/* * Freescale DMA ALSA SoC PCM driver * * Author: Timur Tabi <timur@freescale.com> * * Copyright 2007-2010 Freescale Semiconductor, Inc. * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. * * This driver implements ASoC support for the Elo DMA controller, which is * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms, * the PCM driver is what handles the DMA buffer. */ #include <linux/module.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/gfp.h> #include <linux/of_platform.h> #include <linux/list.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <asm/io.h> #include "fsl_dma.h" #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */ /* * The formats that the DMA controller supports, which is anything * that is 8, 16, or 32 bits. */ #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \ SNDRV_PCM_FMTBIT_U8 | \ SNDRV_PCM_FMTBIT_S16_LE | \ SNDRV_PCM_FMTBIT_S16_BE | \ SNDRV_PCM_FMTBIT_U16_LE | \ SNDRV_PCM_FMTBIT_U16_BE | \ SNDRV_PCM_FMTBIT_S24_LE | \ SNDRV_PCM_FMTBIT_S24_BE | \ SNDRV_PCM_FMTBIT_U24_LE | \ SNDRV_PCM_FMTBIT_U24_BE | \ SNDRV_PCM_FMTBIT_S32_LE | \ SNDRV_PCM_FMTBIT_S32_BE | \ SNDRV_PCM_FMTBIT_U32_LE | \ SNDRV_PCM_FMTBIT_U32_BE) #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ SNDRV_PCM_RATE_CONTINUOUS) struct dma_object { struct snd_soc_platform_driver dai; dma_addr_t ssi_stx_phys; dma_addr_t ssi_srx_phys; unsigned int ssi_fifo_depth; struct ccsr_dma_channel __iomem *channel; unsigned int irq; bool assigned; char path[1]; }; /* * The number of DMA links to use. Two is the bare minimum, but if you * have really small links you might need more. */ #define NUM_DMA_LINKS 2 /** fsl_dma_private: p-substream DMA data * * Each substream has a 1-to-1 association with a DMA channel. * * The link[] array is first because it needs to be aligned on a 32-byte * boundary, so putting it first will ensure alignment without padding the * structure. * * @link[]: array of link descriptors * @dma_channel: pointer to the DMA channel's registers * @irq: IRQ for this DMA channel * @substream: pointer to the substream object, needed by the ISR * @ssi_sxx_phys: bus address of the STX or SRX register to use * @ld_buf_phys: physical address of the LD buffer * @current_link: index into link[] of the link currently being processed * @dma_buf_phys: physical address of the DMA buffer * @dma_buf_next: physical address of the next period to process * @dma_buf_end: physical address of the byte after the end of the DMA * @buffer period_size: the size of a single period * @num_periods: the number of periods in the DMA buffer */ struct fsl_dma_private { struct fsl_dma_link_descriptor link[NUM_DMA_LINKS]; struct ccsr_dma_channel __iomem *dma_channel; unsigned int irq; struct snd_pcm_substream *substream; dma_addr_t ssi_sxx_phys; unsigned int ssi_fifo_depth; dma_addr_t ld_buf_phys; unsigned int current_link; dma_addr_t dma_buf_phys; dma_addr_t dma_buf_next; dma_addr_t dma_buf_end; size_t period_size; unsigned int num_periods; }; /** * fsl_dma_hardare: define characteristics of the PCM hardware. * * The PCM hardware is the Freescale DMA controller. This structure defines * the capabilities of that hardware. * * Since the sampling rate and data format are not controlled by the DMA * controller, we specify no limits for those values. The only exception is * period_bytes_min, which is set to a reasonably low value to prevent the * DMA controller from generating too many interrupts per second. * * Since each link descriptor has a 32-bit byte count field, we set * period_bytes_max to the largest 32-bit number. We also have no maximum * number of periods. * * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a * limitation in the SSI driver requires the sample rates for playback and * capture to be the same. */ static const struct snd_pcm_hardware fsl_dma_hardware = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_PAUSE, .formats = FSLDMA_PCM_FORMATS, .rates = FSLDMA_PCM_RATES, .rate_min = 5512, .rate_max = 192000, .period_bytes_min = 512, /* A reasonable limit */ .period_bytes_max = (u32) -1, .periods_min = NUM_DMA_LINKS, .periods_max = (unsigned int) -1, .buffer_bytes_max = 128 * 1024, /* A reasonable limit */ }; /** * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted * * This function should be called by the ISR whenever the DMA controller * halts data transfer. */ static void fsl_dma_abort_stream(struct snd_pcm_substream *substream) { unsigned long flags; snd_pcm_stream_lock_irqsave(substream, flags); if (snd_pcm_running(substream)) snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); snd_pcm_stream_unlock_irqrestore(substream, flags); } /** * fsl_dma_update_pointers - update LD pointers to point to the next period * * As each period is completed, this function changes the the link * descriptor pointers for that period to point to the next period. */ static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private) { struct fsl_dma_link_descriptor *link = &dma_private->link[dma_private->current_link]; /* Update our link descriptors to point to the next period. On a 36-bit * system, we also need to update the ESAD bits. We also set (keep) the * snoop bits. See the comments in fsl_dma_hw_params() about snooping. */ if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { link->source_addr = cpu_to_be32(dma_private->dma_buf_next); #ifdef CONFIG_PHYS_64BIT link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | upper_32_bits(dma_private->dma_buf_next)); #endif } else { link->dest_addr = cpu_to_be32(dma_private->dma_buf_next); #ifdef CONFIG_PHYS_64BIT link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | upper_32_bits(dma_private->dma_buf_next)); #endif } /* Update our variables for next time */ dma_private->dma_buf_next += dma_private->period_size; if (dma_private->dma_buf_next >= dma_private->dma_buf_end) dma_private->dma_buf_next = dma_private->dma_buf_phys; if (++dma_private->current_link >= NUM_DMA_LINKS) dma_private->current_link = 0; } /** * fsl_dma_isr: interrupt handler for the DMA controller * * @irq: IRQ of the DMA channel * @dev_id: pointer to the dma_private structure for this DMA channel */ static irqreturn_t fsl_dma_isr(int irq, void *dev_id) { struct fsl_dma_private *dma_private = dev_id; struct snd_pcm_substream *substream = dma_private->substream; struct snd_soc_pcm_runtime *rtd = substream->private_data; struct device *dev = rtd->platform->dev; struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; irqreturn_t ret = IRQ_NONE; u32 sr, sr2 = 0; /* We got an interrupt, so read the status register to see what we were interrupted for. */ sr = in_be32(&dma_channel->sr); if (sr & CCSR_DMA_SR_TE) { dev_err(dev, "dma transmit error\n"); fsl_dma_abort_stream(substream); sr2 |= CCSR_DMA_SR_TE; ret = IRQ_HANDLED; } if (sr & CCSR_DMA_SR_CH) ret = IRQ_HANDLED; if (sr & CCSR_DMA_SR_PE) { dev_err(dev, "dma programming error\n"); fsl_dma_abort_stream(substream); sr2 |= CCSR_DMA_SR_PE; ret = IRQ_HANDLED; } if (sr & CCSR_DMA_SR_EOLNI) { sr2 |= CCSR_DMA_SR_EOLNI; ret = IRQ_HANDLED; } if (sr & CCSR_DMA_SR_CB) ret = IRQ_HANDLED; if (sr & CCSR_DMA_SR_EOSI) { /* Tell ALSA we completed a period. */ snd_pcm_period_elapsed(substream); /* * Update our link descriptors to point to the next period. We * only need to do this if the number of periods is not equal to * the number of links. */ if (dma_private->num_periods != NUM_DMA_LINKS) fsl_dma_update_pointers(dma_private); sr2 |= CCSR_DMA_SR_EOSI; ret = IRQ_HANDLED; } if (sr & CCSR_DMA_SR_EOLSI) { sr2 |= CCSR_DMA_SR_EOLSI; ret = IRQ_HANDLED; } /* Clear the bits that we set */ if (sr2) out_be32(&dma_channel->sr, sr2); return ret; } /** * fsl_dma_new: initialize this PCM driver. * * This function is called when the codec driver calls snd_soc_new_pcms(), * once for each .dai_link in the machine driver's snd_soc_card * structure. * * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM * is specified. Therefore, any DMA buffers we allocate will always be in low * memory, but we support for 36-bit physical addresses anyway. * * Regardless of where the memory is actually allocated, since the device can * technically DMA to any 36-bit address, we do need to set the DMA mask to 36. */ static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai, struct snd_pcm *pcm) { static u64 fsl_dma_dmamask = DMA_BIT_MASK(36); int ret; if (!card->dev->dma_mask) card->dev->dma_mask = &fsl_dma_dmamask; if (!card->dev->coherent_dma_mask) card->dev->coherent_dma_mask = fsl_dma_dmamask; /* Some codecs have separate DAIs for playback and capture, so we * should allocate a DMA buffer only for the streams that are valid. */ if (pcm->streams[0].substream) { ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, fsl_dma_hardware.buffer_bytes_max, &pcm->streams[0].substream->dma_buffer); if (ret) { dev_err(card->dev, "can't alloc playback dma buffer\n"); return ret; } } if (pcm->streams[1].substream) { ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, fsl_dma_hardware.buffer_bytes_max, &pcm->streams[1].substream->dma_buffer); if (ret) { dev_err(card->dev, "can't alloc capture dma buffer\n"); snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer); return ret; } } return 0; } /** * fsl_dma_open: open a new substream. * * Each substream has its own DMA buffer. * * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link * descriptors that ping-pong from one period to the next. For example, if * there are six periods and two link descriptors, this is how they look * before playback starts: * * The last link descriptor * ____________ points back to the first * | | * V | * ___ ___ | * | |->| |->| * |___| |___| * | | * | | * V V * _________________________________________ * | | | | | | | The DMA buffer is * | | | | | | | divided into 6 parts * |______|______|______|______|______|______| * * and here's how they look after the first period is finished playing: * * ____________ * | | * V | * ___ ___ | * | |->| |->| * |___| |___| * | | * |______________ * | | * V V * _________________________________________ * | | | | | | | * | | | | | | | * |______|______|______|______|______|______| * * The first link descriptor now points to the third period. The DMA * controller is currently playing the second period. When it finishes, it * will jump back to the first descriptor and play the third period. * * There are four reasons we do this: * * 1. The only way to get the DMA controller to automatically restart the * transfer when it gets to the end of the buffer is to use chaining * mode. Basic direct mode doesn't offer that feature. * 2. We need to receive an interrupt at the end of every period. The DMA * controller can generate an interrupt at the end of every link transfer * (aka segment). Making each period into a DMA segment will give us the * interrupts we need. * 3. By creating only two link descriptors, regardless of the number of * periods, we do not need to reallocate the link descriptors if the * number of periods changes. * 4. All of the audio data is still stored in a single, contiguous DMA * buffer, which is what ALSA expects. We're just dividing it into * contiguous parts, and creating a link descriptor for each one. */ static int fsl_dma_open(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_soc_pcm_runtime *rtd = substream->private_data; struct device *dev = rtd->platform->dev; struct dma_object *dma = container_of(rtd->platform->driver, struct dma_object, dai); struct fsl_dma_private *dma_private; struct ccsr_dma_channel __iomem *dma_channel; dma_addr_t ld_buf_phys; u64 temp_link; /* Pointer to next link descriptor */ u32 mr; unsigned int channel; int ret = 0; unsigned int i; /* * Reject any DMA buffer whose size is not a multiple of the period * size. We need to make sure that the DMA buffer can be evenly divided * into periods. */ ret = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (ret < 0) { dev_err(dev, "invalid buffer size\n"); return ret; } channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; if (dma->assigned) { dev_err(dev, "dma channel already assigned\n"); return -EBUSY; } dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL); if (!dma_private) { dev_err(dev, "can't allocate dma private data\n"); return -ENOMEM; } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) dma_private->ssi_sxx_phys = dma->ssi_stx_phys; else dma_private->ssi_sxx_phys = dma->ssi_srx_phys; dma_private->ssi_fifo_depth = dma->ssi_fifo_depth; dma_private->dma_channel = dma->channel; dma_private->irq = dma->irq; dma_private->substream = substream; dma_private->ld_buf_phys = ld_buf_phys; dma_private->dma_buf_phys = substream->dma_buffer.addr; ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio", dma_private); if (ret) { dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n", dma_private->irq, ret); dma_free_coherent(dev, sizeof(struct fsl_dma_private), dma_private, dma_private->ld_buf_phys); return ret; } dma->assigned = 1; snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); runtime->private_data = dma_private; /* Program the fixed DMA controller parameters */ dma_channel = dma_private->dma_channel; temp_link = dma_private->ld_buf_phys + sizeof(struct fsl_dma_link_descriptor); for (i = 0; i < NUM_DMA_LINKS; i++) { dma_private->link[i].next = cpu_to_be64(temp_link); temp_link += sizeof(struct fsl_dma_link_descriptor); } /* The last link descriptor points to the first */ dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys); /* Tell the DMA controller where the first link descriptor is */ out_be32(&dma_channel->clndar, CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys)); out_be32(&dma_channel->eclndar, CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys)); /* The manual says the BCR must be clear before enabling EMP */ out_be32(&dma_channel->bcr, 0); /* * Program the mode register for interrupts, external master control, * and source/destination hold. Also clear the Channel Abort bit. */ mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE); /* * We want External Master Start and External Master Pause enabled, * because the SSI is controlling the DMA controller. We want the DMA * controller to be set up in advance, and then we signal only the SSI * to start transferring. * * We want End-Of-Segment Interrupts enabled, because this will generate * an interrupt at the end of each segment (each link descriptor * represents one segment). Each DMA segment is the same thing as an * ALSA period, so this is how we get an interrupt at the end of every * period. * * We want Error Interrupt enabled, so that we can get an error if * the DMA controller is mis-programmed somehow. */ mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN | CCSR_DMA_MR_EMS_EN; /* For playback, we want the destination address to be held. For capture, set the source address to be held. */ mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE; out_be32(&dma_channel->mr, mr); return 0; } /** * fsl_dma_hw_params: continue initializing the DMA links * * This function obtains hardware parameters about the opened stream and * programs the DMA controller accordingly. * * One drawback of big-endian is that when copying integers of different * sizes to a fixed-sized register, the address to which the integer must be * copied is dependent on the size of the integer. * * For example, if P is the address of a 32-bit register, and X is a 32-bit * integer, then X should be copied to address P. However, if X is a 16-bit * integer, then it should be copied to P+2. If X is an 8-bit register, * then it should be copied to P+3. * * So for playback of 8-bit samples, the DMA controller must transfer single * bytes from the DMA buffer to the last byte of the STX0 register, i.e. * offset by 3 bytes. For 16-bit samples, the offset is two bytes. * * For 24-bit samples, the offset is 1 byte. However, the DMA controller * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4, * and 8 bytes at a time). So we do not support packed 24-bit samples. * 24-bit data must be padded to 32 bits. */ static int fsl_dma_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_dma_private *dma_private = runtime->private_data; struct snd_soc_pcm_runtime *rtd = substream->private_data; struct device *dev = rtd->platform->dev; /* Number of bits per sample */ unsigned int sample_bits = snd_pcm_format_physical_width(params_format(hw_params)); /* Number of bytes per frame */ unsigned int sample_bytes = sample_bits / 8; /* Bus address of SSI STX register */ dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys; /* Size of the DMA buffer, in bytes */ size_t buffer_size = params_buffer_bytes(hw_params); /* Number of bytes per period */ size_t period_size = params_period_bytes(hw_params); /* Pointer to next period */ dma_addr_t temp_addr = substream->dma_buffer.addr; /* Pointer to DMA controller */ struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; u32 mr; /* DMA Mode Register */ unsigned int i; /* Initialize our DMA tracking variables */ dma_private->period_size = period_size; dma_private->num_periods = params_periods(hw_params); dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size; dma_private->dma_buf_next = dma_private->dma_buf_phys + (NUM_DMA_LINKS * period_size); if (dma_private->dma_buf_next >= dma_private->dma_buf_end) /* This happens if the number of periods == NUM_DMA_LINKS */ dma_private->dma_buf_next = dma_private->dma_buf_phys; mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK | CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK); /* Due to a quirk of the SSI's STX register, the target address * for the DMA operations depends on the sample size. So we calculate * that offset here. While we're at it, also tell the DMA controller * how much data to transfer per sample. */ switch (sample_bits) { case 8: mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1; ssi_sxx_phys += 3; break; case 16: mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2; ssi_sxx_phys += 2; break; case 32: mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4; break; default: /* We should never get here */ dev_err(dev, "unsupported sample size %u\n", sample_bits); return -EINVAL; } /* * BWC determines how many bytes are sent/received before the DMA * controller checks the SSI to see if it needs to stop. BWC should * always be a multiple of the frame size, so that we always transmit * whole frames. Each frame occupies two slots in the FIFO. The * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two * (MR[BWC] can only represent even powers of two). * * To simplify the process, we set BWC to the largest value that is * less than or equal to the FIFO watermark. For playback, this ensures * that we transfer the maximum amount without overrunning the FIFO. * For capture, this ensures that we transfer the maximum amount without * underrunning the FIFO. * * f = SSI FIFO depth * w = SSI watermark value (which equals f - 2) * b = DMA bandwidth count (in bytes) * s = sample size (in bytes, which equals frame_size * 2) * * For playback, we never transmit more than the transmit FIFO * watermark, otherwise we might write more data than the FIFO can hold. * The watermark is equal to the FIFO depth minus two. * * For capture, two equations must hold: * w > f - (b / s) * w >= b / s * * So, b > 2 * s, but b must also be <= s * w. To simplify, we set * b = s * w, which is equal to * (dma_private->ssi_fifo_depth - 2) * sample_bytes. */ mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes); out_be32(&dma_channel->mr, mr); for (i = 0; i < NUM_DMA_LINKS; i++) { struct fsl_dma_link_descriptor *link = &dma_private->link[i]; link->count = cpu_to_be32(period_size); /* The snoop bit tells the DMA controller whether it should tell * the ECM to snoop during a read or write to an address. For * audio, we use DMA to transfer data between memory and an I/O * device (the SSI's STX0 or SRX0 register). Snooping is only * needed if there is a cache, so we need to snoop memory * addresses only. For playback, that means we snoop the source * but not the destination. For capture, we snoop the * destination but not the source. * * Note that failing to snoop properly is unlikely to cause * cache incoherency if the period size is larger than the * size of L1 cache. This is because filling in one period will * flush out the data for the previous period. So if you * increased period_bytes_min to a large enough size, you might * get more performance by not snooping, and you'll still be * okay. You'll need to update fsl_dma_update_pointers() also. */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { link->source_addr = cpu_to_be32(temp_addr); link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | upper_32_bits(temp_addr)); link->dest_addr = cpu_to_be32(ssi_sxx_phys); link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | upper_32_bits(ssi_sxx_phys)); } else { link->source_addr = cpu_to_be32(ssi_sxx_phys); link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | upper_32_bits(ssi_sxx_phys)); link->dest_addr = cpu_to_be32(temp_addr); link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | upper_32_bits(temp_addr)); } temp_addr += period_size; } return 0; } /** * fsl_dma_pointer: determine the current position of the DMA transfer * * This function is called by ALSA when ALSA wants to know where in the * stream buffer the hardware currently is. * * For playback, the SAR register contains the physical address of the most * recent DMA transfer. For capture, the value is in the DAR register. * * The base address of the buffer is stored in the source_addr field of the * first link descriptor. */ static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_dma_private *dma_private = runtime->private_data; struct snd_soc_pcm_runtime *rtd = substream->private_data; struct device *dev = rtd->platform->dev; struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; dma_addr_t position; snd_pcm_uframes_t frames; /* Obtain the current DMA pointer, but don't read the ESAD bits if we * only have 32-bit DMA addresses. This function is typically called * in interrupt context, so we need to optimize it. */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { position = in_be32(&dma_channel->sar); #ifdef CONFIG_PHYS_64BIT position |= (u64)(in_be32(&dma_channel->satr) & CCSR_DMA_ATR_ESAD_MASK) << 32; #endif } else { position = in_be32(&dma_channel->dar); #ifdef CONFIG_PHYS_64BIT position |= (u64)(in_be32(&dma_channel->datr) & CCSR_DMA_ATR_ESAD_MASK) << 32; #endif } /* * When capture is started, the SSI immediately starts to fill its FIFO. * This means that the DMA controller is not started until the FIFO is * full. However, ALSA calls this function before that happens, when * MR.DAR is still zero. In this case, just return zero to indicate * that nothing has been received yet. */ if (!position) return 0; if ((position < dma_private->dma_buf_phys) || (position > dma_private->dma_buf_end)) { dev_err(dev, "dma pointer is out of range, halting stream\n"); return SNDRV_PCM_POS_XRUN; } frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys); /* * If the current address is just past the end of the buffer, wrap it * around. */ if (frames == runtime->buffer_size) frames = 0; return frames; } /** * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params() * * Release the resources allocated in fsl_dma_hw_params() and de-program the * registers. * * This function can be called multiple times. */ static int fsl_dma_hw_free(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_dma_private *dma_private = runtime->private_data; if (dma_private) { struct ccsr_dma_channel __iomem *dma_channel; dma_channel = dma_private->dma_channel; /* Stop the DMA */ out_be32(&dma_channel->mr, CCSR_DMA_MR_CA); out_be32(&dma_channel->mr, 0); /* Reset all the other registers */ out_be32(&dma_channel->sr, -1); out_be32(&dma_channel->clndar, 0); out_be32(&dma_channel->eclndar, 0); out_be32(&dma_channel->satr, 0); out_be32(&dma_channel->sar, 0); out_be32(&dma_channel->datr, 0); out_be32(&dma_channel->dar, 0); out_be32(&dma_channel->bcr, 0); out_be32(&dma_channel->nlndar, 0); out_be32(&dma_channel->enlndar, 0); } return 0; } /** * fsl_dma_close: close the stream. */ static int fsl_dma_close(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_dma_private *dma_private = runtime->private_data; struct snd_soc_pcm_runtime *rtd = substream->private_data; struct device *dev = rtd->platform->dev; struct dma_object *dma = container_of(rtd->platform->driver, struct dma_object, dai); if (dma_private) { if (dma_private->irq) free_irq(dma_private->irq, dma_private); if (dma_private->ld_buf_phys) { dma_unmap_single(dev, dma_private->ld_buf_phys, sizeof(dma_private->link), DMA_TO_DEVICE); } /* Deallocate the fsl_dma_private structure */ dma_free_coherent(dev, sizeof(struct fsl_dma_private), dma_private, dma_private->ld_buf_phys); substream->runtime->private_data = NULL; } dma->assigned = 0; return 0; } /* * Remove this PCM driver. */ static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm) { struct snd_pcm_substream *substream; unsigned int i; for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) { substream = pcm->streams[i].substream; if (substream) { snd_dma_free_pages(&substream->dma_buffer); substream->dma_buffer.area = NULL; substream->dma_buffer.addr = 0; } } } /** * find_ssi_node -- returns the SSI node that points to his DMA channel node * * Although this DMA driver attempts to operate independently of the other * devices, it still needs to determine some information about the SSI device * that it's working with. Unfortunately, the device tree does not contain * a pointer from the DMA channel node to the SSI node -- the pointer goes the * other way. So we need to scan the device tree for SSI nodes until we find * the one that points to the given DMA channel node. It's ugly, but at least * it's contained in this one function. */ static struct device_node *find_ssi_node(struct device_node *dma_channel_np) { struct device_node *ssi_np, *np; for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") { /* Check each DMA phandle to see if it points to us. We * assume that device_node pointers are a valid comparison. */ np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0); if (np == dma_channel_np) return ssi_np; np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0); if (np == dma_channel_np) return ssi_np; } return NULL; } static struct snd_pcm_ops fsl_dma_ops = { .open = fsl_dma_open, .close = fsl_dma_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = fsl_dma_hw_params, .hw_free = fsl_dma_hw_free, .pointer = fsl_dma_pointer, }; static int __devinit fsl_soc_dma_probe(struct platform_device *pdev) { struct dma_object *dma; struct device_node *np = pdev->dev.of_node; struct device_node *ssi_np; struct resource res; const uint32_t *iprop; int ret; /* Find the SSI node that points to us. */ ssi_np = find_ssi_node(np); if (!ssi_np) { dev_err(&pdev->dev, "cannot find parent SSI node\n"); return -ENODEV; } ret = of_address_to_resource(ssi_np, 0, &res); if (ret) { dev_err(&pdev->dev, "could not determine resources for %s\n", ssi_np->full_name); of_node_put(ssi_np); return ret; } dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL); if (!dma) { dev_err(&pdev->dev, "could not allocate dma object\n"); of_node_put(ssi_np); return -ENOMEM; } strcpy(dma->path, np->full_name); dma->dai.ops = &fsl_dma_ops; dma->dai.pcm_new = fsl_dma_new; dma->dai.pcm_free = fsl_dma_free_dma_buffers; /* Store the SSI-specific information that we need */ dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0); dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0); iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL); if (iprop) dma->ssi_fifo_depth = *iprop; else /* Older 8610 DTs didn't have the fifo-depth property */ dma->ssi_fifo_depth = 8; of_node_put(ssi_np); ret = snd_soc_register_platform(&pdev->dev, &dma->dai); if (ret) { dev_err(&pdev->dev, "could not register platform\n"); kfree(dma); return ret; } dma->channel = of_iomap(np, 0); dma->irq = irq_of_parse_and_map(np, 0); dev_set_drvdata(&pdev->dev, dma); return 0; } static int __devexit fsl_soc_dma_remove(struct platform_device *pdev) { struct dma_object *dma = dev_get_drvdata(&pdev->dev); snd_soc_unregister_platform(&pdev->dev); iounmap(dma->channel); irq_dispose_mapping(dma->irq); kfree(dma); return 0; } static const struct of_device_id fsl_soc_dma_ids[] = { { .compatible = "fsl,ssi-dma-channel", }, {} }; MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids); static struct platform_driver fsl_soc_dma_driver = { .driver = { .name = "fsl-pcm-audio", .owner = THIS_MODULE, .of_match_table = fsl_soc_dma_ids, }, .probe = fsl_soc_dma_probe, .remove = __devexit_p(fsl_soc_dma_remove), }; static int __init fsl_soc_dma_init(void) { pr_info("Freescale Elo DMA ASoC PCM Driver\n"); return platform_driver_register(&fsl_soc_dma_driver); } static void __exit fsl_soc_dma_exit(void) { platform_driver_unregister(&fsl_soc_dma_driver); } module_init(fsl_soc_dma_init); module_exit(fsl_soc_dma_exit); MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver"); MODULE_LICENSE("GPL v2");