/* * drivers/base/power/main.c - Where the driver meets power management. * * Copyright (c) 2003 Patrick Mochel * Copyright (c) 2003 Open Source Development Lab * * This file is released under the GPLv2 * * * The driver model core calls device_pm_add() when a device is registered. * This will initialize the embedded device_pm_info object in the device * and add it to the list of power-controlled devices. sysfs entries for * controlling device power management will also be added. * * A separate list is used for keeping track of power info, because the power * domain dependencies may differ from the ancestral dependencies that the * subsystem list maintains. */ #include <linux/device.h> #include <linux/kallsyms.h> #include <linux/mutex.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/resume-trace.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/async.h> #include <linux/suspend.h> #include <linux/timer.h> #include "../base.h" #include "power.h" /* * The entries in the dpm_list list are in a depth first order, simply * because children are guaranteed to be discovered after parents, and * are inserted at the back of the list on discovery. * * Since device_pm_add() may be called with a device lock held, * we must never try to acquire a device lock while holding * dpm_list_mutex. */ LIST_HEAD(dpm_list); LIST_HEAD(dpm_prepared_list); LIST_HEAD(dpm_suspended_list); LIST_HEAD(dpm_noirq_list); static DEFINE_MUTEX(dpm_list_mtx); static pm_message_t pm_transition; static void dpm_drv_timeout(unsigned long data); struct dpm_drv_wd_data { struct device *dev; struct task_struct *tsk; }; static int async_error; /** * device_pm_init - Initialize the PM-related part of a device object. * @dev: Device object being initialized. */ void device_pm_init(struct device *dev) { dev->power.is_prepared = false; dev->power.is_suspended = false; init_completion(&dev->power.completion); complete_all(&dev->power.completion); dev->power.wakeup = NULL; spin_lock_init(&dev->power.lock); pm_runtime_init(dev); INIT_LIST_HEAD(&dev->power.entry); } /** * device_pm_lock - Lock the list of active devices used by the PM core. */ void device_pm_lock(void) { mutex_lock(&dpm_list_mtx); } /** * device_pm_unlock - Unlock the list of active devices used by the PM core. */ void device_pm_unlock(void) { mutex_unlock(&dpm_list_mtx); } /** * device_pm_add - Add a device to the PM core's list of active devices. * @dev: Device to add to the list. */ void device_pm_add(struct device *dev) { pr_debug("PM: Adding info for %s:%s\n", dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); mutex_lock(&dpm_list_mtx); if (dev->parent && dev->parent->power.is_prepared) dev_warn(dev, "parent %s should not be sleeping\n", dev_name(dev->parent)); list_add_tail(&dev->power.entry, &dpm_list); mutex_unlock(&dpm_list_mtx); } /** * device_pm_remove - Remove a device from the PM core's list of active devices. * @dev: Device to be removed from the list. */ void device_pm_remove(struct device *dev) { pr_debug("PM: Removing info for %s:%s\n", dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); complete_all(&dev->power.completion); mutex_lock(&dpm_list_mtx); list_del_init(&dev->power.entry); mutex_unlock(&dpm_list_mtx); device_wakeup_disable(dev); pm_runtime_remove(dev); } /** * device_pm_move_before - Move device in the PM core's list of active devices. * @deva: Device to move in dpm_list. * @devb: Device @deva should come before. */ void device_pm_move_before(struct device *deva, struct device *devb) { pr_debug("PM: Moving %s:%s before %s:%s\n", deva->bus ? deva->bus->name : "No Bus", dev_name(deva), devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); /* Delete deva from dpm_list and reinsert before devb. */ list_move_tail(&deva->power.entry, &devb->power.entry); } /** * device_pm_move_after - Move device in the PM core's list of active devices. * @deva: Device to move in dpm_list. * @devb: Device @deva should come after. */ void device_pm_move_after(struct device *deva, struct device *devb) { pr_debug("PM: Moving %s:%s after %s:%s\n", deva->bus ? deva->bus->name : "No Bus", dev_name(deva), devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); /* Delete deva from dpm_list and reinsert after devb. */ list_move(&deva->power.entry, &devb->power.entry); } /** * device_pm_move_last - Move device to end of the PM core's list of devices. * @dev: Device to move in dpm_list. */ void device_pm_move_last(struct device *dev) { pr_debug("PM: Moving %s:%s to end of list\n", dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); list_move_tail(&dev->power.entry, &dpm_list); } static ktime_t initcall_debug_start(struct device *dev) { ktime_t calltime = ktime_set(0, 0); if (initcall_debug) { pr_info("calling %s+ @ %i\n", dev_name(dev), task_pid_nr(current)); calltime = ktime_get(); } return calltime; } static void initcall_debug_report(struct device *dev, ktime_t calltime, int error) { ktime_t delta, rettime; if (initcall_debug) { rettime = ktime_get(); delta = ktime_sub(rettime, calltime); pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev), error, (unsigned long long)ktime_to_ns(delta) >> 10); } } /** * dpm_wait - Wait for a PM operation to complete. * @dev: Device to wait for. * @async: If unset, wait only if the device's power.async_suspend flag is set. */ static void dpm_wait(struct device *dev, bool async) { if (!dev) return; if (async || (pm_async_enabled && dev->power.async_suspend)) wait_for_completion(&dev->power.completion); } static int dpm_wait_fn(struct device *dev, void *async_ptr) { dpm_wait(dev, *((bool *)async_ptr)); return 0; } static void dpm_wait_for_children(struct device *dev, bool async) { device_for_each_child(dev, &async, dpm_wait_fn); } /** * pm_op - Execute the PM operation appropriate for given PM event. * @dev: Device to handle. * @ops: PM operations to choose from. * @state: PM transition of the system being carried out. */ static int pm_op(struct device *dev, const struct dev_pm_ops *ops, pm_message_t state) { int error = 0; ktime_t calltime; calltime = initcall_debug_start(dev); switch (state.event) { #ifdef CONFIG_SUSPEND case PM_EVENT_SUSPEND: if (ops->suspend) { error = ops->suspend(dev); suspend_report_result(ops->suspend, error); } break; case PM_EVENT_RESUME: if (ops->resume) { error = ops->resume(dev); suspend_report_result(ops->resume, error); } break; #endif /* CONFIG_SUSPEND */ #ifdef CONFIG_HIBERNATE_CALLBACKS case PM_EVENT_FREEZE: case PM_EVENT_QUIESCE: if (ops->freeze) { error = ops->freeze(dev); suspend_report_result(ops->freeze, error); } break; case PM_EVENT_HIBERNATE: if (ops->poweroff) { error = ops->poweroff(dev); suspend_report_result(ops->poweroff, error); } break; case PM_EVENT_THAW: case PM_EVENT_RECOVER: if (ops->thaw) { error = ops->thaw(dev); suspend_report_result(ops->thaw, error); } break; case PM_EVENT_RESTORE: if (ops->restore) { error = ops->restore(dev); suspend_report_result(ops->restore, error); } break; #endif /* CONFIG_HIBERNATE_CALLBACKS */ default: error = -EINVAL; } initcall_debug_report(dev, calltime, error); return error; } /** * pm_noirq_op - Execute the PM operation appropriate for given PM event. * @dev: Device to handle. * @ops: PM operations to choose from. * @state: PM transition of the system being carried out. * * The driver of @dev will not receive interrupts while this function is being * executed. */ static int pm_noirq_op(struct device *dev, const struct dev_pm_ops *ops, pm_message_t state) { int error = 0; ktime_t calltime = ktime_set(0, 0), delta, rettime; if (initcall_debug) { pr_info("calling %s+ @ %i, parent: %s\n", dev_name(dev), task_pid_nr(current), dev->parent ? dev_name(dev->parent) : "none"); calltime = ktime_get(); } switch (state.event) { #ifdef CONFIG_SUSPEND case PM_EVENT_SUSPEND: if (ops->suspend_noirq) { error = ops->suspend_noirq(dev); suspend_report_result(ops->suspend_noirq, error); } break; case PM_EVENT_RESUME: if (ops->resume_noirq) { error = ops->resume_noirq(dev); suspend_report_result(ops->resume_noirq, error); } break; #endif /* CONFIG_SUSPEND */ #ifdef CONFIG_HIBERNATE_CALLBACKS case PM_EVENT_FREEZE: case PM_EVENT_QUIESCE: if (ops->freeze_noirq) { error = ops->freeze_noirq(dev); suspend_report_result(ops->freeze_noirq, error); } break; case PM_EVENT_HIBERNATE: if (ops->poweroff_noirq) { error = ops->poweroff_noirq(dev); suspend_report_result(ops->poweroff_noirq, error); } break; case PM_EVENT_THAW: case PM_EVENT_RECOVER: if (ops->thaw_noirq) { error = ops->thaw_noirq(dev); suspend_report_result(ops->thaw_noirq, error); } break; case PM_EVENT_RESTORE: if (ops->restore_noirq) { error = ops->restore_noirq(dev); suspend_report_result(ops->restore_noirq, error); } break; #endif /* CONFIG_HIBERNATE_CALLBACKS */ default: error = -EINVAL; } if (initcall_debug) { rettime = ktime_get(); delta = ktime_sub(rettime, calltime); printk("initcall %s_i+ returned %d after %Ld usecs\n", dev_name(dev), error, (unsigned long long)ktime_to_ns(delta) >> 10); } return error; } static char *pm_verb(int event) { switch (event) { case PM_EVENT_SUSPEND: return "suspend"; case PM_EVENT_RESUME: return "resume"; case PM_EVENT_FREEZE: return "freeze"; case PM_EVENT_QUIESCE: return "quiesce"; case PM_EVENT_HIBERNATE: return "hibernate"; case PM_EVENT_THAW: return "thaw"; case PM_EVENT_RESTORE: return "restore"; case PM_EVENT_RECOVER: return "recover"; default: return "(unknown PM event)"; } } static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info) { dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event), ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? ", may wakeup" : ""); } static void pm_dev_err(struct device *dev, pm_message_t state, char *info, int error) { printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n", dev_name(dev), pm_verb(state.event), info, error); } static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info) { ktime_t calltime; u64 usecs64; int usecs; calltime = ktime_get(); usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); do_div(usecs64, NSEC_PER_USEC); usecs = usecs64; if (usecs == 0) usecs = 1; pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n", info ?: "", info ? " " : "", pm_verb(state.event), usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); } /*------------------------- Resume routines -------------------------*/ /** * device_resume_noirq - Execute an "early resume" callback for given device. * @dev: Device to handle. * @state: PM transition of the system being carried out. * * The driver of @dev will not receive interrupts while this function is being * executed. */ static int device_resume_noirq(struct device *dev, pm_message_t state) { int error = 0; TRACE_DEVICE(dev); TRACE_RESUME(0); if (dev->pwr_domain) { pm_dev_dbg(dev, state, "EARLY power domain "); error = pm_noirq_op(dev, &dev->pwr_domain->ops, state); } else if (dev->type && dev->type->pm) { pm_dev_dbg(dev, state, "EARLY type "); error = pm_noirq_op(dev, dev->type->pm, state); } else if (dev->class && dev->class->pm) { pm_dev_dbg(dev, state, "EARLY class "); error = pm_noirq_op(dev, dev->class->pm, state); } else if (dev->bus && dev->bus->pm) { pm_dev_dbg(dev, state, "EARLY "); error = pm_noirq_op(dev, dev->bus->pm, state); } TRACE_RESUME(error); return error; } /** * dpm_resume_noirq - Execute "early resume" callbacks for non-sysdev devices. * @state: PM transition of the system being carried out. * * Call the "noirq" resume handlers for all devices marked as DPM_OFF_IRQ and * enable device drivers to receive interrupts. */ void dpm_resume_noirq(pm_message_t state) { ktime_t starttime = ktime_get(); mutex_lock(&dpm_list_mtx); while (!list_empty(&dpm_noirq_list)) { struct device *dev = to_device(dpm_noirq_list.next); int error; get_device(dev); list_move_tail(&dev->power.entry, &dpm_suspended_list); mutex_unlock(&dpm_list_mtx); error = device_resume_noirq(dev, state); if (error) pm_dev_err(dev, state, " early", error); mutex_lock(&dpm_list_mtx); put_device(dev); } mutex_unlock(&dpm_list_mtx); dpm_show_time(starttime, state, "early"); resume_device_irqs(); } EXPORT_SYMBOL_GPL(dpm_resume_noirq); /** * legacy_resume - Execute a legacy (bus or class) resume callback for device. * @dev: Device to resume. * @cb: Resume callback to execute. */ static int legacy_resume(struct device *dev, int (*cb)(struct device *dev)) { int error; ktime_t calltime; calltime = initcall_debug_start(dev); error = cb(dev); suspend_report_result(cb, error); initcall_debug_report(dev, calltime, error); return error; } /** * device_resume - Execute "resume" callbacks for given device. * @dev: Device to handle. * @state: PM transition of the system being carried out. * @async: If true, the device is being resumed asynchronously. */ static int device_resume(struct device *dev, pm_message_t state, bool async) { int error = 0; TRACE_DEVICE(dev); TRACE_RESUME(0); dpm_wait(dev->parent, async); device_lock(dev); /* * This is a fib. But we'll allow new children to be added below * a resumed device, even if the device hasn't been completed yet. */ dev->power.is_prepared = false; if (!dev->power.is_suspended) goto Unlock; if (dev->pwr_domain) { pm_dev_dbg(dev, state, "power domain "); error = pm_op(dev, &dev->pwr_domain->ops, state); goto End; } if (dev->type && dev->type->pm) { pm_dev_dbg(dev, state, "type "); error = pm_op(dev, dev->type->pm, state); goto End; } if (dev->class) { if (dev->class->pm) { pm_dev_dbg(dev, state, "class "); error = pm_op(dev, dev->class->pm, state); goto End; } else if (dev->class->resume) { pm_dev_dbg(dev, state, "legacy class "); error = legacy_resume(dev, dev->class->resume); goto End; } } if (dev->bus) { if (dev->bus->pm) { pm_dev_dbg(dev, state, ""); error = pm_op(dev, dev->bus->pm, state); } else if (dev->bus->resume) { pm_dev_dbg(dev, state, "legacy "); error = legacy_resume(dev, dev->bus->resume); } } End: dev->power.is_suspended = false; Unlock: device_unlock(dev); complete_all(&dev->power.completion); TRACE_RESUME(error); return error; } static void async_resume(void *data, async_cookie_t cookie) { struct device *dev = (struct device *)data; int error; error = device_resume(dev, pm_transition, true); if (error) pm_dev_err(dev, pm_transition, " async", error); put_device(dev); } static bool is_async(struct device *dev) { return dev->power.async_suspend && pm_async_enabled && !pm_trace_is_enabled(); } /** * dpm_drv_timeout - Driver suspend / resume watchdog handler * @data: struct device which timed out * * Called when a driver has timed out suspending or resuming. * There's not much we can do here to recover so * BUG() out for a crash-dump * */ static void dpm_drv_timeout(unsigned long data) { struct dpm_drv_wd_data *wd_data = (void *)data; struct device *dev = wd_data->dev; struct task_struct *tsk = wd_data->tsk; printk(KERN_EMERG "**** DPM device timeout: %s (%s)\n", dev_name(dev), (dev->driver ? dev->driver->name : "no driver")); printk(KERN_EMERG "dpm suspend stack:\n"); show_stack(tsk, NULL); BUG(); } /** * dpm_resume - Execute "resume" callbacks for non-sysdev devices. * @state: PM transition of the system being carried out. * * Execute the appropriate "resume" callback for all devices whose status * indicates that they are suspended. */ void dpm_resume(pm_message_t state) { struct device *dev; ktime_t starttime = ktime_get(); might_sleep(); mutex_lock(&dpm_list_mtx); pm_transition = state; async_error = 0; list_for_each_entry(dev, &dpm_suspended_list, power.entry) { INIT_COMPLETION(dev->power.completion); if (is_async(dev)) { get_device(dev); async_schedule(async_resume, dev); } } while (!list_empty(&dpm_suspended_list)) { dev = to_device(dpm_suspended_list.next); get_device(dev); if (!is_async(dev)) { int error; mutex_unlock(&dpm_list_mtx); error = device_resume(dev, state, false); if (error) pm_dev_err(dev, state, "", error); mutex_lock(&dpm_list_mtx); } if (!list_empty(&dev->power.entry)) list_move_tail(&dev->power.entry, &dpm_prepared_list); put_device(dev); } mutex_unlock(&dpm_list_mtx); async_synchronize_full(); dpm_show_time(starttime, state, NULL); } /** * device_complete - Complete a PM transition for given device. * @dev: Device to handle. * @state: PM transition of the system being carried out. */ static void device_complete(struct device *dev, pm_message_t state) { device_lock(dev); if (dev->pwr_domain) { pm_dev_dbg(dev, state, "completing power domain "); if (dev->pwr_domain->ops.complete) dev->pwr_domain->ops.complete(dev); } else if (dev->type && dev->type->pm) { pm_dev_dbg(dev, state, "completing type "); if (dev->type->pm->complete) dev->type->pm->complete(dev); } else if (dev->class && dev->class->pm) { pm_dev_dbg(dev, state, "completing class "); if (dev->class->pm->complete) dev->class->pm->complete(dev); } else if (dev->bus && dev->bus->pm) { pm_dev_dbg(dev, state, "completing "); if (dev->bus->pm->complete) dev->bus->pm->complete(dev); } device_unlock(dev); } /** * dpm_complete - Complete a PM transition for all non-sysdev devices. * @state: PM transition of the system being carried out. * * Execute the ->complete() callbacks for all devices whose PM status is not * DPM_ON (this allows new devices to be registered). */ void dpm_complete(pm_message_t state) { struct list_head list; might_sleep(); INIT_LIST_HEAD(&list); mutex_lock(&dpm_list_mtx); while (!list_empty(&dpm_prepared_list)) { struct device *dev = to_device(dpm_prepared_list.prev); get_device(dev); dev->power.is_prepared = false; list_move(&dev->power.entry, &list); mutex_unlock(&dpm_list_mtx); device_complete(dev, state); mutex_lock(&dpm_list_mtx); put_device(dev); } list_splice(&list, &dpm_list); mutex_unlock(&dpm_list_mtx); } /** * dpm_resume_end - Execute "resume" callbacks and complete system transition. * @state: PM transition of the system being carried out. * * Execute "resume" callbacks for all devices and complete the PM transition of * the system. */ void dpm_resume_end(pm_message_t state) { dpm_resume(state); dpm_complete(state); } EXPORT_SYMBOL_GPL(dpm_resume_end); /*------------------------- Suspend routines -------------------------*/ /** * resume_event - Return a "resume" message for given "suspend" sleep state. * @sleep_state: PM message representing a sleep state. * * Return a PM message representing the resume event corresponding to given * sleep state. */ static pm_message_t resume_event(pm_message_t sleep_state) { switch (sleep_state.event) { case PM_EVENT_SUSPEND: return PMSG_RESUME; case PM_EVENT_FREEZE: case PM_EVENT_QUIESCE: return PMSG_RECOVER; case PM_EVENT_HIBERNATE: return PMSG_RESTORE; } return PMSG_ON; } /** * device_suspend_noirq - Execute a "late suspend" callback for given device. * @dev: Device to handle. * @state: PM transition of the system being carried out. * * The driver of @dev will not receive interrupts while this function is being * executed. */ static int device_suspend_noirq(struct device *dev, pm_message_t state) { int error; if (dev->pwr_domain) { pm_dev_dbg(dev, state, "LATE power domain "); error = pm_noirq_op(dev, &dev->pwr_domain->ops, state); if (error) return error; } else if (dev->type && dev->type->pm) { pm_dev_dbg(dev, state, "LATE type "); error = pm_noirq_op(dev, dev->type->pm, state); if (error) return error; } else if (dev->class && dev->class->pm) { pm_dev_dbg(dev, state, "LATE class "); error = pm_noirq_op(dev, dev->class->pm, state); if (error) return error; } else if (dev->bus && dev->bus->pm) { pm_dev_dbg(dev, state, "LATE "); error = pm_noirq_op(dev, dev->bus->pm, state); if (error) return error; } return 0; } /** * dpm_suspend_noirq - Execute "late suspend" callbacks for non-sysdev devices. * @state: PM transition of the system being carried out. * * Prevent device drivers from receiving interrupts and call the "noirq" suspend * handlers for all non-sysdev devices. */ int dpm_suspend_noirq(pm_message_t state) { ktime_t starttime = ktime_get(); int error = 0; suspend_device_irqs(); mutex_lock(&dpm_list_mtx); while (!list_empty(&dpm_suspended_list)) { struct device *dev = to_device(dpm_suspended_list.prev); get_device(dev); mutex_unlock(&dpm_list_mtx); error = device_suspend_noirq(dev, state); mutex_lock(&dpm_list_mtx); if (error) { pm_dev_err(dev, state, " late", error); put_device(dev); break; } if (!list_empty(&dev->power.entry)) list_move(&dev->power.entry, &dpm_noirq_list); put_device(dev); } mutex_unlock(&dpm_list_mtx); if (error) dpm_resume_noirq(resume_event(state)); else dpm_show_time(starttime, state, "late"); return error; } EXPORT_SYMBOL_GPL(dpm_suspend_noirq); /** * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. * @dev: Device to suspend. * @state: PM transition of the system being carried out. * @cb: Suspend callback to execute. */ static int legacy_suspend(struct device *dev, pm_message_t state, int (*cb)(struct device *dev, pm_message_t state)) { int error; ktime_t calltime; calltime = initcall_debug_start(dev); error = cb(dev, state); suspend_report_result(cb, error); initcall_debug_report(dev, calltime, error); return error; } /** * device_suspend - Execute "suspend" callbacks for given device. * @dev: Device to handle. * @state: PM transition of the system being carried out. * @async: If true, the device is being suspended asynchronously. */ static int __device_suspend(struct device *dev, pm_message_t state, bool async) { int error = 0; struct timer_list timer; struct dpm_drv_wd_data data; dpm_wait_for_children(dev, async); data.dev = dev; data.tsk = get_current(); init_timer_on_stack(&timer); timer.expires = jiffies + HZ * 12; timer.function = dpm_drv_timeout; timer.data = (unsigned long)&data; add_timer(&timer); device_lock(dev); if (async_error) goto Unlock; if (pm_wakeup_pending()) { async_error = -EBUSY; goto Unlock; } if (dev->pwr_domain) { pm_dev_dbg(dev, state, "power domain "); error = pm_op(dev, &dev->pwr_domain->ops, state); goto End; } if (dev->type && dev->type->pm) { pm_dev_dbg(dev, state, "type "); error = pm_op(dev, dev->type->pm, state); goto End; } if (dev->class) { if (dev->class->pm) { pm_dev_dbg(dev, state, "class "); error = pm_op(dev, dev->class->pm, state); goto End; } else if (dev->class->suspend) { pm_dev_dbg(dev, state, "legacy class "); error = legacy_suspend(dev, state, dev->class->suspend); goto End; } } if (dev->bus) { if (dev->bus->pm) { pm_dev_dbg(dev, state, ""); error = pm_op(dev, dev->bus->pm, state); } else if (dev->bus->suspend) { pm_dev_dbg(dev, state, "legacy "); error = legacy_suspend(dev, state, dev->bus->suspend); } } End: dev->power.is_suspended = !error; Unlock: device_unlock(dev); del_timer_sync(&timer); destroy_timer_on_stack(&timer); complete_all(&dev->power.completion); if (error) async_error = error; return error; } static void async_suspend(void *data, async_cookie_t cookie) { struct device *dev = (struct device *)data; int error; error = __device_suspend(dev, pm_transition, true); if (error) pm_dev_err(dev, pm_transition, " async", error); put_device(dev); } static int device_suspend(struct device *dev) { INIT_COMPLETION(dev->power.completion); if (pm_async_enabled && dev->power.async_suspend) { get_device(dev); async_schedule(async_suspend, dev); return 0; } return __device_suspend(dev, pm_transition, false); } /** * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. * @state: PM transition of the system being carried out. */ int dpm_suspend(pm_message_t state) { ktime_t starttime = ktime_get(); int error = 0; might_sleep(); mutex_lock(&dpm_list_mtx); pm_transition = state; async_error = 0; while (!list_empty(&dpm_prepared_list)) { struct device *dev = to_device(dpm_prepared_list.prev); get_device(dev); mutex_unlock(&dpm_list_mtx); error = device_suspend(dev); mutex_lock(&dpm_list_mtx); if (error) { pm_dev_err(dev, state, "", error); put_device(dev); break; } if (!list_empty(&dev->power.entry)) list_move(&dev->power.entry, &dpm_suspended_list); put_device(dev); if (async_error) break; } mutex_unlock(&dpm_list_mtx); async_synchronize_full(); if (!error) error = async_error; if (!error) dpm_show_time(starttime, state, NULL); return error; } /** * device_prepare - Prepare a device for system power transition. * @dev: Device to handle. * @state: PM transition of the system being carried out. * * Execute the ->prepare() callback(s) for given device. No new children of the * device may be registered after this function has returned. */ static int device_prepare(struct device *dev, pm_message_t state) { int error = 0; device_lock(dev); if (dev->pwr_domain) { pm_dev_dbg(dev, state, "preparing power domain "); if (dev->pwr_domain->ops.prepare) error = dev->pwr_domain->ops.prepare(dev); suspend_report_result(dev->pwr_domain->ops.prepare, error); if (error) goto End; } else if (dev->type && dev->type->pm) { pm_dev_dbg(dev, state, "preparing type "); if (dev->type->pm->prepare) error = dev->type->pm->prepare(dev); suspend_report_result(dev->type->pm->prepare, error); if (error) goto End; } else if (dev->class && dev->class->pm) { pm_dev_dbg(dev, state, "preparing class "); if (dev->class->pm->prepare) error = dev->class->pm->prepare(dev); suspend_report_result(dev->class->pm->prepare, error); if (error) goto End; } else if (dev->bus && dev->bus->pm) { pm_dev_dbg(dev, state, "preparing "); if (dev->bus->pm->prepare) error = dev->bus->pm->prepare(dev); suspend_report_result(dev->bus->pm->prepare, error); } End: device_unlock(dev); return error; } /** * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. * @state: PM transition of the system being carried out. * * Execute the ->prepare() callback(s) for all devices. */ int dpm_prepare(pm_message_t state) { int error = 0; might_sleep(); mutex_lock(&dpm_list_mtx); while (!list_empty(&dpm_list)) { struct device *dev = to_device(dpm_list.next); get_device(dev); mutex_unlock(&dpm_list_mtx); pm_runtime_get_noresume(dev); if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) pm_wakeup_event(dev, 0); pm_runtime_put_sync(dev); error = pm_wakeup_pending() ? -EBUSY : device_prepare(dev, state); mutex_lock(&dpm_list_mtx); if (error) { if (error == -EAGAIN) { put_device(dev); error = 0; continue; } printk(KERN_INFO "PM: Device %s not prepared " "for power transition: code %d\n", dev_name(dev), error); put_device(dev); break; } dev->power.is_prepared = true; if (!list_empty(&dev->power.entry)) list_move_tail(&dev->power.entry, &dpm_prepared_list); put_device(dev); } mutex_unlock(&dpm_list_mtx); return error; } /** * dpm_suspend_start - Prepare devices for PM transition and suspend them. * @state: PM transition of the system being carried out. * * Prepare all non-sysdev devices for system PM transition and execute "suspend" * callbacks for them. */ int dpm_suspend_start(pm_message_t state) { int error; error = dpm_prepare(state); if (!error) error = dpm_suspend(state); return error; } EXPORT_SYMBOL_GPL(dpm_suspend_start); void __suspend_report_result(const char *function, void *fn, int ret) { if (ret) printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret); } EXPORT_SYMBOL_GPL(__suspend_report_result); /** * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. * @dev: Device to wait for. * @subordinate: Device that needs to wait for @dev. */ int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) { dpm_wait(dev, subordinate->power.async_suspend); return async_error; } EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);