cso + skb->csum_offset;

			(*tpd)->word1 |= ((cso >> 1) & TPD_PLOADOFFSET_MASK) <<
					TPD_PLOADOFFSET_SHIFT;
			(*tpd)->word1 |= ((css >> 1) & TPD_CCSUM_OFFSET_MASK) <<
					TPD_CCSUM_OFFSET_SHIFT;
			(*tpd)->word1 |= 1 << TPD_CCSUM_EN_SHIFT;
		}
	}
	return 0;
}

static void atl1c_tx_map(struct atl1c_adapter *adapter,
		      struct sk_buff *skb, struct atl1c_tpd_desc *tpd,
			enum atl1c_trans_queue type)
{
	struct atl1c_tpd_desc *use_tpd = NULL;
	struct atl1c_buffer *buffer_info = NULL;
	u16 buf_len = skb_headlen(skb);
	u16 map_len = 0;
	u16 mapped_len = 0;
	u16 hdr_len = 0;
	u16 nr_frags;
	u16 f;
	int tso;

	nr_frags = skb_shinfo(skb)->nr_frags;
	tso = (tpd->word1 >> TPD_LSO_EN_SHIFT) & TPD_LSO_EN_MASK;
	if (tso) {
		/* TSO */
		map_len = hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
		use_tpd = tpd;

		buffer_info = atl1c_get_tx_buffer(adapter, use_tpd);
		buffer_info->length = map_len;
		buffer_info->dma = pci_map_single(adapter->pdev,
					skb->data, hdr_len, PCI_DMA_TODEVICE);
		ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_BUSY);
		ATL1C_SET_PCIMAP_TYPE(buffer_info, ATL1C_PCIMAP_SINGLE,
			ATL1C_PCIMAP_TODEVICE);
		mapped_len += map_len;
		use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
		use_tpd->buffer_len = cpu_to_le16(buffer_info->length);
	}

	if (mapped_len < buf_len) {
		/* mapped_len == 0, means we should use the first tpd,
		   which is given by caller  */
		if (mapped_len == 0)
			use_tpd = tpd;
		else {
			use_tpd = atl1c_get_tpd(adapter, type);
			memcpy(use_tpd, tpd, sizeof(struct atl1c_tpd_desc));
		}
		buffer_info = atl1c_get_tx_buffer(adapter, use_tpd);
		buffer_info->length = buf_len - mapped_len;
		buffer_info->dma =
			pci_map_single(adapter->pdev, skb->data + mapped_len,
					buffer_info->length, PCI_DMA_TODEVICE);
		ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_BUSY);
		ATL1C_SET_PCIMAP_TYPE(buffer_info, ATL1C_PCIMAP_SINGLE,
			ATL1C_PCIMAP_TODEVICE);
		use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
		use_tpd->buffer_len  = cpu_to_le16(buffer_info->length);
	}

	for (f = 0; f < nr_frags; f++) {
		struct skb_frag_struct *frag;

		frag = &skb_shinfo(skb)->frags[f];

		use_tpd = atl1c_get_tpd(adapter, type);
		memcpy(use_tpd, tpd, sizeof(struct atl1c_tpd_desc));

		buffer_info = atl1c_get_tx_buffer(adapter, use_tpd);
		buffer_info->length = frag->size;
		buffer_info->dma =
			pci_map_page(adapter->pdev, frag->page,
					frag->page_offset,
					buffer_info->length,
					PCI_DMA_TODEVICE);
		ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_BUSY);
		ATL1C_SET_PCIMAP_TYPE(buffer_info, ATL1C_PCIMAP_PAGE,
			ATL1C_PCIMAP_TODEVICE);
		use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
		use_tpd->buffer_len  = cpu_to_le16(buffer_info->length);
	}

	/* The last tpd */
	use_tpd->word1 |= 1 << TPD_EOP_SHIFT;
	/* The last buffer info contain the skb address,
	   so it will be free after unmap */
	buffer_info->skb = skb;
}

static void atl1c_tx_queue(struct atl1c_adapter *adapter, struct sk_buff *skb,
			   struct atl1c_tpd_desc *tpd, enum atl1c_trans_queue type)
{
	struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type];
	u32 prod_data;

	AT_READ_REG(&adapter->hw, REG_MB_PRIO_PROD_IDX, &prod_data);
	switch (type) {
	case atl1c_trans_high:
		prod_data &= 0xFFFF0000;
		prod_data |= tpd_ring->next_to_use & 0xFFFF;
		break;
	case atl1c_trans_normal:
		prod_data &= 0x0000FFFF;
		prod_data |= (tpd_ring->next_to_use & 0xFFFF) << 16;
		break;
	default:
		break;
	}
	wmb();
	AT_WRITE_REG(&adapter->hw, REG_MB_PRIO_PROD_IDX, prod_data);
}

static netdev_tx_t atl1c_xmit_frame(struct sk_buff *skb,
					  struct net_device *netdev)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);
	unsigned long flags;
	u16 tpd_req = 1;
	struct atl1c_tpd_desc *tpd;
	enum atl1c_trans_queue type = atl1c_trans_normal;

	if (test_bit(__AT_DOWN, &adapter->flags)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	tpd_req = atl1c_cal_tpd_req(skb);
	if (!spin_trylock_irqsave(&adapter->tx_lock, flags)) {
		if (netif_msg_pktdata(adapter))
			dev_info(&adapter->pdev->dev, "tx locked\n");
		return NETDEV_TX_LOCKED;
	}

	if (atl1c_tpd_avail(adapter, type) < tpd_req) {
		/* no enough descriptor, just stop queue */
		netif_stop_queue(netdev);
		spin_unlock_irqrestore(&adapter->tx_lock, flags);
		return NETDEV_TX_BUSY;
	}

	tpd = atl1c_get_tpd(adapter, type);

	/* do TSO and check sum */
	if (atl1c_tso_csum(adapter, skb, &tpd, type) != 0) {
		spin_unlock_irqrestore(&adapter->tx_lock, flags);
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (unlikely(vlan_tx_tag_present(skb))) {
		u16 vlan = vlan_tx_tag_get(skb);
		__le16 tag;

		vlan = cpu_to_le16(vlan);
		AT_VLAN_TO_TAG(vlan, tag);
		tpd->word1 |= 1 << TPD_INS_VTAG_SHIFT;
		tpd->vlan_tag = tag;
	}

	if (skb_network_offset(skb) != ETH_HLEN)
		tpd->word1 |= 1 << TPD_ETH_TYPE_SHIFT; /* Ethernet frame */

	atl1c_tx_map(adapter, skb, tpd, type);
	atl1c_tx_queue(adapter, skb, tpd, type);

	spin_unlock_irqrestore(&adapter->tx_lock, flags);
	return NETDEV_TX_OK;
}

static void atl1c_free_irq(struct atl1c_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	free_irq(adapter->pdev->irq, netdev);

	if (adapter->have_msi)
		pci_disable_msi(adapter->pdev);
}

static int atl1c_request_irq(struct atl1c_adapter *adapter)
{
	struct pci_dev    *pdev   = adapter->pdev;
	struct net_device *netdev = adapter->netdev;
	int flags = 0;
	int err = 0;

	adapter->have_msi = true;
	err = pci_enable_msi(adapter->pdev);
	if (err) {
		if (netif_msg_ifup(adapter))
			dev_err(&pdev->dev,
				"Unable to allocate MSI interrupt Error: %d\n",
				err);
		adapter->have_msi = false;
	} else
		netdev->irq = pdev->irq;

	if (!adapter->have_msi)
		flags |= IRQF_SHARED;
	err = request_irq(adapter->pdev->irq, atl1c_intr, flags,
			netdev->name, netdev);
	if (err) {
		if (netif_msg_ifup(adapter))
			dev_err(&pdev->dev,
				"Unable to allocate interrupt Error: %d\n",
				err);
		if (adapter->have_msi)
			pci_disable_msi(adapter->pdev);
		return err;
	}
	if (netif_msg_ifup(adapter))
		dev_dbg(&pdev->dev, "atl1c_request_irq OK\n");
	return err;
}

static int atl1c_up(struct atl1c_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int num;
	int err;
	int i;

	netif_carrier_off(netdev);
	atl1c_init_ring_ptrs(adapter);
	atl1c_set_multi(netdev);
	atl1c_restore_vlan(adapter);

	for (i = 0; i < adapter->num_rx_queues; i++) {
		num = atl1c_alloc_rx_buffer(adapter, i);
		if (unlikely(num == 0)) {
			err = -ENOMEM;
			goto err_alloc_rx;
		}
	}

	if (atl1c_configure(adapter)) {
		err = -EIO;
		goto err_up;
	}

	err = atl1c_request_irq(adapter);
	if (unlikely(err))
		goto err_up;

	clear_bit(__AT_DOWN, &adapter->flags);
	napi_enable(&adapter->napi);
	atl1c_irq_enable(adapter);
	atl1c_check_link_status(adapter);
	netif_start_queue(netdev);
	return err;

err_up:
err_alloc_rx:
	atl1c_clean_rx_ring(adapter);
	return err;
}

static void atl1c_down(struct atl1c_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	atl1c_del_timer(adapter);
	adapter->work_event = 0; /* clear all event */
	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__AT_DOWN, &adapter->flags);
	netif_carrier_off(netdev);
	napi_disable(&adapter->napi);
	atl1c_irq_disable(adapter);
	atl1c_free_irq(adapter);
	/* reset MAC to disable all RX/TX */
	atl1c_reset_mac(&adapter->hw);
	msleep(1);

	adapter->link_speed = SPEED_0;
	adapter->link_duplex = -1;
	atl1c_clean_tx_ring(adapter, atl1c_trans_normal);
	atl1c_clean_tx_ring(adapter, atl1c_trans_high);
	atl1c_clean_rx_ring(adapter);
}

/*
 * atl1c_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 */
static int atl1c_open(struct net_device *netdev)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);
	int err;

	/* disallow open during test */
	if (test_bit(__AT_TESTING, &adapter->flags))
		return -EBUSY;

	/* allocate rx/tx dma buffer & descriptors */
	err = atl1c_setup_ring_resources(adapter);
	if (unlikely(err))
		return err;

	err = atl1c_up(adapter);
	if (unlikely(err))
		goto err_up;

	if (adapter->hw.ctrl_flags & ATL1C_FPGA_VERSION) {
		u32 phy_data;

		AT_READ_REG(&adapter->hw, REG_MDIO_CTRL, &phy_data);
		phy_data |= MDIO_AP_EN;
		AT_WRITE_REG(&adapter->hw, REG_MDIO_CTRL, phy_data);
	}
	return 0;

err_up:
	atl1c_free_irq(adapter);
	atl1c_free_ring_resources(adapter);
	atl1c_reset_mac(&adapter->hw);
	return err;
}

/*
 * atl1c_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 */
static int atl1c_close(struct net_device *netdev)
{
	struct atl1c_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__AT_RESETTING, &adapter->flags));
	atl1c_down(adapter);
	atl1c_free_ring_resources(adapter);
	return 0;
}

static int atl1c_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct atl1c_adapter *adapter = netdev_priv(netdev);
	struct atl1c_hw *hw = &adapter->hw;
	u32 mac_ctrl_data = 0;
	u32 master_ctrl_data = 0;
	u32 wol_ctrl_data = 0;
	u16 mii_intr_status_data = 0;
	u32 wufc = adapter->wol;

	atl1c_disable_l0s_l1(hw);
	if (netif_running(netdev)) {
		WARN_ON(test_bit(__AT_RESETTING, &adapter->flags));
		atl1c_down(adapter);
	}
	netif_device_detach(netdev);

	if (wufc)
		if (atl1c_phy_power_saving(hw) != 0)
			dev_dbg(&pdev->dev, "phy power saving failed");

	AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl_data);
	AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl_data);

	master_ctrl_data &= ~MASTER_CTRL_CLK_SEL_DIS;
	mac_ctrl_data &= ~(MAC_CTRL_PRMLEN_MASK << MAC_CTRL_PRMLEN_SHIFT);
	mac_ctrl_data |= (((u32)adapter->hw.preamble_len &
			MAC_CTRL_PRMLEN_MASK) <<
			MAC_CTRL_PRMLEN_SHIFT);
	mac_ctrl_data &= ~(MAC_CTRL_SPEED_MASK << MAC_CTRL_SPEED_SHIFT);
	mac_ctrl_data &= ~MAC_CTRL_DUPLX;

	if (wufc) {
		mac_ctrl_data |= MAC_CTRL_RX_EN;
		if (adapter->link_speed == SPEED_1000 ||
			adapter->link_speed == SPEED_0) {
			mac_ctrl_data |= atl1c_mac_speed_1000 <<
					MAC_CTRL_SPEED_SHIFT;
			mac_ctrl_data |= MAC_CTRL_DUPLX;
		} else
			mac_ctrl_data |= atl1c_mac_speed_10_100 <<
					MAC_CTRL_SPEED_SHIFT;

		if (adapter->link_duplex == DUPLEX_FULL)
			mac_ctrl_data |= MAC_CTRL_DUPLX;

		/* turn on magic packet wol */
		if (wufc & AT_WUFC_MAG)
			wol_ctrl_data |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN;

		if (wufc & AT_WUFC_LNKC) {
			wol_ctrl_data |=  WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
			/* only link up can wake up */
			if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) {
				dev_dbg(&pdev->dev, "%s: read write phy "
						  "register failed.\n",
						  atl1c_driver_name);
			}
		}
		/* clear phy interrupt */
		atl1c_read_phy_reg(hw, MII_ISR, &mii_intr_status_data);
		/* Config MAC Ctrl register */
		if (adapter->vlgrp)
			mac_ctrl_data |= MAC_CTRL_RMV_VLAN;

		/* magic packet maybe Broadcast&multicast&Unicast frame */
		if (wufc & AT_WUFC_MAG)
			mac_ctrl_data |= MAC_CTRL_BC_EN;

		dev_dbg(&pdev->dev,
			"%s: suspend MAC=0x%x\n",
			atl1c_driver_name, mac_ctrl_data);
		AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl_data);
		AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl_data);
		AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);

		AT_WRITE_REG(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
			GPHY_CTRL_EXT_RESET);
	} else {
		AT_WRITE_REG(hw, REG_GPHY_CTRL, GPHY_CTRL_POWER_SAVING);
		master_ctrl_data |= MASTER_CTRL_CLK_SEL_DIS;
		mac_ctrl_data |= atl1c_mac_speed_10_100 << MAC_CTRL_SPEED_SHIFT;
		mac_ctrl_data |= MAC_CTRL_DUPLX;
		AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl_data);
		AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);
		AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
		hw->phy_configured = false; /* re-init PHY when resume */
	}

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int atl1c_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct atl1c_adapter *adapter = netdev_priv(netdev);

	AT_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
	atl1c_reset_pcie(&adapter->hw, ATL1C_PCIE_L0S_L1_DISABLE |
			ATL1C_PCIE_PHY_RESET);

	atl1c_phy_reset(&adapter->hw);
	atl1c_reset_mac(&adapter->hw);
	atl1c_phy_init(&adapter->hw);

#if 0
	AT_READ_REG(&adapter->hw, REG_PM_CTRLSTAT, &pm_data);
	pm_data &= ~PM_CTRLSTAT_PME_EN;
	AT_WRITE_REG(&adapter->hw, REG_PM_CTRLSTAT, pm_data);
#endif

	netif_device_attach(netdev);
	if (netif_running(netdev))
		atl1c_up(adapter);

	return 0;
}
#endif

static void atl1c_shutdown(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct atl1c_adapter *adapter = netdev_priv(netdev);

	atl1c_suspend(&pdev->dev);
	pci_wake_from_d3(pdev, adapter->wol);
	pci_set_power_state(pdev, PCI_D3hot);
}

static const struct net_device_ops atl1c_netdev_ops = {
	.ndo_open		= atl1c_open,
	.ndo_stop		= atl1c_close,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_start_xmit		= atl1c_xmit_frame,
	.ndo_set_mac_address 	= atl1c_set_mac_addr,
	.ndo_set_multicast_list = atl1c_set_multi,
	.ndo_change_mtu		= atl1c_change_mtu,
	.ndo_fix_features	= atl1c_fix_features,
	.ndo_do_ioctl		= atl1c_ioctl,
	.ndo_tx_timeout		= atl1c_tx_timeout,
	.ndo_get_stats		= atl1c_get_stats,
	.ndo_vlan_rx_register	= atl1c_vlan_rx_register,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= atl1c_netpoll,
#endif
};

static int atl1c_init_netdev(struct net_device *netdev, struct pci_dev *pdev)
{
	SET_NETDEV_DEV(netdev, &pdev->dev);
	pci_set_drvdata(pdev, netdev);

	netdev->irq  = pdev->irq;
	netdev->netdev_ops = &atl1c_netdev_ops;
	netdev->watchdog_timeo = AT_TX_WATCHDOG;
	atl1c_set_ethtool_ops(netdev);

	/* TODO: add when ready */
	netdev->hw_features =	NETIF_F_SG	   |
				NETIF_F_HW_CSUM	   |
				NETIF_F_HW_VLAN_TX |
				NETIF_F_TSO	   |
				NETIF_F_TSO6;
	netdev->features =	netdev->hw_features |
				NETIF_F_HW_VLAN_RX;
	return 0;
}

/*
 * atl1c_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in atl1c_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * atl1c_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 */
static int __devinit atl1c_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct atl1c_adapter *adapter;
	static int cards_found;

	int err = 0;

	/* enable device (incl. PCI PM wakeup and hotplug setup) */
	err = pci_enable_device_mem(pdev);
	if (err) {
		dev_err(&pdev->dev, "cannot enable PCI device\n");
		return err;
	}

	/*
	 * The atl1c chip can DMA to 64-bit addresses, but it uses a single
	 * shared register for the high 32 bits, so only a single, aligned,
	 * 4 GB physical address range can be used at a time.
	 *
	 * Supporting 64-bit DMA on this hardware is more trouble than it's
	 * worth.  It is far easier to limit to 32-bit DMA than update
	 * various kernel subsystems to support the mechanics required by a
	 * fixed-high-32-bit system.
	 */
	if ((pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) ||
	    (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)) {
		dev_err(&pdev->dev, "No usable DMA configuration,aborting\n");
		goto err_dma;
	}

	err = pci_request_regions(pdev, atl1c_driver_name);
	if (err) {
		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
		goto err_pci_reg;
	}

	pci_set_master(pdev);

	netdev = alloc_etherdev(sizeof(struct atl1c_adapter));
	if (netdev == NULL) {
		err = -ENOMEM;
		dev_err(&pdev->dev, "etherdev alloc failed\n");
		goto err_alloc_etherdev;
	}

	err = atl1c_init_netdev(netdev, pdev);
	if (err) {
		dev_err(&pdev->dev, "init netdevice failed\n");
		goto err_init_netdev;
	}
	adapter = netdev_priv(netdev);
	adapter->bd_number = cards_found;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->hw.adapter = adapter;
	adapter->msg_enable = netif_msg_init(-1, atl1c_default_msg);
	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
	if (!adapter->hw.hw_addr) {
		err = -EIO;
		dev_err(&pdev->dev, "cannot map device registers\n");
		goto err_ioremap;
	}
	netdev->base_addr = (unsigned long)adapter->hw.hw_addr;

	/* init mii data */
	adapter->mii.dev = netdev;
	adapter->mii.mdio_read  = atl1c_mdio_read;
	adapter->mii.mdio_write = atl1c_mdio_write;
	adapter->mii.phy_id_mask = 0x1f;
	adapter->mii.reg_num_mask = MDIO_REG_ADDR_MASK;
	netif_napi_add(netdev, &adapter->napi, atl1c_clean, 64);
	setup_timer(&adapter->phy_config_timer, atl1c_phy_config,
			(unsigned long)adapter);
	/* setup the private structure */
	err = atl1c_sw_init(adapter);
	if (err) {
		dev_err(&pdev->dev, "net device private data init failed\n");
		goto err_sw_init;
	}
	atl1c_reset_pcie(&adapter->hw, ATL1C_PCIE_L0S_L1_DISABLE |
			ATL1C_PCIE_PHY_RESET);

	/* Init GPHY as early as possible due to power saving issue  */
	atl1c_phy_reset(&adapter->hw);

	err = atl1c_reset_mac(&adapter->hw);
	if (err) {
		err = -EIO;
		goto err_reset;
	}

	/* reset the controller to
	 * put the device in a known good starting state */
	err = atl1c_phy_init(&adapter->hw);
	if (err) {
		err = -EIO;
		goto err_reset;
	}
	if (atl1c_read_mac_addr(&adapter->hw) != 0) {
		err = -EIO;
		dev_err(&pdev->dev, "get mac address failed\n");
		goto err_eeprom;
	}
	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
	if (netif_msg_probe(adapter))
		dev_dbg(&pdev->dev, "mac address : %pM\n",
			adapter->hw.mac_addr);

	atl1c_hw_set_mac_addr(&adapter->hw);
	INIT_WORK(&adapter->common_task, atl1c_common_task);
	adapter->work_event = 0;
	err = register_netdev(netdev);
	if (err) {
		dev_err(&pdev->dev, "register netdevice failed\n");
		goto err_register;
	}

	if (netif_msg_probe(adapter))
		dev_info(&pdev->dev, "version %s\n", ATL1C_DRV_VERSION);
	cards_found++;
	return 0;

err_reset:
err_register:
err_sw_init:
err_eeprom:
	iounmap(adapter->hw.hw_addr);
err_init_netdev:
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
	pci_release_regions(pdev);
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/*
 * atl1c_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * atl1c_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 */
static void __devexit atl1c_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct atl1c_adapter *adapter = netdev_priv(netdev);

	unregister_netdev(netdev);
	atl1c_phy_disable(&adapter->hw);

	iounmap(adapter->hw.hw_addr);

	pci_release_regions(pdev);
	pci_disable_device(pdev);
	free_netdev(netdev);
}

/*
 * atl1c_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t atl1c_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct atl1c_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	if (netif_running(netdev))
		atl1c_down(adapter);

	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/*
 * atl1c_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t atl1c_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct atl1c_adapter *adapter = netdev_priv(netdev);

	if (pci_enable_device(pdev)) {
		if (netif_msg_hw(adapter))
			dev_err(&pdev->dev,
				"Cannot re-enable PCI device after reset\n");
		return PCI_ERS_RESULT_DISCONNECT;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

	atl1c_reset_mac(&adapter->hw);

	return PCI_ERS_RESULT_RECOVERED;
}

/*
 * atl1c_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the atl1c_resume routine.
 */
static void atl1c_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct atl1c_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (atl1c_up(adapter)) {
			if (netif_msg_hw(adapter))
				dev_err(&pdev->dev,
					"Cannot bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);
}

static struct pci_error_handlers atl1c_err_handler = {
	.error_detected = atl1c_io_error_detected,
	.slot_reset = atl1c_io_slot_reset,
	.resume = atl1c_io_resume,
};

static SIMPLE_DEV_PM_OPS(atl1c_pm_ops, atl1c_suspend, atl1c_resume);

static struct pci_driver atl1c_driver = {
	.name     = atl1c_driver_name,
	.id_table = atl1c_pci_tbl,
	.probe    = atl1c_probe,
	.remove   = __devexit_p(atl1c_remove),
	.shutdown = atl1c_shutdown,
	.err_handler = &atl1c_err_handler,
	.driver.pm = &atl1c_pm_ops,
};

/*
 * atl1c_init_module - Driver Registration Routine
 *
 * atl1c_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 */
static int __init atl1c_init_module(void)
{
	return pci_register_driver(&atl1c_driver);
}

/*
 * atl1c_exit_module - Driver Exit Cleanup Routine
 *
 * atl1c_exit_module is called just before the driver is removed
 * from memory.
 */
static void __exit atl1c_exit_module(void)
{
	pci_unregister_driver(&atl1c_driver);
}

module_init(atl1c_init_module);
module_exit(atl1c_exit_module);