/* * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* Crude resource management */ #include <linux/kernel.h> #include <linux/random.h> #include <linux/slab.h> #include <linux/kfifo.h> #include <linux/spinlock.h> #include <linux/errno.h> #include <linux/genalloc.h> #include "iw_cxgb4.h" #define RANDOM_SIZE 16 static int __c4iw_init_resource_fifo(struct kfifo *fifo, spinlock_t *fifo_lock, u32 nr, u32 skip_low, u32 skip_high, int random) { u32 i, j, entry = 0, idx; u32 random_bytes; u32 rarray[16]; spin_lock_init(fifo_lock); if (kfifo_alloc(fifo, nr * sizeof(u32), GFP_KERNEL)) return -ENOMEM; for (i = 0; i < skip_low + skip_high; i++) kfifo_in(fifo, (unsigned char *) &entry, sizeof(u32)); if (random) { j = 0; random_bytes = random32(); for (i = 0; i < RANDOM_SIZE; i++) rarray[i] = i + skip_low; for (i = skip_low + RANDOM_SIZE; i < nr - skip_high; i++) { if (j >= RANDOM_SIZE) { j = 0; random_bytes = random32(); } idx = (random_bytes >> (j * 2)) & 0xF; kfifo_in(fifo, (unsigned char *) &rarray[idx], sizeof(u32)); rarray[idx] = i; j++; } for (i = 0; i < RANDOM_SIZE; i++) kfifo_in(fifo, (unsigned char *) &rarray[i], sizeof(u32)); } else for (i = skip_low; i < nr - skip_high; i++) kfifo_in(fifo, (unsigned char *) &i, sizeof(u32)); for (i = 0; i < skip_low + skip_high; i++) if (kfifo_out_locked(fifo, (unsigned char *) &entry, sizeof(u32), fifo_lock)) break; return 0; } static int c4iw_init_resource_fifo(struct kfifo *fifo, spinlock_t * fifo_lock, u32 nr, u32 skip_low, u32 skip_high) { return __c4iw_init_resource_fifo(fifo, fifo_lock, nr, skip_low, skip_high, 0); } static int c4iw_init_resource_fifo_random(struct kfifo *fifo, spinlock_t *fifo_lock, u32 nr, u32 skip_low, u32 skip_high) { return __c4iw_init_resource_fifo(fifo, fifo_lock, nr, skip_low, skip_high, 1); } static int c4iw_init_qid_fifo(struct c4iw_rdev *rdev) { u32 i; spin_lock_init(&rdev->resource.qid_fifo_lock); if (kfifo_alloc(&rdev->resource.qid_fifo, rdev->lldi.vr->qp.size * sizeof(u32), GFP_KERNEL)) return -ENOMEM; for (i = rdev->lldi.vr->qp.start; i < rdev->lldi.vr->qp.start + rdev->lldi.vr->qp.size; i++) if (!(i & rdev->qpmask)) kfifo_in(&rdev->resource.qid_fifo, (unsigned char *) &i, sizeof(u32)); return 0; } /* nr_* must be power of 2 */ int c4iw_init_resource(struct c4iw_rdev *rdev, u32 nr_tpt, u32 nr_pdid) { int err = 0; err = c4iw_init_resource_fifo_random(&rdev->resource.tpt_fifo, &rdev->resource.tpt_fifo_lock, nr_tpt, 1, 0); if (err) goto tpt_err; err = c4iw_init_qid_fifo(rdev); if (err) goto qid_err; err = c4iw_init_resource_fifo(&rdev->resource.pdid_fifo, &rdev->resource.pdid_fifo_lock, nr_pdid, 1, 0); if (err) goto pdid_err; return 0; pdid_err: kfifo_free(&rdev->resource.qid_fifo); qid_err: kfifo_free(&rdev->resource.tpt_fifo); tpt_err: return -ENOMEM; } /* * returns 0 if no resource available */ u32 c4iw_get_resource(struct kfifo *fifo, spinlock_t *lock) { u32 entry; if (kfifo_out_locked(fifo, (unsigned char *) &entry, sizeof(u32), lock)) return entry; else return 0; } void c4iw_put_resource(struct kfifo *fifo, u32 entry, spinlock_t *lock) { PDBG("%s entry 0x%x\n", __func__, entry); kfifo_in_locked(fifo, (unsigned char *) &entry, sizeof(u32), lock); } u32 c4iw_get_cqid(struct c4iw_rdev *rdev, struct c4iw_dev_ucontext *uctx) { struct c4iw_qid_list *entry; u32 qid; int i; mutex_lock(&uctx->lock); if (!list_empty(&uctx->cqids)) { entry = list_entry(uctx->cqids.next, struct c4iw_qid_list, entry); list_del(&entry->entry); qid = entry->qid; kfree(entry); } else { qid = c4iw_get_resource(&rdev->resource.qid_fifo, &rdev->resource.qid_fifo_lock); if (!qid) goto out; for (i = qid+1; i & rdev->qpmask; i++) { entry = kmalloc(sizeof *entry, GFP_KERNEL); if (!entry) goto out; entry->qid = i; list_add_tail(&entry->entry, &uctx->cqids); } /* * now put the same ids on the qp list since they all * map to the same db/gts page. */ entry = kmalloc(sizeof *entry, GFP_KERNEL); if (!entry) goto out; entry->qid = qid; list_add_tail(&entry->entry, &uctx->qpids); for (i = qid+1; i & rdev->qpmask; i++) { entry = kmalloc(sizeof *entry, GFP_KERNEL); if (!entry) goto out; entry->qid = i; list_add_tail(&entry->entry, &uctx->qpids); } } out: mutex_unlock(&uctx->lock); PDBG("%s qid 0x%x\n", __func__, qid); return qid; } void c4iw_put_cqid(struct c4iw_rdev *rdev, u32 qid, struct c4iw_dev_ucontext *uctx) { struct c4iw_qid_list *entry; entry = kmalloc(sizeof *entry, GFP_KERNEL); if (!entry) return; PDBG("%s qid 0x%x\n", __func__, qid); entry->qid = qid; mutex_lock(&uctx->lock); list_add_tail(&entry->entry, &uctx->cqids); mutex_unlock(&uctx->lock); } u32 c4iw_get_qpid(struct c4iw_rdev *rdev, struct c4iw_dev_ucontext *uctx) { struct c4iw_qid_list *entry; u32 qid; int i; mutex_lock(&uctx->lock); if (!list_empty(&uctx->qpids)) { entry = list_entry(uctx->qpids.next, struct c4iw_qid_list, entry); list_del(&entry->entry); qid = entry->qid; kfree(entry); } else { qid = c4iw_get_resource(&rdev->resource.qid_fifo, &rdev->resource.qid_fifo_lock); if (!qid) goto out; for (i = qid+1; i & rdev->qpmask; i++) { entry = kmalloc(sizeof *entry, GFP_KERNEL); if (!entry) goto out; entry->qid = i; list_add_tail(&entry->entry, &uctx->qpids); } /* * now put the same ids on the cq list since they all * map to the same db/gts page. */ entry = kmalloc(sizeof *entry, GFP_KERNEL); if (!entry) goto out; entry->qid = qid; list_add_tail(&entry->entry, &uctx->cqids); for (i = qid; i & rdev->qpmask; i++) { entry = kmalloc(sizeof *entry, GFP_KERNEL); if (!entry) goto out; entry->qid = i; list_add_tail(&entry->entry, &uctx->cqids); } } out: mutex_unlock(&uctx->lock); PDBG("%s qid 0x%x\n", __func__, qid); return qid; } void c4iw_put_qpid(struct c4iw_rdev *rdev, u32 qid, struct c4iw_dev_ucontext *uctx) { struct c4iw_qid_list *entry; entry = kmalloc(sizeof *entry, GFP_KERNEL); if (!entry) return; PDBG("%s qid 0x%x\n", __func__, qid); entry->qid = qid; mutex_lock(&uctx->lock); list_add_tail(&entry->entry, &uctx->qpids); mutex_unlock(&uctx->lock); } void c4iw_destroy_resource(struct c4iw_resource *rscp) { kfifo_free(&rscp->tpt_fifo); kfifo_free(&rscp->qid_fifo); kfifo_free(&rscp->pdid_fifo); } /* * PBL Memory Manager. Uses Linux generic allocator. */ #define MIN_PBL_SHIFT 8 /* 256B == min PBL size (32 entries) */ u32 c4iw_pblpool_alloc(struct c4iw_rdev *rdev, int size) { unsigned long addr = gen_pool_alloc(rdev->pbl_pool, size); PDBG("%s addr 0x%x size %d\n", __func__, (u32)addr, size); if (!addr && printk_ratelimit()) printk(KERN_WARNING MOD "%s: Out of PBL memory\n", pci_name(rdev->lldi.pdev)); return (u32)addr; } void c4iw_pblpool_free(struct c4iw_rdev *rdev, u32 addr, int size) { PDBG("%s addr 0x%x size %d\n", __func__, addr, size); gen_pool_free(rdev->pbl_pool, (unsigned long)addr, size); } int c4iw_pblpool_create(struct c4iw_rdev *rdev) { unsigned pbl_start, pbl_chunk, pbl_top; rdev->pbl_pool = gen_pool_create(MIN_PBL_SHIFT, -1); if (!rdev->pbl_pool) return -ENOMEM; pbl_start = rdev->lldi.vr->pbl.start; pbl_chunk = rdev->lldi.vr->pbl.size; pbl_top = pbl_start + pbl_chunk; while (pbl_start < pbl_top) { pbl_chunk = min(pbl_top - pbl_start + 1, pbl_chunk); if (gen_pool_add(rdev->pbl_pool, pbl_start, pbl_chunk, -1)) { PDBG("%s failed to add PBL chunk (%x/%x)\n", __func__, pbl_start, pbl_chunk); if (pbl_chunk <= 1024 << MIN_PBL_SHIFT) { printk(KERN_WARNING MOD "Failed to add all PBL chunks (%x/%x)\n", pbl_start, pbl_top - pbl_start); return 0; } pbl_chunk >>= 1; } else { PDBG("%s added PBL chunk (%x/%x)\n", __func__, pbl_start, pbl_chunk); pbl_start += pbl_chunk; } } return 0; } void c4iw_pblpool_destroy(struct c4iw_rdev *rdev) { gen_pool_destroy(rdev->pbl_pool); } /* * RQT Memory Manager. Uses Linux generic allocator. */ #define MIN_RQT_SHIFT 10 /* 1KB == min RQT size (16 entries) */ u32 c4iw_rqtpool_alloc(struct c4iw_rdev *rdev, int size) { unsigned long addr = gen_pool_alloc(rdev->rqt_pool, size << 6); PDBG("%s addr 0x%x size %d\n", __func__, (u32)addr, size << 6); if (!addr && printk_ratelimit()) printk(KERN_WARNING MOD "%s: Out of RQT memory\n", pci_name(rdev->lldi.pdev)); return (u32)addr; } void c4iw_rqtpool_free(struct c4iw_rdev *rdev, u32 addr, int size) { PDBG("%s addr 0x%x size %d\n", __func__, addr, size << 6); gen_pool_free(rdev->rqt_pool, (unsigned long)addr, size << 6); } int c4iw_rqtpool_create(struct c4iw_rdev *rdev) { unsigned rqt_start, rqt_chunk, rqt_top; rdev->rqt_pool = gen_pool_create(MIN_RQT_SHIFT, -1); if (!rdev->rqt_pool) return -ENOMEM; rqt_start = rdev->lldi.vr->rq.start; rqt_chunk = rdev->lldi.vr->rq.size; rqt_top = rqt_start + rqt_chunk; while (rqt_start < rqt_top) { rqt_chunk = min(rqt_top - rqt_start + 1, rqt_chunk); if (gen_pool_add(rdev->rqt_pool, rqt_start, rqt_chunk, -1)) { PDBG("%s failed to add RQT chunk (%x/%x)\n", __func__, rqt_start, rqt_chunk); if (rqt_chunk <= 1024 << MIN_RQT_SHIFT) { printk(KERN_WARNING MOD "Failed to add all RQT chunks (%x/%x)\n", rqt_start, rqt_top - rqt_start); return 0; } rqt_chunk >>= 1; } else { PDBG("%s added RQT chunk (%x/%x)\n", __func__, rqt_start, rqt_chunk); rqt_start += rqt_chunk; } } return 0; } void c4iw_rqtpool_destroy(struct c4iw_rdev *rdev) { gen_pool_destroy(rdev->rqt_pool); } /* * On-Chip QP Memory. */ #define MIN_OCQP_SHIFT 12 /* 4KB == min ocqp size */ u32 c4iw_ocqp_pool_alloc(struct c4iw_rdev *rdev, int size) { unsigned long addr = gen_pool_alloc(rdev->ocqp_pool, size); PDBG("%s addr 0x%x size %d\n", __func__, (u32)addr, size); return (u32)addr; } void c4iw_ocqp_pool_free(struct c4iw_rdev *rdev, u32 addr, int size) { PDBG("%s addr 0x%x size %d\n", __func__, addr, size); gen_pool_free(rdev->ocqp_pool, (unsigned long)addr, size); } int c4iw_ocqp_pool_create(struct c4iw_rdev *rdev) { unsigned start, chunk, top; rdev->ocqp_pool = gen_pool_create(MIN_OCQP_SHIFT, -1); if (!rdev->ocqp_pool) return -ENOMEM; start = rdev->lldi.vr->ocq.start; chunk = rdev->lldi.vr->ocq.size; top = start + chunk; while (start < top) { chunk = min(top - start + 1, chunk); if (gen_pool_add(rdev->ocqp_pool, start, chunk, -1)) { PDBG("%s failed to add OCQP chunk (%x/%x)\n", __func__, start, chunk); if (chunk <= 1024 << MIN_OCQP_SHIFT) { printk(KERN_WARNING MOD "Failed to add all OCQP chunks (%x/%x)\n", start, top - start); return 0; } chunk >>= 1; } else { PDBG("%s added OCQP chunk (%x/%x)\n", __func__, start, chunk); start += chunk; } } return 0; } void c4iw_ocqp_pool_destroy(struct c4iw_rdev *rdev) { gen_pool_destroy(rdev->ocqp_pool); }