/* * Copyright (c) 2005 Ammasso, Inc. All rights reserved. * Copyright (c) 2005 Open Grid Computing, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/inetdevice.h> #include <linux/delay.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/if_vlan.h> #include <linux/crc32.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/init.h> #include <linux/dma-mapping.h> #include <linux/slab.h> #include <linux/prefetch.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/byteorder.h> #include <rdma/ib_smi.h> #include "c2.h" #include "c2_provider.h" MODULE_AUTHOR("Tom Tucker <tom@opengridcomputing.com>"); MODULE_DESCRIPTION("Ammasso AMSO1100 Low-level iWARP Driver"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION(DRV_VERSION); static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN; static int debug = -1; /* defaults above */ module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); static int c2_up(struct net_device *netdev); static int c2_down(struct net_device *netdev); static int c2_xmit_frame(struct sk_buff *skb, struct net_device *netdev); static void c2_tx_interrupt(struct net_device *netdev); static void c2_rx_interrupt(struct net_device *netdev); static irqreturn_t c2_interrupt(int irq, void *dev_id); static void c2_tx_timeout(struct net_device *netdev); static int c2_change_mtu(struct net_device *netdev, int new_mtu); static void c2_reset(struct c2_port *c2_port); static struct pci_device_id c2_pci_table[] = { { PCI_DEVICE(0x18b8, 0xb001) }, { 0 } }; MODULE_DEVICE_TABLE(pci, c2_pci_table); static void c2_print_macaddr(struct net_device *netdev) { pr_debug("%s: MAC %pM, IRQ %u\n", netdev->name, netdev->dev_addr, netdev->irq); } static void c2_set_rxbufsize(struct c2_port *c2_port) { struct net_device *netdev = c2_port->netdev; if (netdev->mtu > RX_BUF_SIZE) c2_port->rx_buf_size = netdev->mtu + ETH_HLEN + sizeof(struct c2_rxp_hdr) + NET_IP_ALIGN; else c2_port->rx_buf_size = sizeof(struct c2_rxp_hdr) + RX_BUF_SIZE; } /* * Allocate TX ring elements and chain them together. * One-to-one association of adapter descriptors with ring elements. */ static int c2_tx_ring_alloc(struct c2_ring *tx_ring, void *vaddr, dma_addr_t base, void __iomem * mmio_txp_ring) { struct c2_tx_desc *tx_desc; struct c2_txp_desc __iomem *txp_desc; struct c2_element *elem; int i; tx_ring->start = kmalloc(sizeof(*elem) * tx_ring->count, GFP_KERNEL); if (!tx_ring->start) return -ENOMEM; elem = tx_ring->start; tx_desc = vaddr; txp_desc = mmio_txp_ring; for (i = 0; i < tx_ring->count; i++, elem++, tx_desc++, txp_desc++) { tx_desc->len = 0; tx_desc->status = 0; /* Set TXP_HTXD_UNINIT */ __raw_writeq((__force u64) cpu_to_be64(0x1122334455667788ULL), (void __iomem *) txp_desc + C2_TXP_ADDR); __raw_writew(0, (void __iomem *) txp_desc + C2_TXP_LEN); __raw_writew((__force u16) cpu_to_be16(TXP_HTXD_UNINIT), (void __iomem *) txp_desc + C2_TXP_FLAGS); elem->skb = NULL; elem->ht_desc = tx_desc; elem->hw_desc = txp_desc; if (i == tx_ring->count - 1) { elem->next = tx_ring->start; tx_desc->next_offset = base; } else { elem->next = elem + 1; tx_desc->next_offset = base + (i + 1) * sizeof(*tx_desc); } } tx_ring->to_use = tx_ring->to_clean = tx_ring->start; return 0; } /* * Allocate RX ring elements and chain them together. * One-to-one association of adapter descriptors with ring elements. */ static int c2_rx_ring_alloc(struct c2_ring *rx_ring, void *vaddr, dma_addr_t base, void __iomem * mmio_rxp_ring) { struct c2_rx_desc *rx_desc; struct c2_rxp_desc __iomem *rxp_desc; struct c2_element *elem; int i; rx_ring->start = kmalloc(sizeof(*elem) * rx_ring->count, GFP_KERNEL); if (!rx_ring->start) return -ENOMEM; elem = rx_ring->start; rx_desc = vaddr; rxp_desc = mmio_rxp_ring; for (i = 0; i < rx_ring->count; i++, elem++, rx_desc++, rxp_desc++) { rx_desc->len = 0; rx_desc->status = 0; /* Set RXP_HRXD_UNINIT */ __raw_writew((__force u16) cpu_to_be16(RXP_HRXD_OK), (void __iomem *) rxp_desc + C2_RXP_STATUS); __raw_writew(0, (void __iomem *) rxp_desc + C2_RXP_COUNT); __raw_writew(0, (void __iomem *) rxp_desc + C2_RXP_LEN); __raw_writeq((__force u64) cpu_to_be64(0x99aabbccddeeffULL), (void __iomem *) rxp_desc + C2_RXP_ADDR); __raw_writew((__force u16) cpu_to_be16(RXP_HRXD_UNINIT), (void __iomem *) rxp_desc + C2_RXP_FLAGS); elem->skb = NULL; elem->ht_desc = rx_desc; elem->hw_desc = rxp_desc; if (i == rx_ring->count - 1) { elem->next = rx_ring->start; rx_desc->next_offset = base; } else { elem->next = elem + 1; rx_desc->next_offset = base + (i + 1) * sizeof(*rx_desc); } } rx_ring->to_use = rx_ring->to_clean = rx_ring->start; return 0; } /* Setup buffer for receiving */ static inline int c2_rx_alloc(struct c2_port *c2_port, struct c2_element *elem) { struct c2_dev *c2dev = c2_port->c2dev; struct c2_rx_desc *rx_desc = elem->ht_desc; struct sk_buff *skb; dma_addr_t mapaddr; u32 maplen; struct c2_rxp_hdr *rxp_hdr; skb = dev_alloc_skb(c2_port->rx_buf_size); if (unlikely(!skb)) { pr_debug("%s: out of memory for receive\n", c2_port->netdev->name); return -ENOMEM; } /* Zero out the rxp hdr in the sk_buff */ memset(skb->data, 0, sizeof(*rxp_hdr)); skb->dev = c2_port->netdev; maplen = c2_port->rx_buf_size; mapaddr = pci_map_single(c2dev->pcidev, skb->data, maplen, PCI_DMA_FROMDEVICE); /* Set the sk_buff RXP_header to RXP_HRXD_READY */ rxp_hdr = (struct c2_rxp_hdr *) skb->data; rxp_hdr->flags = RXP_HRXD_READY; __raw_writew(0, elem->hw_desc + C2_RXP_STATUS); __raw_writew((__force u16) cpu_to_be16((u16) maplen - sizeof(*rxp_hdr)), elem->hw_desc + C2_RXP_LEN); __raw_writeq((__force u64) cpu_to_be64(mapaddr), elem->hw_desc + C2_RXP_ADDR); __raw_writew((__force u16) cpu_to_be16(RXP_HRXD_READY), elem->hw_desc + C2_RXP_FLAGS); elem->skb = skb; elem->mapaddr = mapaddr; elem->maplen = maplen; rx_desc->len = maplen; return 0; } /* * Allocate buffers for the Rx ring * For receive: rx_ring.to_clean is next received frame */ static int c2_rx_fill(struct c2_port *c2_port) { struct c2_ring *rx_ring = &c2_port->rx_ring; struct c2_element *elem; int ret = 0; elem = rx_ring->start; do { if (c2_rx_alloc(c2_port, elem)) { ret = 1; break; } } while ((elem = elem->next) != rx_ring->start); rx_ring->to_clean = rx_ring->start; return ret; } /* Free all buffers in RX ring, assumes receiver stopped */ static void c2_rx_clean(struct c2_port *c2_port) { struct c2_dev *c2dev = c2_port->c2dev; struct c2_ring *rx_ring = &c2_port->rx_ring; struct c2_element *elem; struct c2_rx_desc *rx_desc; elem = rx_ring->start; do { rx_desc = elem->ht_desc; rx_desc->len = 0; __raw_writew(0, elem->hw_desc + C2_RXP_STATUS); __raw_writew(0, elem->hw_desc + C2_RXP_COUNT); __raw_writew(0, elem->hw_desc + C2_RXP_LEN); __raw_writeq((__force u64) cpu_to_be64(0x99aabbccddeeffULL), elem->hw_desc + C2_RXP_ADDR); __raw_writew((__force u16) cpu_to_be16(RXP_HRXD_UNINIT), elem->hw_desc + C2_RXP_FLAGS); if (elem->skb) { pci_unmap_single(c2dev->pcidev, elem->mapaddr, elem->maplen, PCI_DMA_FROMDEVICE); dev_kfree_skb(elem->skb); elem->skb = NULL; } } while ((elem = elem->next) != rx_ring->start); } static inline int c2_tx_free(struct c2_dev *c2dev, struct c2_element *elem) { struct c2_tx_desc *tx_desc = elem->ht_desc; tx_desc->len = 0; pci_unmap_single(c2dev->pcidev, elem->mapaddr, elem->maplen, PCI_DMA_TODEVICE); if (elem->skb) { dev_kfree_skb_any(elem->skb); elem->skb = NULL; } return 0; } /* Free all buffers in TX ring, assumes transmitter stopped */ static void c2_tx_clean(struct c2_port *c2_port) { struct c2_ring *tx_ring = &c2_port->tx_ring; struct c2_element *elem; struct c2_txp_desc txp_htxd; int retry; unsigned long flags; spin_lock_irqsave(&c2_port->tx_lock, flags); elem = tx_ring->start; do { retry = 0; do { txp_htxd.flags = readw(elem->hw_desc + C2_TXP_FLAGS); if (txp_htxd.flags == TXP_HTXD_READY) { retry = 1; __raw_writew(0, elem->hw_desc + C2_TXP_LEN); __raw_writeq(0, elem->hw_desc + C2_TXP_ADDR); __raw_writew((__force u16) cpu_to_be16(TXP_HTXD_DONE), elem->hw_desc + C2_TXP_FLAGS); c2_port->netdev->stats.tx_dropped++; break; } else { __raw_writew(0, elem->hw_desc + C2_TXP_LEN); __raw_writeq((__force u64) cpu_to_be64(0x1122334455667788ULL), elem->hw_desc + C2_TXP_ADDR); __raw_writew((__force u16) cpu_to_be16(TXP_HTXD_UNINIT), elem->hw_desc + C2_TXP_FLAGS); } c2_tx_free(c2_port->c2dev, elem); } while ((elem = elem->next) != tx_ring->start); } while (retry); c2_port->tx_avail = c2_port->tx_ring.count - 1; c2_port->c2dev->cur_tx = tx_ring->to_use - tx_ring->start; if (c2_port->tx_avail > MAX_SKB_FRAGS + 1) netif_wake_queue(c2_port->netdev); spin_unlock_irqrestore(&c2_port->tx_lock, flags); } /* * Process transmit descriptors marked 'DONE' by the firmware, * freeing up their unneeded sk_buffs. */ static void c2_tx_interrupt(struct net_device *netdev) { struct c2_port *c2_port = netdev_priv(netdev); struct c2_dev *c2dev = c2_port->c2dev; struct c2_ring *tx_ring = &c2_port->tx_ring; struct c2_element *elem; struct c2_txp_desc txp_htxd; spin_lock(&c2_port->tx_lock); for (elem = tx_ring->to_clean; elem != tx_ring->to_use; elem = elem->next) { txp_htxd.flags = be16_to_cpu((__force __be16) readw(elem->hw_desc + C2_TXP_FLAGS)); if (txp_htxd.flags != TXP_HTXD_DONE) break; if (netif_msg_tx_done(c2_port)) { /* PCI reads are expensive in fast path */ txp_htxd.len = be16_to_cpu((__force __be16) readw(elem->hw_desc + C2_TXP_LEN)); pr_debug("%s: tx done slot %3Zu status 0x%x len " "%5u bytes\n", netdev->name, elem - tx_ring->start, txp_htxd.flags, txp_htxd.len); } c2_tx_free(c2dev, elem); ++(c2_port->tx_avail); } tx_ring->to_clean = elem; if (netif_queue_stopped(netdev) && c2_port->tx_avail > MAX_SKB_FRAGS + 1) netif_wake_queue(netdev); spin_unlock(&c2_port->tx_lock); } static void c2_rx_error(struct c2_port *c2_port, struct c2_element *elem) { struct c2_rx_desc *rx_desc = elem->ht_desc; struct c2_rxp_hdr *rxp_hdr = (struct c2_rxp_hdr *) elem->skb->data; if (rxp_hdr->status != RXP_HRXD_OK || rxp_hdr->len > (rx_desc->len - sizeof(*rxp_hdr))) { pr_debug("BAD RXP_HRXD\n"); pr_debug(" rx_desc : %p\n", rx_desc); pr_debug(" index : %Zu\n", elem - c2_port->rx_ring.start); pr_debug(" len : %u\n", rx_desc->len); pr_debug(" rxp_hdr : %p [PA %p]\n", rxp_hdr, (void *) __pa((unsigned long) rxp_hdr)); pr_debug(" flags : 0x%x\n", rxp_hdr->flags); pr_debug(" status: 0x%x\n", rxp_hdr->status); pr_debug(" len : %u\n", rxp_hdr->len); pr_debug(" rsvd : 0x%x\n", rxp_hdr->rsvd); } /* Setup the skb for reuse since we're dropping this pkt */ elem->skb->data = elem->skb->head; skb_reset_tail_pointer(elem->skb); /* Zero out the rxp hdr in the sk_buff */ memset(elem->skb->data, 0, sizeof(*rxp_hdr)); /* Write the descriptor to the adapter's rx ring */ __raw_writew(0, elem->hw_desc + C2_RXP_STATUS); __raw_writew(0, elem->hw_desc + C2_RXP_COUNT); __raw_writew((__force u16) cpu_to_be16((u16) elem->maplen - sizeof(*rxp_hdr)), elem->hw_desc + C2_RXP_LEN); __raw_writeq((__force u64) cpu_to_be64(elem->mapaddr), elem->hw_desc + C2_RXP_ADDR); __raw_writew((__force u16) cpu_to_be16(RXP_HRXD_READY), elem->hw_desc + C2_RXP_FLAGS); pr_debug("packet dropped\n"); c2_port->netdev->stats.rx_dropped++; } static void c2_rx_interrupt(struct net_device *netdev) { struct c2_port *c2_port = netdev_priv(netdev); struct c2_dev *c2dev = c2_port->c2dev; struct c2_ring *rx_ring = &c2_port->rx_ring; struct c2_element *elem; struct c2_rx_desc *rx_desc; struct c2_rxp_hdr *rxp_hdr; struct sk_buff *skb; dma_addr_t mapaddr; u32 maplen, buflen; unsigned long flags; spin_lock_irqsave(&c2dev->lock, flags); /* Begin where we left off */ rx_ring->to_clean = rx_ring->start + c2dev->cur_rx; for (elem = rx_ring->to_clean; elem->next != rx_ring->to_clean; elem = elem->next) { rx_desc = elem->ht_desc; mapaddr = elem->mapaddr; maplen = elem->maplen; skb = elem->skb; rxp_hdr = (struct c2_rxp_hdr *) skb->data; if (rxp_hdr->flags != RXP_HRXD_DONE) break; buflen = rxp_hdr->len; /* Sanity check the RXP header */ if (rxp_hdr->status != RXP_HRXD_OK || buflen > (rx_desc->len - sizeof(*rxp_hdr))) { c2_rx_error(c2_port, elem); continue; } /* * Allocate and map a new skb for replenishing the host * RX desc */ if (c2_rx_alloc(c2_port, elem)) { c2_rx_error(c2_port, elem); continue; } /* Unmap the old skb */ pci_unmap_single(c2dev->pcidev, mapaddr, maplen, PCI_DMA_FROMDEVICE); prefetch(skb->data); /* * Skip past the leading 8 bytes comprising of the * "struct c2_rxp_hdr", prepended by the adapter * to the usual Ethernet header ("struct ethhdr"), * to the start of the raw Ethernet packet. * * Fix up the various fields in the sk_buff before * passing it up to netif_rx(). The transfer size * (in bytes) specified by the adapter len field of * the "struct rxp_hdr_t" does NOT include the * "sizeof(struct c2_rxp_hdr)". */ skb->data += sizeof(*rxp_hdr); skb_set_tail_pointer(skb, buflen); skb->len = buflen; skb->protocol = eth_type_trans(skb, netdev); netif_rx(skb); netdev->stats.rx_packets++; netdev->stats.rx_bytes += buflen; } /* Save where we left off */ rx_ring->to_clean = elem; c2dev->cur_rx = elem - rx_ring->start; C2_SET_CUR_RX(c2dev, c2dev->cur_rx); spin_unlock_irqrestore(&c2dev->lock, flags); } /* * Handle netisr0 TX & RX interrupts. */ static irqreturn_t c2_interrupt(int irq, void *dev_id) { unsigned int netisr0, dmaisr; int handled = 0; struct c2_dev *c2dev = (struct c2_dev *) dev_id; /* Process CCILNET interrupts */ netisr0 = readl(c2dev->regs + C2_NISR0); if (netisr0) { /* * There is an issue with the firmware that always * provides the status of RX for both TX & RX * interrupts. So process both queues here. */ c2_rx_interrupt(c2dev->netdev); c2_tx_interrupt(c2dev->netdev); /* Clear the interrupt */ writel(netisr0, c2dev->regs + C2_NISR0); handled++; } /* Process RNIC interrupts */ dmaisr = readl(c2dev->regs + C2_DISR); if (dmaisr) { writel(dmaisr, c2dev->regs + C2_DISR); c2_rnic_interrupt(c2dev); handled++; } if (handled) { return IRQ_HANDLED; } else { return IRQ_NONE; } } static int c2_up(struct net_device *netdev) { struct c2_port *c2_port = netdev_priv(netdev); struct c2_dev *c2dev = c2_port->c2dev; struct c2_element *elem; struct c2_rxp_hdr *rxp_hdr; struct in_device *in_dev; size_t rx_size, tx_size; int ret, i; unsigned int netimr0; if (netif_msg_ifup(c2_port)) pr_debug("%s: enabling interface\n", netdev->name); /* Set the Rx buffer size based on MTU */ c2_set_rxbufsize(c2_port); /* Allocate DMA'able memory for Tx/Rx host descriptor rings */ rx_size = c2_port->rx_ring.count * sizeof(struct c2_rx_desc); tx_size = c2_port->tx_ring.count * sizeof(struct c2_tx_desc); c2_port->mem_size = tx_size + rx_size; c2_port->mem = pci_alloc_consistent(c2dev->pcidev, c2_port->mem_size, &c2_port->dma); if (c2_port->mem == NULL) { pr_debug("Unable to allocate memory for " "host descriptor rings\n"); return -ENOMEM; } memset(c2_port->mem, 0, c2_port->mem_size); /* Create the Rx host descriptor ring */ if ((ret = c2_rx_ring_alloc(&c2_port->rx_ring, c2_port->mem, c2_port->dma, c2dev->mmio_rxp_ring))) { pr_debug("Unable to create RX ring\n"); goto bail0; } /* Allocate Rx buffers for the host descriptor ring */ if (c2_rx_fill(c2_port)) { pr_debug("Unable to fill RX ring\n"); goto bail1; } /* Create the Tx host descriptor ring */ if ((ret = c2_tx_ring_alloc(&c2_port->tx_ring, c2_port->mem + rx_size, c2_port->dma + rx_size, c2dev->mmio_txp_ring))) { pr_debug("Unable to create TX ring\n"); goto bail1; } /* Set the TX pointer to where we left off */ c2_port->tx_avail = c2_port->tx_ring.count - 1; c2_port->tx_ring.to_use = c2_port->tx_ring.to_clean = c2_port->tx_ring.start + c2dev->cur_tx; /* missing: Initialize MAC */ BUG_ON(c2_port->tx_ring.to_use != c2_port->tx_ring.to_clean); /* Reset the adapter, ensures the driver is in sync with the RXP */ c2_reset(c2_port); /* Reset the READY bit in the sk_buff RXP headers & adapter HRXDQ */ for (i = 0, elem = c2_port->rx_ring.start; i < c2_port->rx_ring.count; i++, elem++) { rxp_hdr = (struct c2_rxp_hdr *) elem->skb->data; rxp_hdr->flags = 0; __raw_writew((__force u16) cpu_to_be16(RXP_HRXD_READY), elem->hw_desc + C2_RXP_FLAGS); } /* Enable network packets */ netif_start_queue(netdev); /* Enable IRQ */ writel(0, c2dev->regs + C2_IDIS); netimr0 = readl(c2dev->regs + C2_NIMR0); netimr0 &= ~(C2_PCI_HTX_INT | C2_PCI_HRX_INT); writel(netimr0, c2dev->regs + C2_NIMR0); /* Tell the stack to ignore arp requests for ipaddrs bound to * other interfaces. This is needed to prevent the host stack * from responding to arp requests to the ipaddr bound on the * rdma interface. */ in_dev = in_dev_get(netdev); IN_DEV_CONF_SET(in_dev, ARP_IGNORE, 1); in_dev_put(in_dev); return 0; bail1: c2_rx_clean(c2_port); kfree(c2_port->rx_ring.start); bail0: pci_free_consistent(c2dev->pcidev, c2_port->mem_size, c2_port->mem, c2_port->dma); return ret; } static int c2_down(struct net_device *netdev) { struct c2_port *c2_port = netdev_priv(netdev); struct c2_dev *c2dev = c2_port->c2dev; if (netif_msg_ifdown(c2_port)) pr_debug("%s: disabling interface\n", netdev->name); /* Wait for all the queued packets to get sent */ c2_tx_interrupt(netdev); /* Disable network packets */ netif_stop_queue(netdev); /* Disable IRQs by clearing the interrupt mask */ writel(1, c2dev->regs + C2_IDIS); writel(0, c2dev->regs + C2_NIMR0); /* missing: Stop transmitter */ /* missing: Stop receiver */ /* Reset the adapter, ensures the driver is in sync with the RXP */ c2_reset(c2_port); /* missing: Turn off LEDs here */ /* Free all buffers in the host descriptor rings */ c2_tx_clean(c2_port); c2_rx_clean(c2_port); /* Free the host descriptor rings */ kfree(c2_port->rx_ring.start); kfree(c2_port->tx_ring.start); pci_free_consistent(c2dev->pcidev, c2_port->mem_size, c2_port->mem, c2_port->dma); return 0; } static void c2_reset(struct c2_port *c2_port) { struct c2_dev *c2dev = c2_port->c2dev; unsigned int cur_rx = c2dev->cur_rx; /* Tell the hardware to quiesce */ C2_SET_CUR_RX(c2dev, cur_rx | C2_PCI_HRX_QUI); /* * The hardware will reset the C2_PCI_HRX_QUI bit once * the RXP is quiesced. Wait 2 seconds for this. */ ssleep(2); cur_rx = C2_GET_CUR_RX(c2dev); if (cur_rx & C2_PCI_HRX_QUI) pr_debug("c2_reset: failed to quiesce the hardware!\n"); cur_rx &= ~C2_PCI_HRX_QUI; c2dev->cur_rx = cur_rx; pr_debug("Current RX: %u\n", c2dev->cur_rx); } static int c2_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct c2_port *c2_port = netdev_priv(netdev); struct c2_dev *c2dev = c2_port->c2dev; struct c2_ring *tx_ring = &c2_port->tx_ring; struct c2_element *elem; dma_addr_t mapaddr; u32 maplen; unsigned long flags; unsigned int i; spin_lock_irqsave(&c2_port->tx_lock, flags); if (unlikely(c2_port->tx_avail < (skb_shinfo(skb)->nr_frags + 1))) { netif_stop_queue(netdev); spin_unlock_irqrestore(&c2_port->tx_lock, flags); pr_debug("%s: Tx ring full when queue awake!\n", netdev->name); return NETDEV_TX_BUSY; } maplen = skb_headlen(skb); mapaddr = pci_map_single(c2dev->pcidev, skb->data, maplen, PCI_DMA_TODEVICE); elem = tx_ring->to_use; elem->skb = skb; elem->mapaddr = mapaddr; elem->maplen = maplen; /* Tell HW to xmit */ __raw_writeq((__force u64) cpu_to_be64(mapaddr), elem->hw_desc + C2_TXP_ADDR); __raw_writew((__force u16) cpu_to_be16(maplen), elem->hw_desc + C2_TXP_LEN); __raw_writew((__force u16) cpu_to_be16(TXP_HTXD_READY), elem->hw_desc + C2_TXP_FLAGS); netdev->stats.tx_packets++; netdev->stats.tx_bytes += maplen; /* Loop thru additional data fragments and queue them */ if (skb_shinfo(skb)->nr_frags) { for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; maplen = frag->size; mapaddr = pci_map_page(c2dev->pcidev, frag->page, frag->page_offset, maplen, PCI_DMA_TODEVICE); elem = elem->next; elem->skb = NULL; elem->mapaddr = mapaddr; elem->maplen = maplen; /* Tell HW to xmit */ __raw_writeq((__force u64) cpu_to_be64(mapaddr), elem->hw_desc + C2_TXP_ADDR); __raw_writew((__force u16) cpu_to_be16(maplen), elem->hw_desc + C2_TXP_LEN); __raw_writew((__force u16) cpu_to_be16(TXP_HTXD_READY), elem->hw_desc + C2_TXP_FLAGS); netdev->stats.tx_packets++; netdev->stats.tx_bytes += maplen; } } tx_ring->to_use = elem->next; c2_port->tx_avail -= (skb_shinfo(skb)->nr_frags + 1); if (c2_port->tx_avail <= MAX_SKB_FRAGS + 1) { netif_stop_queue(netdev); if (netif_msg_tx_queued(c2_port)) pr_debug("%s: transmit queue full\n", netdev->name); } spin_unlock_irqrestore(&c2_port->tx_lock, flags); netdev->trans_start = jiffies; return NETDEV_TX_OK; } static void c2_tx_timeout(struct net_device *netdev) { struct c2_port *c2_port = netdev_priv(netdev); if (netif_msg_timer(c2_port)) pr_debug("%s: tx timeout\n", netdev->name); c2_tx_clean(c2_port); } static int c2_change_mtu(struct net_device *netdev, int new_mtu) { int ret = 0; if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) return -EINVAL; netdev->mtu = new_mtu; if (netif_running(netdev)) { c2_down(netdev); c2_up(netdev); } return ret; } static const struct net_device_ops c2_netdev = { .ndo_open = c2_up, .ndo_stop = c2_down, .ndo_start_xmit = c2_xmit_frame, .ndo_tx_timeout = c2_tx_timeout, .ndo_change_mtu = c2_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; /* Initialize network device */ static struct net_device *c2_devinit(struct c2_dev *c2dev, void __iomem * mmio_addr) { struct c2_port *c2_port = NULL; struct net_device *netdev = alloc_etherdev(sizeof(*c2_port)); if (!netdev) { pr_debug("c2_port etherdev alloc failed"); return NULL; } SET_NETDEV_DEV(netdev, &c2dev->pcidev->dev); netdev->netdev_ops = &c2_netdev; netdev->watchdog_timeo = C2_TX_TIMEOUT; netdev->irq = c2dev->pcidev->irq; c2_port = netdev_priv(netdev); c2_port->netdev = netdev; c2_port->c2dev = c2dev; c2_port->msg_enable = netif_msg_init(debug, default_msg); c2_port->tx_ring.count = C2_NUM_TX_DESC; c2_port->rx_ring.count = C2_NUM_RX_DESC; spin_lock_init(&c2_port->tx_lock); /* Copy our 48-bit ethernet hardware address */ memcpy_fromio(netdev->dev_addr, mmio_addr + C2_REGS_ENADDR, 6); /* Validate the MAC address */ if (!is_valid_ether_addr(netdev->dev_addr)) { pr_debug("Invalid MAC Address\n"); c2_print_macaddr(netdev); free_netdev(netdev); return NULL; } c2dev->netdev = netdev; return netdev; } static int __devinit c2_probe(struct pci_dev *pcidev, const struct pci_device_id *ent) { int ret = 0, i; unsigned long reg0_start, reg0_flags, reg0_len; unsigned long reg2_start, reg2_flags, reg2_len; unsigned long reg4_start, reg4_flags, reg4_len; unsigned kva_map_size; struct net_device *netdev = NULL; struct c2_dev *c2dev = NULL; void __iomem *mmio_regs = NULL; printk(KERN_INFO PFX "AMSO1100 Gigabit Ethernet driver v%s loaded\n", DRV_VERSION); /* Enable PCI device */ ret = pci_enable_device(pcidev); if (ret) { printk(KERN_ERR PFX "%s: Unable to enable PCI device\n", pci_name(pcidev)); goto bail0; } reg0_start = pci_resource_start(pcidev, BAR_0); reg0_len = pci_resource_len(pcidev, BAR_0); reg0_flags = pci_resource_flags(pcidev, BAR_0); reg2_start = pci_resource_start(pcidev, BAR_2); reg2_len = pci_resource_len(pcidev, BAR_2); reg2_flags = pci_resource_flags(pcidev, BAR_2); reg4_start = pci_resource_start(pcidev, BAR_4); reg4_len = pci_resource_len(pcidev, BAR_4); reg4_flags = pci_resource_flags(pcidev, BAR_4); pr_debug("BAR0 size = 0x%lX bytes\n", reg0_len); pr_debug("BAR2 size = 0x%lX bytes\n", reg2_len); pr_debug("BAR4 size = 0x%lX bytes\n", reg4_len); /* Make sure PCI base addr are MMIO */ if (!(reg0_flags & IORESOURCE_MEM) || !(reg2_flags & IORESOURCE_MEM) || !(reg4_flags & IORESOURCE_MEM)) { printk(KERN_ERR PFX "PCI regions not an MMIO resource\n"); ret = -ENODEV; goto bail1; } /* Check for weird/broken PCI region reporting */ if ((reg0_len < C2_REG0_SIZE) || (reg2_len < C2_REG2_SIZE) || (reg4_len < C2_REG4_SIZE)) { printk(KERN_ERR PFX "Invalid PCI region sizes\n"); ret = -ENODEV; goto bail1; } /* Reserve PCI I/O and memory resources */ ret = pci_request_regions(pcidev, DRV_NAME); if (ret) { printk(KERN_ERR PFX "%s: Unable to request regions\n", pci_name(pcidev)); goto bail1; } if ((sizeof(dma_addr_t) > 4)) { ret = pci_set_dma_mask(pcidev, DMA_BIT_MASK(64)); if (ret < 0) { printk(KERN_ERR PFX "64b DMA configuration failed\n"); goto bail2; } } else { ret = pci_set_dma_mask(pcidev, DMA_BIT_MASK(32)); if (ret < 0) { printk(KERN_ERR PFX "32b DMA configuration failed\n"); goto bail2; } } /* Enables bus-mastering on the device */ pci_set_master(pcidev); /* Remap the adapter PCI registers in BAR4 */ mmio_regs = ioremap_nocache(reg4_start + C2_PCI_REGS_OFFSET, sizeof(struct c2_adapter_pci_regs)); if (!mmio_regs) { printk(KERN_ERR PFX "Unable to remap adapter PCI registers in BAR4\n"); ret = -EIO; goto bail2; } /* Validate PCI regs magic */ for (i = 0; i < sizeof(c2_magic); i++) { if (c2_magic[i] != readb(mmio_regs + C2_REGS_MAGIC + i)) { printk(KERN_ERR PFX "Downlevel Firmware boot loader " "[%d/%Zd: got 0x%x, exp 0x%x]. Use the cc_flash " "utility to update your boot loader\n", i + 1, sizeof(c2_magic), readb(mmio_regs + C2_REGS_MAGIC + i), c2_magic[i]); printk(KERN_ERR PFX "Adapter not claimed\n"); iounmap(mmio_regs); ret = -EIO; goto bail2; } } /* Validate the adapter version */ if (be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_VERS)) != C2_VERSION) { printk(KERN_ERR PFX "Version mismatch " "[fw=%u, c2=%u], Adapter not claimed\n", be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_VERS)), C2_VERSION); ret = -EINVAL; iounmap(mmio_regs); goto bail2; } /* Validate the adapter IVN */ if (be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_IVN)) != C2_IVN) { printk(KERN_ERR PFX "Downlevel FIrmware level. You should be using " "the OpenIB device support kit. " "[fw=0x%x, c2=0x%x], Adapter not claimed\n", be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_IVN)), C2_IVN); ret = -EINVAL; iounmap(mmio_regs); goto bail2; } /* Allocate hardware structure */ c2dev = (struct c2_dev *) ib_alloc_device(sizeof(*c2dev)); if (!c2dev) { printk(KERN_ERR PFX "%s: Unable to alloc hardware struct\n", pci_name(pcidev)); ret = -ENOMEM; iounmap(mmio_regs); goto bail2; } memset(c2dev, 0, sizeof(*c2dev)); spin_lock_init(&c2dev->lock); c2dev->pcidev = pcidev; c2dev->cur_tx = 0; /* Get the last RX index */ c2dev->cur_rx = (be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_HRX_CUR)) - 0xffffc000) / sizeof(struct c2_rxp_desc); /* Request an interrupt line for the driver */ ret = request_irq(pcidev->irq, c2_interrupt, IRQF_SHARED, DRV_NAME, c2dev); if (ret) { printk(KERN_ERR PFX "%s: requested IRQ %u is busy\n", pci_name(pcidev), pcidev->irq); iounmap(mmio_regs); goto bail3; } /* Set driver specific data */ pci_set_drvdata(pcidev, c2dev); /* Initialize network device */ if ((netdev = c2_devinit(c2dev, mmio_regs)) == NULL) { iounmap(mmio_regs); goto bail4; } /* Save off the actual size prior to unmapping mmio_regs */ kva_map_size = be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_PCI_WINSIZE)); /* Unmap the adapter PCI registers in BAR4 */ iounmap(mmio_regs); /* Register network device */ ret = register_netdev(netdev); if (ret) { printk(KERN_ERR PFX "Unable to register netdev, ret = %d\n", ret); goto bail5; } /* Disable network packets */ netif_stop_queue(netdev); /* Remap the adapter HRXDQ PA space to kernel VA space */ c2dev->mmio_rxp_ring = ioremap_nocache(reg4_start + C2_RXP_HRXDQ_OFFSET, C2_RXP_HRXDQ_SIZE); if (!c2dev->mmio_rxp_ring) { printk(KERN_ERR PFX "Unable to remap MMIO HRXDQ region\n"); ret = -EIO; goto bail6; } /* Remap the adapter HTXDQ PA space to kernel VA space */ c2dev->mmio_txp_ring = ioremap_nocache(reg4_start + C2_TXP_HTXDQ_OFFSET, C2_TXP_HTXDQ_SIZE); if (!c2dev->mmio_txp_ring) { printk(KERN_ERR PFX "Unable to remap MMIO HTXDQ region\n"); ret = -EIO; goto bail7; } /* Save off the current RX index in the last 4 bytes of the TXP Ring */ C2_SET_CUR_RX(c2dev, c2dev->cur_rx); /* Remap the PCI registers in adapter BAR0 to kernel VA space */ c2dev->regs = ioremap_nocache(reg0_start, reg0_len); if (!c2dev->regs) { printk(KERN_ERR PFX "Unable to remap BAR0\n"); ret = -EIO; goto bail8; } /* Remap the PCI registers in adapter BAR4 to kernel VA space */ c2dev->pa = reg4_start + C2_PCI_REGS_OFFSET; c2dev->kva = ioremap_nocache(reg4_start + C2_PCI_REGS_OFFSET, kva_map_size); if (!c2dev->kva) { printk(KERN_ERR PFX "Unable to remap BAR4\n"); ret = -EIO; goto bail9; } /* Print out the MAC address */ c2_print_macaddr(netdev); ret = c2_rnic_init(c2dev); if (ret) { printk(KERN_ERR PFX "c2_rnic_init failed: %d\n", ret); goto bail10; } if (c2_register_device(c2dev)) goto bail10; return 0; bail10: iounmap(c2dev->kva); bail9: iounmap(c2dev->regs); bail8: iounmap(c2dev->mmio_txp_ring); bail7: iounmap(c2dev->mmio_rxp_ring); bail6: unregister_netdev(netdev); bail5: free_netdev(netdev); bail4: free_irq(pcidev->irq, c2dev); bail3: ib_dealloc_device(&c2dev->ibdev); bail2: pci_release_regions(pcidev); bail1: pci_disable_device(pcidev); bail0: return ret; } static void __devexit c2_remove(struct pci_dev *pcidev) { struct c2_dev *c2dev = pci_get_drvdata(pcidev); struct net_device *netdev = c2dev->netdev; /* Unregister with OpenIB */ c2_unregister_device(c2dev); /* Clean up the RNIC resources */ c2_rnic_term(c2dev); /* Remove network device from the kernel */ unregister_netdev(netdev); /* Free network device */ free_netdev(netdev); /* Free the interrupt line */ free_irq(pcidev->irq, c2dev); /* missing: Turn LEDs off here */ /* Unmap adapter PA space */ iounmap(c2dev->kva); iounmap(c2dev->regs); iounmap(c2dev->mmio_txp_ring); iounmap(c2dev->mmio_rxp_ring); /* Free the hardware structure */ ib_dealloc_device(&c2dev->ibdev); /* Release reserved PCI I/O and memory resources */ pci_release_regions(pcidev); /* Disable PCI device */ pci_disable_device(pcidev); /* Clear driver specific data */ pci_set_drvdata(pcidev, NULL); } static struct pci_driver c2_pci_driver = { .name = DRV_NAME, .id_table = c2_pci_table, .probe = c2_probe, .remove = __devexit_p(c2_remove), }; static int __init c2_init_module(void) { return pci_register_driver(&c2_pci_driver); } static void __exit c2_exit_module(void) { pci_unregister_driver(&c2_pci_driver); } module_init(c2_init_module); module_exit(c2_exit_module);