- 根目录:
- arch
- ia64
- sn
- kernel
- setup.c
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1999,2001-2006 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/kdev_t.h>
#include <linux/string.h>
#include <linux/screen_info.h>
#include <linux/console.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/serial.h>
#include <linux/irq.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/interrupt.h>
#include <linux/acpi.h>
#include <linux/compiler.h>
#include <linux/root_dev.h>
#include <linux/nodemask.h>
#include <linux/pm.h>
#include <linux/efi.h>
#include <asm/io.h>
#include <asm/sal.h>
#include <asm/machvec.h>
#include <asm/system.h>
#include <asm/processor.h>
#include <asm/vga.h>
#include <asm/sn/arch.h>
#include <asm/sn/addrs.h>
#include <asm/sn/pda.h>
#include <asm/sn/nodepda.h>
#include <asm/sn/sn_cpuid.h>
#include <asm/sn/simulator.h>
#include <asm/sn/leds.h>
#include <asm/sn/bte.h>
#include <asm/sn/shub_mmr.h>
#include <asm/sn/clksupport.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/geo.h>
#include <asm/sn/sn_feature_sets.h>
#include "xtalk/xwidgetdev.h"
#include "xtalk/hubdev.h"
#include <asm/sn/klconfig.h>
DEFINE_PER_CPU(struct pda_s, pda_percpu);
#define MAX_PHYS_MEMORY (1UL << IA64_MAX_PHYS_BITS) /* Max physical address supported */
extern void bte_init_node(nodepda_t *, cnodeid_t);
extern void sn_timer_init(void);
extern unsigned long last_time_offset;
extern void (*ia64_mark_idle) (int);
extern void snidle(int);
unsigned long sn_rtc_cycles_per_second;
EXPORT_SYMBOL(sn_rtc_cycles_per_second);
DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
EXPORT_PER_CPU_SYMBOL(__sn_hub_info);
DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_COMPACT_NODES]);
EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid);
DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda);
EXPORT_PER_CPU_SYMBOL(__sn_nodepda);
char sn_system_serial_number_string[128];
EXPORT_SYMBOL(sn_system_serial_number_string);
u64 sn_partition_serial_number;
EXPORT_SYMBOL(sn_partition_serial_number);
u8 sn_partition_id;
EXPORT_SYMBOL(sn_partition_id);
u8 sn_system_size;
EXPORT_SYMBOL(sn_system_size);
u8 sn_sharing_domain_size;
EXPORT_SYMBOL(sn_sharing_domain_size);
u8 sn_coherency_id;
EXPORT_SYMBOL(sn_coherency_id);
u8 sn_region_size;
EXPORT_SYMBOL(sn_region_size);
int sn_prom_type; /* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */
short physical_node_map[MAX_NUMALINK_NODES];
static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS];
EXPORT_SYMBOL(physical_node_map);
int num_cnodes;
static void sn_init_pdas(char **);
static void build_cnode_tables(void);
static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];
/*
* The format of "screen_info" is strange, and due to early i386-setup
* code. This is just enough to make the console code think we're on a
* VGA color display.
*/
struct screen_info sn_screen_info = {
.orig_x = 0,
.orig_y = 0,
.orig_video_mode = 3,
.orig_video_cols = 80,
.orig_video_ega_bx = 3,
.orig_video_lines = 25,
.orig_video_isVGA = 1,
.orig_video_points = 16
};
/*
* This routine can only be used during init, since
* smp_boot_data is an init data structure.
* We have to use smp_boot_data.cpu_phys_id to find
* the physical id of the processor because the normal
* cpu_physical_id() relies on data structures that
* may not be initialized yet.
*/
static int __init pxm_to_nasid(int pxm)
{
int i;
int nid;
nid = pxm_to_node(pxm);
for (i = 0; i < num_node_memblks; i++) {
if (node_memblk[i].nid == nid) {
return NASID_GET(node_memblk[i].start_paddr);
}
}
return -1;
}
/**
* early_sn_setup - early setup routine for SN platforms
*
* Sets up an initial console to aid debugging. Intended primarily
* for bringup. See start_kernel() in init/main.c.
*/
void __init early_sn_setup(void)
{
efi_system_table_t *efi_systab;
efi_config_table_t *config_tables;
struct ia64_sal_systab *sal_systab;
struct ia64_sal_desc_entry_point *ep;
char *p;
int i, j;
/*
* Parse enough of the SAL tables to locate the SAL entry point. Since, console
* IO on SN2 is done via SAL calls, early_printk won't work without this.
*
* This code duplicates some of the ACPI table parsing that is in efi.c & sal.c.
* Any changes to those file may have to be made here as well.
*/
efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab);
config_tables = __va(efi_systab->tables);
for (i = 0; i < efi_systab->nr_tables; i++) {
if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) ==
0) {
sal_systab = __va(config_tables[i].table);
p = (char *)(sal_systab + 1);
for (j = 0; j < sal_systab->entry_count; j++) {
if (*p == SAL_DESC_ENTRY_POINT) {
ep = (struct ia64_sal_desc_entry_point
*)p;
ia64_sal_handler_init(__va
(ep->sal_proc),
__va(ep->gp));
return;
}
p += SAL_DESC_SIZE(*p);
}
}
}
/* Uh-oh, SAL not available?? */
printk(KERN_ERR "failed to find SAL entry point\n");
}
extern int platform_intr_list[];
static int __cpuinitdata shub_1_1_found;
/*
* sn_check_for_wars
*
* Set flag for enabling shub specific wars
*/
static inline int __cpuinit is_shub_1_1(int nasid)
{
unsigned long id;
int rev;
if (is_shub2())
return 0;
id = REMOTE_HUB_L(nasid, SH1_SHUB_ID);
rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT;
return rev <= 2;
}
static void __cpuinit sn_check_for_wars(void)
{
int cnode;
if (is_shub2()) {
/* none yet */
} else {
for_each_online_node(cnode) {
if (is_shub_1_1(cnodeid_to_nasid(cnode)))
shub_1_1_found = 1;
}
}
}
/*
* Scan the EFI PCDP table (if it exists) for an acceptable VGA console
* output device. If one exists, pick it and set sn_legacy_{io,mem} to
* reflect the bus offsets needed to address it.
*
* Since pcdp support in SN is not supported in the 2.4 kernel (or at least
* the one lbs is based on) just declare the needed structs here.
*
* Reference spec http://www.dig64.org/specifications/DIG64_PCDPv20.pdf
*
* Returns 0 if no acceptable vga is found, !0 otherwise.
*
* Note: This stuff is duped here because Altix requires the PCDP to
* locate a usable VGA device due to lack of proper ACPI support. Structures
* could be used from drivers/firmware/pcdp.h, but it was decided that moving
* this file to a more public location just for Altix use was undesirable.
*/
struct hcdp_uart_desc {
u8 pad[45];
};
struct pcdp {
u8 signature[4]; /* should be 'HCDP' */
u32 length;
u8 rev; /* should be >=3 for pcdp, <3 for hcdp */
u8 sum;
u8 oem_id[6];
u64 oem_tableid;
u32 oem_rev;
u32 creator_id;
u32 creator_rev;
u32 num_type0;
struct hcdp_uart_desc uart[0]; /* num_type0 of these */
/* pcdp descriptors follow */
} __attribute__((packed));
struct pcdp_device_desc {
u8 type;
u8 primary;
u16 length;
u16 index;
/* interconnect specific structure follows */
/* device specific structure follows that */
} __attribute__((packed));
struct pcdp_interface_pci {
u8 type; /* 1 == pci */
u8 reserved;
u16 length;
u8 segment;
u8 bus;
u8 dev;
u8 fun;
u16 devid;
u16 vendid;
u32 acpi_interrupt;
u64 mmio_tra;
u64 ioport_tra;
u8 flags;
u8 translation;
} __attribute__((packed));
struct pcdp_vga_device {
u8 num_eas_desc;
/* ACPI Extended Address Space Desc follows */
} __attribute__((packed));
/* from pcdp_device_desc.primary */
#define PCDP_PRIMARY_CONSOLE 0x01
/* from pcdp_device_desc.type */
#define PCDP_CONSOLE_INOUT 0x0
#define PCDP_CONSOLE_DEBUG 0x1
#define PCDP_CONSOLE_OUT 0x2
#define PCDP_CONSOLE_IN 0x3
#define PCDP_CONSOLE_TYPE_VGA 0x8
#define PCDP_CONSOLE_VGA (PCDP_CONSOLE_TYPE_VGA | PCDP_CONSOLE_OUT)
/* from pcdp_interface_pci.type */
#define PCDP_IF_PCI 1
/* from pcdp_interface_pci.translation */
#define PCDP_PCI_TRANS_IOPORT 0x02
#define PCDP_PCI_TRANS_MMIO 0x01
#if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
static void
sn_scan_pcdp(void)
{
u8 *bp;
struct pcdp *pcdp;
struct pcdp_device_desc device;
struct pcdp_interface_pci if_pci;
extern struct efi efi;
if (efi.hcdp == EFI_INVALID_TABLE_ADDR)
return; /* no hcdp/pcdp table */
pcdp = __va(efi.hcdp);
if (pcdp->rev < 3)
return; /* only support PCDP (rev >= 3) */
for (bp = (u8 *)&pcdp->uart[pcdp->num_type0];
bp < (u8 *)pcdp + pcdp->length;
bp += device.length) {
memcpy(&device, bp, sizeof(device));
if (! (device.primary & PCDP_PRIMARY_CONSOLE))
continue; /* not primary console */
if (device.type != PCDP_CONSOLE_VGA)
continue; /* not VGA descriptor */
memcpy(&if_pci, bp+sizeof(device), sizeof(if_pci));
if (if_pci.type != PCDP_IF_PCI)
continue; /* not PCI interconnect */
if (if_pci.translation & PCDP_PCI_TRANS_IOPORT)
vga_console_iobase = if_pci.ioport_tra;
if (if_pci.translation & PCDP_PCI_TRANS_MMIO)
vga_console_membase =
if_pci.mmio_tra | __IA64_UNCACHED_OFFSET;
break; /* once we find the primary, we're done */
}
}
#endif
static unsigned long sn2_rtc_initial;
/**
* sn_setup - SN platform setup routine
* @cmdline_p: kernel command line
*
* Handles platform setup for SN machines. This includes determining
* the RTC frequency (via a SAL call), initializing secondary CPUs, and
* setting up per-node data areas. The console is also initialized here.
*/
void __init sn_setup(char **cmdline_p)
{
long status, ticks_per_sec, drift;
u32 version = sn_sal_rev();
extern void sn_cpu_init(void);
sn2_rtc_initial = rtc_time();
ia64_sn_plat_set_error_handling_features(); // obsolete
ia64_sn_set_os_feature(OSF_MCA_SLV_TO_OS_INIT_SLV);
ia64_sn_set_os_feature(OSF_FEAT_LOG_SBES);
/*
* Note: The calls to notify the PROM of ACPI and PCI Segment
* support must be done prior to acpi_load_tables(), as
* an ACPI capable PROM will rebuild the DSDT as result
* of the call.
*/
ia64_sn_set_os_feature(OSF_PCISEGMENT_ENABLE);
ia64_sn_set_os_feature(OSF_ACPI_ENABLE);
/* Load the new DSDT and SSDT tables into the global table list. */
acpi_table_init();
#if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
/*
* Handle SN vga console.
*
* SN systems do not have enough ACPI table information
* being passed from prom to identify VGA adapters and the legacy
* addresses to access them. Until that is done, SN systems rely
* on the PCDP table to identify the primary VGA console if one
* exists.
*
* However, kernel PCDP support is optional, and even if it is built
* into the kernel, it will not be used if the boot cmdline contains
* console= directives.
*
* So, to work around this mess, we duplicate some of the PCDP code
* here so that the primary VGA console (as defined by PCDP) will
* work on SN systems even if a different console (e.g. serial) is
* selected on the boot line (or CONFIG_EFI_PCDP is off).
*/
if (! vga_console_membase)
sn_scan_pcdp();
/*
* Setup legacy IO space.
* vga_console_iobase maps to PCI IO Space address 0 on the
* bus containing the VGA console.
*/
if (vga_console_iobase) {
io_space[0].mmio_base =
(unsigned long) ioremap(vga_console_iobase, 0);
io_space[0].sparse = 0;
}
if (vga_console_membase) {
/* usable vga ... make tty0 the preferred default console */
if (!strstr(*cmdline_p, "console="))
add_preferred_console("tty", 0, NULL);
} else {
printk(KERN_DEBUG "SGI: Disabling VGA console\n");
if (!strstr(*cmdline_p, "console="))
add_preferred_console("ttySG", 0, NULL);
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#else
conswitchp = NULL;
#endif /* CONFIG_DUMMY_CONSOLE */
}
#endif /* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */
MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;
/*
* Build the tables for managing cnodes.
*/
build_cnode_tables();
status =
ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
&drift);
if (status != 0 || ticks_per_sec < 100000) {
printk(KERN_WARNING
"unable to determine platform RTC clock frequency, guessing.\n");
/* PROM gives wrong value for clock freq. so guess */
sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
} else
sn_rtc_cycles_per_second = ticks_per_sec;
platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR;
printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF);
/*
* we set the default root device to /dev/hda
* to make simulation easy
*/
ROOT_DEV = Root_HDA1;
/*
* Create the PDAs and NODEPDAs for all the cpus.
*/
sn_init_pdas(cmdline_p);
ia64_mark_idle = &snidle;
/*
* For the bootcpu, we do this here. All other cpus will make the
* call as part of cpu_init in slave cpu initialization.
*/
sn_cpu_init();
#ifdef CONFIG_SMP
init_smp_config();
#endif
screen_info = sn_screen_info;
sn_timer_init();
/*
* set pm_power_off to a SAL call to allow
* sn machines to power off. The SAL call can be replaced
* by an ACPI interface call when ACPI is fully implemented
* for sn.
*/
pm_power_off = ia64_sn_power_down;
current->thread.flags |= IA64_THREAD_MIGRATION;
}
/**
* sn_init_pdas - setup node data areas
*
* One time setup for Node Data Area. Called by sn_setup().
*/
static void __init sn_init_pdas(char **cmdline_p)
{
cnodeid_t cnode;
/*
* Allocate & initialize the nodepda for each node.
*/
for_each_online_node(cnode) {
nodepdaindr[cnode] =
alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t));
memset(nodepdaindr[cnode]->phys_cpuid, -1,
sizeof(nodepdaindr[cnode]->phys_cpuid));
spin_lock_init(&nodepdaindr[cnode]->ptc_lock);
}
/*
* Allocate & initialize nodepda for TIOs. For now, put them on node 0.
*/
for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++)
nodepdaindr[cnode] =
alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t));
/*
* Now copy the array of nodepda pointers to each nodepda.
*/
for (cnode = 0; cnode < num_cnodes; cnode++)
memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr,
sizeof(nodepdaindr));
/*
* Set up IO related platform-dependent nodepda fields.
* The following routine actually sets up the hubinfo struct
* in nodepda.
*/
for_each_online_node(cnode) {
bte_init_node(nodepdaindr[cnode], cnode);
}
/*
* Initialize the per node hubdev. This includes IO Nodes and
* headless/memless nodes.
*/
for (cnode = 0; cnode < num_cnodes; cnode++) {
hubdev_init_node(nodepdaindr[cnode], cnode);
}
}
/**
* sn_cpu_init - initialize per-cpu data areas
* @cpuid: cpuid of the caller
*
* Called during cpu initialization on each cpu as it starts.
* Currently, initializes the per-cpu data area for SNIA.
* Also sets up a few fields in the nodepda. Also known as
* platform_cpu_init() by the ia64 machvec code.
*/
void __cpuinit sn_cpu_init(void)
{
int cpuid;
int cpuphyid;
int nasid;
int subnode;
int slice;
int cnode;
int i;
static int wars_have_been_checked, set_cpu0_number;
cpuid = smp_processor_id();
if (cpuid == 0 && IS_MEDUSA()) {
if (ia64_sn_is_fake_prom())
sn_prom_type = 2;
else
sn_prom_type = 1;
printk(KERN_INFO "Running on medusa with %s PROM\n",
(sn_prom_type == 1) ? "real" : "fake");
}
memset(pda, 0, sizeof(pda));
if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2,
&sn_hub_info->nasid_bitmask,
&sn_hub_info->nasid_shift,
&sn_system_size, &sn_sharing_domain_size,
&sn_partition_id, &sn_coherency_id,
&sn_region_size))
BUG();
sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2;
/*
* Don't check status. The SAL call is not supported on all PROMs
* but a failure is harmless.
* Architecturally, cpu_init is always called twice on cpu 0. We
* should set cpu_number on cpu 0 once.
*/
if (cpuid == 0) {
if (!set_cpu0_number) {
(void) ia64_sn_set_cpu_number(cpuid);
set_cpu0_number = 1;
}
} else
(void) ia64_sn_set_cpu_number(cpuid);
/*
* The boot cpu makes this call again after platform initialization is
* complete.
*/
if (nodepdaindr[0] == NULL)
return;
for (i = 0; i < MAX_PROM_FEATURE_SETS; i++)
if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0)
break;
cpuphyid = get_sapicid();
if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice))
BUG();
for (i=0; i < MAX_NUMNODES; i++) {
if (nodepdaindr[i]) {
nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid;
nodepdaindr[i]->phys_cpuid[cpuid].slice = slice;
nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode;
}
}
cnode = nasid_to_cnodeid(nasid);
sn_nodepda = nodepdaindr[cnode];
pda->led_address =
(typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
pda->led_state = LED_ALWAYS_SET;
pda->hb_count = HZ / 2;
pda->hb_state = 0;
pda->idle_flag = 0;
if (cpuid != 0) {
/* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */
memcpy(sn_cnodeid_to_nasid,
(&per_cpu(__sn_cnodeid_to_nasid, 0)),
sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
}
/*
* Check for WARs.
* Only needs to be done once, on BSP.
* Has to be done after loop above, because it uses this cpu's
* sn_cnodeid_to_nasid table which was just initialized if this
* isn't cpu 0.
* Has to be done before assignment below.
*/
if (!wars_have_been_checked) {
sn_check_for_wars();
wars_have_been_checked = 1;
}
sn_hub_info->shub_1_1_found = shub_1_1_found;
/*
* Set up addresses of PIO/MEM write status registers.
*/
{
u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2,
SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3};
u64 *pio;
pio = is_shub1() ? pio1 : pio2;
pda->pio_write_status_addr =
(volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, pio[slice]);
pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0;
}
/*
* WAR addresses for SHUB 1.x.
*/
if (local_node_data->active_cpu_count++ == 0 && is_shub1()) {
int buddy_nasid;
buddy_nasid =
cnodeid_to_nasid(numa_node_id() ==
num_online_nodes() - 1 ? 0 : numa_node_id() + 1);
pda->pio_shub_war_cam_addr =
(volatile unsigned long *)GLOBAL_MMR_ADDR(nasid,
SH1_PI_CAM_CONTROL);
}
}
/*
* Build tables for converting between NASIDs and cnodes.
*/
static inline int __init board_needs_cnode(int type)
{
return (type == KLTYPE_SNIA || type == KLTYPE_TIO);
}
void __init build_cnode_tables(void)
{
int nasid;
int node;
lboard_t *brd;
memset(physical_node_map, -1, sizeof(physical_node_map));
memset(sn_cnodeid_to_nasid, -1,
sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
/*
* First populate the tables with C/M bricks. This ensures that
* cnode == node for all C & M bricks.
*/
for_each_online_node(node) {
nasid = pxm_to_nasid(node_to_pxm(node));
sn_cnodeid_to_nasid[node] = nasid;
physical_node_map[nasid] = node;
}
/*
* num_cnodes is total number of C/M/TIO bricks. Because of the 256 node
* limit on the number of nodes, we can't use the generic node numbers
* for this. Note that num_cnodes is incremented below as TIOs or
* headless/memoryless nodes are discovered.
*/
num_cnodes = num_online_nodes();
/* fakeprom does not support klgraph */
if (IS_RUNNING_ON_FAKE_PROM())
return;
/* Find TIOs & headless/memoryless nodes and add them to the tables */
for_each_online_node(node) {
kl_config_hdr_t *klgraph_header;
nasid = cnodeid_to_nasid(node);
klgraph_header = ia64_sn_get_klconfig_addr(nasid);
BUG_ON(klgraph_header == NULL);
brd = NODE_OFFSET_TO_LBOARD(nasid, klgraph_header->ch_board_info);
while (brd) {
if (board_needs_cnode(brd->brd_type) && physical_node_map[brd->brd_nasid] < 0) {
sn_cnodeid_to_nasid[num_cnodes] = brd->brd_nasid;
physical_node_map[brd->brd_nasid] = num_cnodes++;
}
brd = find_lboard_next(brd);
}
}
}
int
nasid_slice_to_cpuid(int nasid, int slice)
{
long cpu;
for (cpu = 0; cpu < nr_cpu_ids; cpu++)
if (cpuid_to_nasid(cpu) == nasid &&
cpuid_to_slice(cpu) == slice)
return cpu;
return -1;
}
int sn_prom_feature_available(int id)
{
if (id >= BITS_PER_LONG * MAX_PROM_FEATURE_SETS)
return 0;
return test_bit(id, sn_prom_features);
}
void
sn_kernel_launch_event(void)
{
/* ignore status until we understand possible failure, if any*/
if (ia64_sn_kernel_launch_event())
printk(KERN_ERR "KEXEC is not supported in this PROM, Please update the PROM.\n");
}
EXPORT_SYMBOL(sn_prom_feature_available);