Kernel  |  3.0

下载     查看原文件
C++程序  |  1269行  |  35.88 KB
/*
 * caam - Freescale FSL CAAM support for crypto API
 *
 * Copyright 2008-2011 Freescale Semiconductor, Inc.
 *
 * Based on talitos crypto API driver.
 *
 * relationship of job descriptors to shared descriptors (SteveC Dec 10 2008):
 *
 * ---------------                     ---------------
 * | JobDesc #1  |-------------------->|  ShareDesc  |
 * | *(packet 1) |                     |   (PDB)     |
 * ---------------      |------------->|  (hashKey)  |
 *       .              |              | (cipherKey) |
 *       .              |    |-------->| (operation) |
 * ---------------      |    |         ---------------
 * | JobDesc #2  |------|    |
 * | *(packet 2) |           |
 * ---------------           |
 *       .                   |
 *       .                   |
 * ---------------           |
 * | JobDesc #3  |------------
 * | *(packet 3) |
 * ---------------
 *
 * The SharedDesc never changes for a connection unless rekeyed, but
 * each packet will likely be in a different place. So all we need
 * to know to process the packet is where the input is, where the
 * output goes, and what context we want to process with. Context is
 * in the SharedDesc, packet references in the JobDesc.
 *
 * So, a job desc looks like:
 *
 * ---------------------
 * | Header            |
 * | ShareDesc Pointer |
 * | SEQ_OUT_PTR       |
 * | (output buffer)   |
 * | SEQ_IN_PTR        |
 * | (input buffer)    |
 * | LOAD (to DECO)    |
 * ---------------------
 */

#include "compat.h"

#include "regs.h"
#include "intern.h"
#include "desc_constr.h"
#include "jr.h"
#include "error.h"

/*
 * crypto alg
 */
#define CAAM_CRA_PRIORITY		3000
/* max key is sum of AES_MAX_KEY_SIZE, max split key size */
#define CAAM_MAX_KEY_SIZE		(AES_MAX_KEY_SIZE + \
					 SHA512_DIGEST_SIZE * 2)
/* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
#define CAAM_MAX_IV_LENGTH		16

/* length of descriptors text */
#define DESC_AEAD_SHARED_TEXT_LEN	4
#define DESC_AEAD_ENCRYPT_TEXT_LEN 	21
#define DESC_AEAD_DECRYPT_TEXT_LEN 	24
#define DESC_AEAD_GIVENCRYPT_TEXT_LEN 	27

#ifdef DEBUG
/* for print_hex_dumps with line references */
#define xstr(s) str(s)
#define str(s) #s
#define debug(format, arg...) printk(format, arg)
#else
#define debug(format, arg...)
#endif

/*
 * per-session context
 */
struct caam_ctx {
	struct device *jrdev;
	u32 *sh_desc;
	dma_addr_t shared_desc_phys;
	u32 class1_alg_type;
	u32 class2_alg_type;
	u32 alg_op;
	u8 *key;
	dma_addr_t key_phys;
	unsigned int enckeylen;
	unsigned int split_key_len;
	unsigned int split_key_pad_len;
	unsigned int authsize;
};

static int aead_authenc_setauthsize(struct crypto_aead *authenc,
				    unsigned int authsize)
{
	struct caam_ctx *ctx = crypto_aead_ctx(authenc);

	ctx->authsize = authsize;

	return 0;
}

struct split_key_result {
	struct completion completion;
	int err;
};

static void split_key_done(struct device *dev, u32 *desc, u32 err,
			   void *context)
{
	struct split_key_result *res = context;

#ifdef DEBUG
	dev_err(dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
	if (err) {
		char tmp[CAAM_ERROR_STR_MAX];

		dev_err(dev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
	}

	res->err = err;

	complete(&res->completion);
}

/*
get a split ipad/opad key

Split key generation-----------------------------------------------

[00] 0xb0810008    jobdesc: stidx=1 share=never len=8
[01] 0x04000014        key: class2->keyreg len=20
			@0xffe01000
[03] 0x84410014  operation: cls2-op sha1 hmac init dec
[04] 0x24940000     fifold: class2 msgdata-last2 len=0 imm
[05] 0xa4000001       jump: class2 local all ->1 [06]
[06] 0x64260028    fifostr: class2 mdsplit-jdk len=40
			@0xffe04000
*/
static u32 gen_split_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen)
{
	struct device *jrdev = ctx->jrdev;
	u32 *desc;
	struct split_key_result result;
	dma_addr_t dma_addr_in, dma_addr_out;
	int ret = 0;

	desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);

	init_job_desc(desc, 0);

	dma_addr_in = dma_map_single(jrdev, (void *)key_in, authkeylen,
				     DMA_TO_DEVICE);
	if (dma_mapping_error(jrdev, dma_addr_in)) {
		dev_err(jrdev, "unable to map key input memory\n");
		kfree(desc);
		return -ENOMEM;
	}
	append_key(desc, dma_addr_in, authkeylen, CLASS_2 |
		       KEY_DEST_CLASS_REG);

	/* Sets MDHA up into an HMAC-INIT */
	append_operation(desc, ctx->alg_op | OP_ALG_DECRYPT |
			     OP_ALG_AS_INIT);

	/*
	 * do a FIFO_LOAD of zero, this will trigger the internal key expansion
	   into both pads inside MDHA
	 */
	append_fifo_load_as_imm(desc, NULL, 0, LDST_CLASS_2_CCB |
				FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2);

	/*
	 * FIFO_STORE with the explicit split-key content store
	 * (0x26 output type)
	 */
	dma_addr_out = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
				      DMA_FROM_DEVICE);
	if (dma_mapping_error(jrdev, dma_addr_out)) {
		dev_err(jrdev, "unable to map key output memory\n");
		kfree(desc);
		return -ENOMEM;
	}
	append_fifo_store(desc, dma_addr_out, ctx->split_key_len,
			  LDST_CLASS_2_CCB | FIFOST_TYPE_SPLIT_KEK);

#ifdef DEBUG
	print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, key_in, authkeylen, 1);
	print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif

	result.err = 0;
	init_completion(&result.completion);

	ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
	if (!ret) {
		/* in progress */
		wait_for_completion_interruptible(&result.completion);
		ret = result.err;
#ifdef DEBUG
		print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
			       DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
			       ctx->split_key_pad_len, 1);
#endif
	}

	dma_unmap_single(jrdev, dma_addr_out, ctx->split_key_pad_len,
			 DMA_FROM_DEVICE);
	dma_unmap_single(jrdev, dma_addr_in, authkeylen, DMA_TO_DEVICE);

	kfree(desc);

	return ret;
}

static int build_sh_desc_ipsec(struct caam_ctx *ctx)
{
	struct device *jrdev = ctx->jrdev;
	u32 *sh_desc;
	u32 *jump_cmd;
	bool keys_fit_inline = 0;

	/*
	 * largest Job Descriptor and its Shared Descriptor
	 * must both fit into the 64-word Descriptor h/w Buffer
	 */
	if ((DESC_AEAD_GIVENCRYPT_TEXT_LEN +
	     DESC_AEAD_SHARED_TEXT_LEN) * CAAM_CMD_SZ +
	    ctx->split_key_pad_len + ctx->enckeylen <= CAAM_DESC_BYTES_MAX)
		keys_fit_inline = 1;

	/* build shared descriptor for this session */
	sh_desc = kmalloc(CAAM_CMD_SZ * DESC_AEAD_SHARED_TEXT_LEN +
			  (keys_fit_inline ?
			   ctx->split_key_pad_len + ctx->enckeylen :
			   CAAM_PTR_SZ * 2), GFP_DMA | GFP_KERNEL);
	if (!sh_desc) {
		dev_err(jrdev, "could not allocate shared descriptor\n");
		return -ENOMEM;
	}

	init_sh_desc(sh_desc, HDR_SAVECTX | HDR_SHARE_SERIAL);

	jump_cmd = append_jump(sh_desc, CLASS_BOTH | JUMP_TEST_ALL |
			       JUMP_COND_SHRD | JUMP_COND_SELF);

	/*
	 * process keys, starting with class 2/authentication.
	 */
	if (keys_fit_inline) {
		append_key_as_imm(sh_desc, ctx->key, ctx->split_key_pad_len,
				  ctx->split_key_len,
				  CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC);

		append_key_as_imm(sh_desc, (void *)ctx->key +
				  ctx->split_key_pad_len, ctx->enckeylen,
				  ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
	} else {
		append_key(sh_desc, ctx->key_phys, ctx->split_key_len, CLASS_2 |
			   KEY_DEST_MDHA_SPLIT | KEY_ENC);
		append_key(sh_desc, ctx->key_phys + ctx->split_key_pad_len,
			   ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
	}

	/* update jump cmd now that we are at the jump target */
	set_jump_tgt_here(sh_desc, jump_cmd);

	ctx->shared_desc_phys = dma_map_single(jrdev, sh_desc,
					       desc_bytes(sh_desc),
					       DMA_TO_DEVICE);
	if (dma_mapping_error(jrdev, ctx->shared_desc_phys)) {
		dev_err(jrdev, "unable to map shared descriptor\n");
		kfree(sh_desc);
		return -ENOMEM;
	}

	ctx->sh_desc = sh_desc;

	return 0;
}

static int aead_authenc_setkey(struct crypto_aead *aead,
			       const u8 *key, unsigned int keylen)
{
	/* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
	static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	struct device *jrdev = ctx->jrdev;
	struct rtattr *rta = (void *)key;
	struct crypto_authenc_key_param *param;
	unsigned int authkeylen;
	unsigned int enckeylen;
	int ret = 0;

	param = RTA_DATA(rta);
	enckeylen = be32_to_cpu(param->enckeylen);

	key += RTA_ALIGN(rta->rta_len);
	keylen -= RTA_ALIGN(rta->rta_len);

	if (keylen < enckeylen)
		goto badkey;

	authkeylen = keylen - enckeylen;

	if (keylen > CAAM_MAX_KEY_SIZE)
		goto badkey;

	/* Pick class 2 key length from algorithm submask */
	ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
				      OP_ALG_ALGSEL_SHIFT] * 2;
	ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);

#ifdef DEBUG
	printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
	       keylen, enckeylen, authkeylen);
	printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
	       ctx->split_key_len, ctx->split_key_pad_len);
	print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
	ctx->key = kmalloc(ctx->split_key_pad_len + enckeylen,
			   GFP_KERNEL | GFP_DMA);
	if (!ctx->key) {
		dev_err(jrdev, "could not allocate key output memory\n");
		return -ENOMEM;
	}

	ret = gen_split_key(ctx, key, authkeylen);
	if (ret) {
		kfree(ctx->key);
		goto badkey;
	}

	/* postpend encryption key to auth split key */
	memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen);

	ctx->key_phys = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len +
				       enckeylen, DMA_TO_DEVICE);
	if (dma_mapping_error(jrdev, ctx->key_phys)) {
		dev_err(jrdev, "unable to map key i/o memory\n");
		kfree(ctx->key);
		return -ENOMEM;
	}
#ifdef DEBUG
	print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
		       ctx->split_key_pad_len + enckeylen, 1);
#endif

	ctx->enckeylen = enckeylen;

	ret = build_sh_desc_ipsec(ctx);
	if (ret) {
		dma_unmap_single(jrdev, ctx->key_phys, ctx->split_key_pad_len +
				 enckeylen, DMA_TO_DEVICE);
		kfree(ctx->key);
	}

	return ret;
badkey:
	crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
	return -EINVAL;
}

struct link_tbl_entry {
	u64 ptr;
	u32 len;
	u8 reserved;
	u8 buf_pool_id;
	u16 offset;
};

/*
 * ipsec_esp_edesc - s/w-extended ipsec_esp descriptor
 * @src_nents: number of segments in input scatterlist
 * @dst_nents: number of segments in output scatterlist
 * @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist
 * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
 * @link_tbl_bytes: length of dma mapped link_tbl space
 * @link_tbl_dma: bus physical mapped address of h/w link table
 * @hw_desc: the h/w job descriptor followed by any referenced link tables
 */
struct ipsec_esp_edesc {
	int assoc_nents;
	int src_nents;
	int dst_nents;
	int link_tbl_bytes;
	dma_addr_t link_tbl_dma;
	struct link_tbl_entry *link_tbl;
	u32 hw_desc[0];
};

static void ipsec_esp_unmap(struct device *dev,
			    struct ipsec_esp_edesc *edesc,
			    struct aead_request *areq)
{
	dma_unmap_sg(dev, areq->assoc, edesc->assoc_nents, DMA_TO_DEVICE);

	if (unlikely(areq->dst != areq->src)) {
		dma_unmap_sg(dev, areq->src, edesc->src_nents,
			     DMA_TO_DEVICE);
		dma_unmap_sg(dev, areq->dst, edesc->dst_nents,
			     DMA_FROM_DEVICE);
	} else {
		dma_unmap_sg(dev, areq->src, edesc->src_nents,
			     DMA_BIDIRECTIONAL);
	}

	if (edesc->link_tbl_bytes)
		dma_unmap_single(dev, edesc->link_tbl_dma,
				 edesc->link_tbl_bytes,
				 DMA_TO_DEVICE);
}

/*
 * ipsec_esp descriptor callbacks
 */
static void ipsec_esp_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
				   void *context)
{
	struct aead_request *areq = context;
	struct ipsec_esp_edesc *edesc;
#ifdef DEBUG
	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
	int ivsize = crypto_aead_ivsize(aead);
	struct caam_ctx *ctx = crypto_aead_ctx(aead);

	dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
	edesc = (struct ipsec_esp_edesc *)((char *)desc -
		 offsetof(struct ipsec_esp_edesc, hw_desc));

	if (err) {
		char tmp[CAAM_ERROR_STR_MAX];

		dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
	}

	ipsec_esp_unmap(jrdev, edesc, areq);

#ifdef DEBUG
	print_hex_dump(KERN_ERR, "assoc  @"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
		       areq->assoclen , 1);
	print_hex_dump(KERN_ERR, "dstiv  @"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
		       edesc->src_nents ? 100 : ivsize, 1);
	print_hex_dump(KERN_ERR, "dst    @"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
		       edesc->src_nents ? 100 : areq->cryptlen +
		       ctx->authsize + 4, 1);
#endif

	kfree(edesc);

	aead_request_complete(areq, err);
}

static void ipsec_esp_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
				   void *context)
{
	struct aead_request *areq = context;
	struct ipsec_esp_edesc *edesc;
#ifdef DEBUG
	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
	struct caam_ctx *ctx = crypto_aead_ctx(aead);

	dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
	edesc = (struct ipsec_esp_edesc *)((char *)desc -
		 offsetof(struct ipsec_esp_edesc, hw_desc));

	if (err) {
		char tmp[CAAM_ERROR_STR_MAX];

		dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
	}

	ipsec_esp_unmap(jrdev, edesc, areq);

	/*
	 * verify hw auth check passed else return -EBADMSG
	 */
	if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK)
		err = -EBADMSG;

#ifdef DEBUG
	print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4,
		       ((char *)sg_virt(areq->assoc) - sizeof(struct iphdr)),
		       sizeof(struct iphdr) + areq->assoclen +
		       ((areq->cryptlen > 1500) ? 1500 : areq->cryptlen) +
		       ctx->authsize + 36, 1);
	if (!err && edesc->link_tbl_bytes) {
		struct scatterlist *sg = sg_last(areq->src, edesc->src_nents);
		print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ",
			       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg),
			sg->length + ctx->authsize + 16, 1);
	}
#endif
	kfree(edesc);

	aead_request_complete(areq, err);
}

/*
 * convert scatterlist to h/w link table format
 * scatterlist must have been previously dma mapped
 */
static void sg_to_link_tbl(struct scatterlist *sg, int sg_count,
			   struct link_tbl_entry *link_tbl_ptr, u32 offset)
{
	while (sg_count) {
		link_tbl_ptr->ptr = sg_dma_address(sg);
		link_tbl_ptr->len = sg_dma_len(sg);
		link_tbl_ptr->reserved = 0;
		link_tbl_ptr->buf_pool_id = 0;
		link_tbl_ptr->offset = offset;
		link_tbl_ptr++;
		sg = sg_next(sg);
		sg_count--;
	}

	/* set Final bit (marks end of link table) */
	link_tbl_ptr--;
	link_tbl_ptr->len |= 0x40000000;
}

/*
 * fill in and submit ipsec_esp job descriptor
 */
static int ipsec_esp(struct ipsec_esp_edesc *edesc, struct aead_request *areq,
		     u32 encrypt,
		     void (*callback) (struct device *dev, u32 *desc,
				       u32 err, void *context))
{
	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	struct device *jrdev = ctx->jrdev;
	u32 *desc = edesc->hw_desc, options;
	int ret, sg_count, assoc_sg_count;
	int ivsize = crypto_aead_ivsize(aead);
	int authsize = ctx->authsize;
	dma_addr_t ptr, dst_dma, src_dma;
#ifdef DEBUG
	u32 *sh_desc = ctx->sh_desc;

	debug("assoclen %d cryptlen %d authsize %d\n",
	      areq->assoclen, areq->cryptlen, authsize);
	print_hex_dump(KERN_ERR, "assoc  @"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
		       areq->assoclen , 1);
	print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
		       edesc->src_nents ? 100 : ivsize, 1);
	print_hex_dump(KERN_ERR, "src    @"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
			edesc->src_nents ? 100 : areq->cryptlen + authsize, 1);
	print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
		       desc_bytes(sh_desc), 1);
#endif
	assoc_sg_count = dma_map_sg(jrdev, areq->assoc, edesc->assoc_nents ?: 1,
				    DMA_TO_DEVICE);
	if (areq->src == areq->dst)
		sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
				      DMA_BIDIRECTIONAL);
	else
		sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
				      DMA_TO_DEVICE);

	/* start auth operation */
	append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL |
			 (encrypt ? : OP_ALG_ICV_ON));

	/* Load FIFO with data for Class 2 CHA */
	options = FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG;
	if (!edesc->assoc_nents) {
		ptr = sg_dma_address(areq->assoc);
	} else {
		sg_to_link_tbl(areq->assoc, edesc->assoc_nents,
			       edesc->link_tbl, 0);
		ptr = edesc->link_tbl_dma;
		options |= LDST_SGF;
	}
	append_fifo_load(desc, ptr, areq->assoclen, options);

	/* copy iv from cipher/class1 input context to class2 infifo */
	append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize);

	if (!encrypt) {
		u32 *jump_cmd, *uncond_jump_cmd;

		/* JUMP if shared */
		jump_cmd = append_jump(desc, JUMP_TEST_ALL | JUMP_COND_SHRD);

		/* start class 1 (cipher) operation, non-shared version */
		append_operation(desc, ctx->class1_alg_type |
				 OP_ALG_AS_INITFINAL);

		uncond_jump_cmd = append_jump(desc, 0);

		set_jump_tgt_here(desc, jump_cmd);

		/* start class 1 (cipher) operation, shared version */
		append_operation(desc, ctx->class1_alg_type |
				 OP_ALG_AS_INITFINAL | OP_ALG_AAI_DK);
		set_jump_tgt_here(desc, uncond_jump_cmd);
	} else
		append_operation(desc, ctx->class1_alg_type |
				 OP_ALG_AS_INITFINAL | encrypt);

	/* load payload & instruct to class2 to snoop class 1 if encrypting */
	options = 0;
	if (!edesc->src_nents) {
		src_dma = sg_dma_address(areq->src);
	} else {
		sg_to_link_tbl(areq->src, edesc->src_nents, edesc->link_tbl +
			       edesc->assoc_nents, 0);
		src_dma = edesc->link_tbl_dma + edesc->assoc_nents *
			  sizeof(struct link_tbl_entry);
		options |= LDST_SGF;
	}
	append_seq_in_ptr(desc, src_dma, areq->cryptlen + authsize, options);
	append_seq_fifo_load(desc, areq->cryptlen, FIFOLD_CLASS_BOTH |
			     FIFOLD_TYPE_LASTBOTH |
			     (encrypt ? FIFOLD_TYPE_MSG1OUT2
				      : FIFOLD_TYPE_MSG));

	/* specify destination */
	if (areq->src == areq->dst) {
		dst_dma = src_dma;
	} else {
		sg_count = dma_map_sg(jrdev, areq->dst, edesc->dst_nents ? : 1,
				      DMA_FROM_DEVICE);
		if (!edesc->dst_nents) {
			dst_dma = sg_dma_address(areq->dst);
			options = 0;
		} else {
			sg_to_link_tbl(areq->dst, edesc->dst_nents,
				       edesc->link_tbl + edesc->assoc_nents +
				       edesc->src_nents, 0);
			dst_dma = edesc->link_tbl_dma + (edesc->assoc_nents +
				  edesc->src_nents) *
				  sizeof(struct link_tbl_entry);
			options = LDST_SGF;
		}
	}
	append_seq_out_ptr(desc, dst_dma, areq->cryptlen + authsize, options);
	append_seq_fifo_store(desc, areq->cryptlen, FIFOST_TYPE_MESSAGE_DATA);

	/* ICV */
	if (encrypt)
		append_seq_store(desc, authsize, LDST_CLASS_2_CCB |
				 LDST_SRCDST_BYTE_CONTEXT);
	else
		append_seq_fifo_load(desc, authsize, FIFOLD_CLASS_CLASS2 |
				     FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV);

#ifdef DEBUG
	debug("job_desc_len %d\n", desc_len(desc));
	print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc) , 1);
	print_hex_dump(KERN_ERR, "jdlinkt@"xstr(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, edesc->link_tbl,
			edesc->link_tbl_bytes, 1);
#endif

	ret = caam_jr_enqueue(jrdev, desc, callback, areq);
	if (!ret)
		ret = -EINPROGRESS;
	else {
		ipsec_esp_unmap(jrdev, edesc, areq);
		kfree(edesc);
	}

	return ret;
}

/*
 * derive number of elements in scatterlist
 */
static int sg_count(struct scatterlist *sg_list, int nbytes, int *chained)
{
	struct scatterlist *sg = sg_list;
	int sg_nents = 0;

	*chained = 0;
	while (nbytes > 0) {
		sg_nents++;
		nbytes -= sg->length;
		if (!sg_is_last(sg) && (sg + 1)->length == 0)
			*chained = 1;
		sg = scatterwalk_sg_next(sg);
	}

	return sg_nents;
}

/*
 * allocate and map the ipsec_esp extended descriptor
 */
static struct ipsec_esp_edesc *ipsec_esp_edesc_alloc(struct aead_request *areq,
						     int desc_bytes)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	struct device *jrdev = ctx->jrdev;
	gfp_t flags = areq->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
		      GFP_ATOMIC;
	int assoc_nents, src_nents, dst_nents = 0, chained, link_tbl_bytes;
	struct ipsec_esp_edesc *edesc;

	assoc_nents = sg_count(areq->assoc, areq->assoclen, &chained);
	BUG_ON(chained);
	if (likely(assoc_nents == 1))
		assoc_nents = 0;

	src_nents = sg_count(areq->src, areq->cryptlen + ctx->authsize,
			     &chained);
	BUG_ON(chained);
	if (src_nents == 1)
		src_nents = 0;

	if (unlikely(areq->dst != areq->src)) {
		dst_nents = sg_count(areq->dst, areq->cryptlen + ctx->authsize,
				     &chained);
		BUG_ON(chained);
		if (dst_nents == 1)
			dst_nents = 0;
	}

	link_tbl_bytes = (assoc_nents + src_nents + dst_nents) *
			 sizeof(struct link_tbl_entry);
	debug("link_tbl_bytes %d\n", link_tbl_bytes);

	/* allocate space for base edesc and hw desc commands, link tables */
	edesc = kmalloc(sizeof(struct ipsec_esp_edesc) + desc_bytes +
			link_tbl_bytes, GFP_DMA | flags);
	if (!edesc) {
		dev_err(jrdev, "could not allocate extended descriptor\n");
		return ERR_PTR(-ENOMEM);
	}

	edesc->assoc_nents = assoc_nents;
	edesc->src_nents = src_nents;
	edesc->dst_nents = dst_nents;
	edesc->link_tbl = (void *)edesc + sizeof(struct ipsec_esp_edesc) +
			  desc_bytes;
	edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
					     link_tbl_bytes, DMA_TO_DEVICE);
	edesc->link_tbl_bytes = link_tbl_bytes;

	return edesc;
}

static int aead_authenc_encrypt(struct aead_request *areq)
{
	struct ipsec_esp_edesc *edesc;
	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	struct device *jrdev = ctx->jrdev;
	int ivsize = crypto_aead_ivsize(aead);
	u32 *desc;
	dma_addr_t iv_dma;

	/* allocate extended descriptor */
	edesc = ipsec_esp_edesc_alloc(areq, DESC_AEAD_ENCRYPT_TEXT_LEN *
				      CAAM_CMD_SZ);
	if (IS_ERR(edesc))
		return PTR_ERR(edesc);

	desc = edesc->hw_desc;

	/* insert shared descriptor pointer */
	init_job_desc_shared(desc, ctx->shared_desc_phys,
			     desc_len(ctx->sh_desc), HDR_SHARE_DEFER);

	iv_dma = dma_map_single(jrdev, areq->iv, ivsize, DMA_TO_DEVICE);
	/* check dma error */

	append_load(desc, iv_dma, ivsize,
		    LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);

	return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
}

static int aead_authenc_decrypt(struct aead_request *req)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	int ivsize = crypto_aead_ivsize(aead);
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	struct device *jrdev = ctx->jrdev;
	struct ipsec_esp_edesc *edesc;
	u32 *desc;
	dma_addr_t iv_dma;

	req->cryptlen -= ctx->authsize;

	/* allocate extended descriptor */
	edesc = ipsec_esp_edesc_alloc(req, DESC_AEAD_DECRYPT_TEXT_LEN *
				      CAAM_CMD_SZ);
	if (IS_ERR(edesc))
		return PTR_ERR(edesc);

	desc = edesc->hw_desc;

	/* insert shared descriptor pointer */
	init_job_desc_shared(desc, ctx->shared_desc_phys,
			     desc_len(ctx->sh_desc), HDR_SHARE_DEFER);

	iv_dma = dma_map_single(jrdev, req->iv, ivsize, DMA_TO_DEVICE);
	/* check dma error */

	append_load(desc, iv_dma, ivsize,
		    LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);

	return ipsec_esp(edesc, req, !OP_ALG_ENCRYPT, ipsec_esp_decrypt_done);
}

static int aead_authenc_givencrypt(struct aead_givcrypt_request *req)
{
	struct aead_request *areq = &req->areq;
	struct ipsec_esp_edesc *edesc;
	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	struct device *jrdev = ctx->jrdev;
	int ivsize = crypto_aead_ivsize(aead);
	dma_addr_t iv_dma;
	u32 *desc;

	iv_dma = dma_map_single(jrdev, req->giv, ivsize, DMA_FROM_DEVICE);

	debug("%s: giv %p\n", __func__, req->giv);

	/* allocate extended descriptor */
	edesc = ipsec_esp_edesc_alloc(areq, DESC_AEAD_GIVENCRYPT_TEXT_LEN *
				      CAAM_CMD_SZ);
	if (IS_ERR(edesc))
		return PTR_ERR(edesc);

	desc = edesc->hw_desc;

	/* insert shared descriptor pointer */
	init_job_desc_shared(desc, ctx->shared_desc_phys,
			     desc_len(ctx->sh_desc), HDR_SHARE_DEFER);

	/*
	 * LOAD IMM Info FIFO
	 * to DECO, Last, Padding, Random, Message, 16 bytes
	 */
	append_load_imm_u32(desc, NFIFOENTRY_DEST_DECO | NFIFOENTRY_LC1 |
			    NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DTYPE_MSG |
			    NFIFOENTRY_PTYPE_RND | ivsize,
			    LDST_SRCDST_WORD_INFO_FIFO);

	/*
	 * disable info fifo entries since the above serves as the entry
	 * this way, the MOVE command won't generate an entry.
	 * Note that this isn't required in more recent versions of
	 * SEC as a MOVE that doesn't do info FIFO entries is available.
	 */
	append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);

	/* MOVE DECO Alignment -> C1 Context 16 bytes */
	append_move(desc, MOVE_SRC_INFIFO | MOVE_DEST_CLASS1CTX | ivsize);

	/* re-enable info fifo entries */
	append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);

	/* MOVE C1 Context -> OFIFO 16 bytes */
	append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_OUTFIFO | ivsize);

	append_fifo_store(desc, iv_dma, ivsize, FIFOST_TYPE_MESSAGE_DATA);

	return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
}

struct caam_alg_template {
	char name[CRYPTO_MAX_ALG_NAME];
	char driver_name[CRYPTO_MAX_ALG_NAME];
	unsigned int blocksize;
	struct aead_alg aead;
	u32 class1_alg_type;
	u32 class2_alg_type;
	u32 alg_op;
};

static struct caam_alg_template driver_algs[] = {
	/* single-pass ipsec_esp descriptor */
	{
		.name = "authenc(hmac(sha1),cbc(aes))",
		.driver_name = "authenc-hmac-sha1-cbc-aes-caam",
		.blocksize = AES_BLOCK_SIZE,
		.aead = {
			.setkey = aead_authenc_setkey,
			.setauthsize = aead_authenc_setauthsize,
			.encrypt = aead_authenc_encrypt,
			.decrypt = aead_authenc_decrypt,
			.givencrypt = aead_authenc_givencrypt,
			.geniv = "<built-in>",
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA1_DIGEST_SIZE,
			},
		.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
		.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
		.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
	},
	{
		.name = "authenc(hmac(sha256),cbc(aes))",
		.driver_name = "authenc-hmac-sha256-cbc-aes-caam",
		.blocksize = AES_BLOCK_SIZE,
		.aead = {
			.setkey = aead_authenc_setkey,
			.setauthsize = aead_authenc_setauthsize,
			.encrypt = aead_authenc_encrypt,
			.decrypt = aead_authenc_decrypt,
			.givencrypt = aead_authenc_givencrypt,
			.geniv = "<built-in>",
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA256_DIGEST_SIZE,
			},
		.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
		.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
				   OP_ALG_AAI_HMAC_PRECOMP,
		.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
	},
	{
		.name = "authenc(hmac(sha512),cbc(aes))",
		.driver_name = "authenc-hmac-sha512-cbc-aes-caam",
		.blocksize = AES_BLOCK_SIZE,
		.aead = {
			.setkey = aead_authenc_setkey,
			.setauthsize = aead_authenc_setauthsize,
			.encrypt = aead_authenc_encrypt,
			.decrypt = aead_authenc_decrypt,
			.givencrypt = aead_authenc_givencrypt,
			.geniv = "<built-in>",
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA512_DIGEST_SIZE,
			},
		.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
		.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
				   OP_ALG_AAI_HMAC_PRECOMP,
		.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
	},
	{
		.name = "authenc(hmac(sha1),cbc(des3_ede))",
		.driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam",
		.blocksize = DES3_EDE_BLOCK_SIZE,
		.aead = {
			.setkey = aead_authenc_setkey,
			.setauthsize = aead_authenc_setauthsize,
			.encrypt = aead_authenc_encrypt,
			.decrypt = aead_authenc_decrypt,
			.givencrypt = aead_authenc_givencrypt,
			.geniv = "<built-in>",
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA1_DIGEST_SIZE,
			},
		.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
		.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
		.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
	},
	{
		.name = "authenc(hmac(sha256),cbc(des3_ede))",
		.driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam",
		.blocksize = DES3_EDE_BLOCK_SIZE,
		.aead = {
			.setkey = aead_authenc_setkey,
			.setauthsize = aead_authenc_setauthsize,
			.encrypt = aead_authenc_encrypt,
			.decrypt = aead_authenc_decrypt,
			.givencrypt = aead_authenc_givencrypt,
			.geniv = "<built-in>",
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA256_DIGEST_SIZE,
			},
		.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
		.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
				   OP_ALG_AAI_HMAC_PRECOMP,
		.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
	},
	{
		.name = "authenc(hmac(sha512),cbc(des3_ede))",
		.driver_name = "authenc-hmac-sha512-cbc-des3_ede-caam",
		.blocksize = DES3_EDE_BLOCK_SIZE,
		.aead = {
			.setkey = aead_authenc_setkey,
			.setauthsize = aead_authenc_setauthsize,
			.encrypt = aead_authenc_encrypt,
			.decrypt = aead_authenc_decrypt,
			.givencrypt = aead_authenc_givencrypt,
			.geniv = "<built-in>",
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA512_DIGEST_SIZE,
			},
		.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
		.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
				   OP_ALG_AAI_HMAC_PRECOMP,
		.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
	},
	{
		.name = "authenc(hmac(sha1),cbc(des))",
		.driver_name = "authenc-hmac-sha1-cbc-des-caam",
		.blocksize = DES_BLOCK_SIZE,
		.aead = {
			.setkey = aead_authenc_setkey,
			.setauthsize = aead_authenc_setauthsize,
			.encrypt = aead_authenc_encrypt,
			.decrypt = aead_authenc_decrypt,
			.givencrypt = aead_authenc_givencrypt,
			.geniv = "<built-in>",
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA1_DIGEST_SIZE,
			},
		.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
		.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
		.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
	},
	{
		.name = "authenc(hmac(sha256),cbc(des))",
		.driver_name = "authenc-hmac-sha256-cbc-des-caam",
		.blocksize = DES_BLOCK_SIZE,
		.aead = {
			.setkey = aead_authenc_setkey,
			.setauthsize = aead_authenc_setauthsize,
			.encrypt = aead_authenc_encrypt,
			.decrypt = aead_authenc_decrypt,
			.givencrypt = aead_authenc_givencrypt,
			.geniv = "<built-in>",
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA256_DIGEST_SIZE,
			},
		.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
		.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
				   OP_ALG_AAI_HMAC_PRECOMP,
		.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
	},
	{
		.name = "authenc(hmac(sha512),cbc(des))",
		.driver_name = "authenc-hmac-sha512-cbc-des-caam",
		.blocksize = DES_BLOCK_SIZE,
		.aead = {
			.setkey = aead_authenc_setkey,
			.setauthsize = aead_authenc_setauthsize,
			.encrypt = aead_authenc_encrypt,
			.decrypt = aead_authenc_decrypt,
			.givencrypt = aead_authenc_givencrypt,
			.geniv = "<built-in>",
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA512_DIGEST_SIZE,
			},
		.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
		.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
				   OP_ALG_AAI_HMAC_PRECOMP,
		.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
	},
};

struct caam_crypto_alg {
	struct list_head entry;
	struct device *ctrldev;
	int class1_alg_type;
	int class2_alg_type;
	int alg_op;
	struct crypto_alg crypto_alg;
};

static int caam_cra_init(struct crypto_tfm *tfm)
{
	struct crypto_alg *alg = tfm->__crt_alg;
	struct caam_crypto_alg *caam_alg =
		 container_of(alg, struct caam_crypto_alg, crypto_alg);
	struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
	struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev);
	int tgt_jr = atomic_inc_return(&priv->tfm_count);

	/*
	 * distribute tfms across job rings to ensure in-order
	 * crypto request processing per tfm
	 */
	ctx->jrdev = priv->algapi_jr[(tgt_jr / 2) % priv->num_jrs_for_algapi];

	/* copy descriptor header template value */
	ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type;
	ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type;
	ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op;

	return 0;
}

static void caam_cra_exit(struct crypto_tfm *tfm)
{
	struct caam_ctx *ctx = crypto_tfm_ctx(tfm);

	if (!dma_mapping_error(ctx->jrdev, ctx->shared_desc_phys))
		dma_unmap_single(ctx->jrdev, ctx->shared_desc_phys,
				 desc_bytes(ctx->sh_desc), DMA_TO_DEVICE);
	kfree(ctx->sh_desc);

	if (!dma_mapping_error(ctx->jrdev, ctx->key_phys))
		dma_unmap_single(ctx->jrdev, ctx->key_phys,
				 ctx->split_key_pad_len + ctx->enckeylen,
				 DMA_TO_DEVICE);
	kfree(ctx->key);
}

static void __exit caam_algapi_exit(void)
{

	struct device_node *dev_node;
	struct platform_device *pdev;
	struct device *ctrldev;
	struct caam_drv_private *priv;
	struct caam_crypto_alg *t_alg, *n;
	int i, err;

	dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
	if (!dev_node)
		return;

	pdev = of_find_device_by_node(dev_node);
	if (!pdev)
		return;

	ctrldev = &pdev->dev;
	of_node_put(dev_node);
	priv = dev_get_drvdata(ctrldev);

	if (!priv->alg_list.next)
		return;

	list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
		crypto_unregister_alg(&t_alg->crypto_alg);
		list_del(&t_alg->entry);
		kfree(t_alg);
	}

	for (i = 0; i < priv->total_jobrs; i++) {
		err = caam_jr_deregister(priv->algapi_jr[i]);
		if (err < 0)
			break;
	}
	kfree(priv->algapi_jr);
}

static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev,
					      struct caam_alg_template
					      *template)
{
	struct caam_crypto_alg *t_alg;
	struct crypto_alg *alg;

	t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL);
	if (!t_alg) {
		dev_err(ctrldev, "failed to allocate t_alg\n");
		return ERR_PTR(-ENOMEM);
	}

	alg = &t_alg->crypto_alg;

	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
		 template->driver_name);
	alg->cra_module = THIS_MODULE;
	alg->cra_init = caam_cra_init;
	alg->cra_exit = caam_cra_exit;
	alg->cra_priority = CAAM_CRA_PRIORITY;
	alg->cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
	alg->cra_blocksize = template->blocksize;
	alg->cra_alignmask = 0;
	alg->cra_type = &crypto_aead_type;
	alg->cra_ctxsize = sizeof(struct caam_ctx);
	alg->cra_u.aead = template->aead;

	t_alg->class1_alg_type = template->class1_alg_type;
	t_alg->class2_alg_type = template->class2_alg_type;
	t_alg->alg_op = template->alg_op;
	t_alg->ctrldev = ctrldev;

	return t_alg;
}

static int __init caam_algapi_init(void)
{
	struct device_node *dev_node;
	struct platform_device *pdev;
	struct device *ctrldev, **jrdev;
	struct caam_drv_private *priv;
	int i = 0, err = 0;

	dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
	if (!dev_node)
		return -ENODEV;

	pdev = of_find_device_by_node(dev_node);
	if (!pdev)
		return -ENODEV;

	ctrldev = &pdev->dev;
	priv = dev_get_drvdata(ctrldev);
	of_node_put(dev_node);

	INIT_LIST_HEAD(&priv->alg_list);

	jrdev = kmalloc(sizeof(*jrdev) * priv->total_jobrs, GFP_KERNEL);
	if (!jrdev)
		return -ENOMEM;

	for (i = 0; i < priv->total_jobrs; i++) {
		err = caam_jr_register(ctrldev, &jrdev[i]);
		if (err < 0)
			break;
	}
	if (err < 0 && i == 0) {
		dev_err(ctrldev, "algapi error in job ring registration: %d\n",
			err);
		kfree(jrdev);
		return err;
	}

	priv->num_jrs_for_algapi = i;
	priv->algapi_jr = jrdev;
	atomic_set(&priv->tfm_count, -1);

	/* register crypto algorithms the device supports */
	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
		/* TODO: check if h/w supports alg */
		struct caam_crypto_alg *t_alg;

		t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]);
		if (IS_ERR(t_alg)) {
			err = PTR_ERR(t_alg);
			dev_warn(ctrldev, "%s alg allocation failed\n",
				 driver_algs[i].driver_name);
			continue;
		}

		err = crypto_register_alg(&t_alg->crypto_alg);
		if (err) {
			dev_warn(ctrldev, "%s alg registration failed\n",
				t_alg->crypto_alg.cra_driver_name);
			kfree(t_alg);
		} else {
			list_add_tail(&t_alg->entry, &priv->alg_list);
			dev_info(ctrldev, "%s\n",
				 t_alg->crypto_alg.cra_driver_name);
		}
	}

	return err;
}

module_init(caam_algapi_init);
module_exit(caam_algapi_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FSL CAAM support for crypto API");
MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");