/* Generic MTRR (Memory Type Range Register) driver. Copyright (C) 1997-2000 Richard Gooch Copyright (c) 2002 Patrick Mochel This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. Richard Gooch may be reached by email at rgooch@atnf.csiro.au The postal address is: Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia. Source: "Pentium Pro Family Developer's Manual, Volume 3: Operating System Writer's Guide" (Intel document number 242692), section 11.11.7 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org> on 6-7 March 2002. Source: Intel Architecture Software Developers Manual, Volume 3: System Programming Guide; Section 9.11. (1997 edition - PPro). */ #define DEBUG #include <linux/types.h> /* FIXME: kvm_para.h needs this */ #include <linux/stop_machine.h> #include <linux/kvm_para.h> #include <linux/uaccess.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/init.h> #include <linux/sort.h> #include <linux/cpu.h> #include <linux/pci.h> #include <linux/smp.h> #include <linux/syscore_ops.h> #include <asm/processor.h> #include <asm/e820.h> #include <asm/mtrr.h> #include <asm/msr.h> #include "mtrr.h" u32 num_var_ranges; unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES]; static DEFINE_MUTEX(mtrr_mutex); u64 size_or_mask, size_and_mask; static bool mtrr_aps_delayed_init; static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM]; const struct mtrr_ops *mtrr_if; static void set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type); void set_mtrr_ops(const struct mtrr_ops *ops) { if (ops->vendor && ops->vendor < X86_VENDOR_NUM) mtrr_ops[ops->vendor] = ops; } /* Returns non-zero if we have the write-combining memory type */ static int have_wrcomb(void) { struct pci_dev *dev; u8 rev; dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL); if (dev != NULL) { /* * ServerWorks LE chipsets < rev 6 have problems with * write-combining. Don't allow it and leave room for other * chipsets to be tagged */ if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS && dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) { pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev); if (rev <= 5) { pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n"); pci_dev_put(dev); return 0; } } /* * Intel 450NX errata # 23. Non ascending cacheline evictions to * write combining memory may resulting in data corruption */ if (dev->vendor == PCI_VENDOR_ID_INTEL && dev->device == PCI_DEVICE_ID_INTEL_82451NX) { pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n"); pci_dev_put(dev); return 0; } pci_dev_put(dev); } return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0; } /* This function returns the number of variable MTRRs */ static void __init set_num_var_ranges(void) { unsigned long config = 0, dummy; if (use_intel()) rdmsr(MSR_MTRRcap, config, dummy); else if (is_cpu(AMD)) config = 2; else if (is_cpu(CYRIX) || is_cpu(CENTAUR)) config = 8; num_var_ranges = config & 0xff; } static void __init init_table(void) { int i, max; max = num_var_ranges; for (i = 0; i < max; i++) mtrr_usage_table[i] = 1; } struct set_mtrr_data { atomic_t count; atomic_t gate; unsigned long smp_base; unsigned long smp_size; unsigned int smp_reg; mtrr_type smp_type; }; static DEFINE_PER_CPU(struct cpu_stop_work, mtrr_work); /** * mtrr_work_handler - Synchronisation handler. Executed by "other" CPUs. * @info: pointer to mtrr configuration data * * Returns nothing. */ static int mtrr_work_handler(void *info) { #ifdef CONFIG_SMP struct set_mtrr_data *data = info; unsigned long flags; atomic_dec(&data->count); while (!atomic_read(&data->gate)) cpu_relax(); local_irq_save(flags); atomic_dec(&data->count); while (atomic_read(&data->gate)) cpu_relax(); /* The master has cleared me to execute */ if (data->smp_reg != ~0U) { mtrr_if->set(data->smp_reg, data->smp_base, data->smp_size, data->smp_type); } else if (mtrr_aps_delayed_init) { /* * Initialize the MTRRs inaddition to the synchronisation. */ mtrr_if->set_all(); } atomic_dec(&data->count); while (!atomic_read(&data->gate)) cpu_relax(); atomic_dec(&data->count); local_irq_restore(flags); #endif return 0; } static inline int types_compatible(mtrr_type type1, mtrr_type type2) { return type1 == MTRR_TYPE_UNCACHABLE || type2 == MTRR_TYPE_UNCACHABLE || (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) || (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH); } /** * set_mtrr - update mtrrs on all processors * @reg: mtrr in question * @base: mtrr base * @size: mtrr size * @type: mtrr type * * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly: * * 1. Queue work to do the following on all processors: * 2. Disable Interrupts * 3. Wait for all procs to do so * 4. Enter no-fill cache mode * 5. Flush caches * 6. Clear PGE bit * 7. Flush all TLBs * 8. Disable all range registers * 9. Update the MTRRs * 10. Enable all range registers * 11. Flush all TLBs and caches again * 12. Enter normal cache mode and reenable caching * 13. Set PGE * 14. Wait for buddies to catch up * 15. Enable interrupts. * * What does that mean for us? Well, first we set data.count to the number * of CPUs. As each CPU announces that it started the rendezvous handler by * decrementing the count, We reset data.count and set the data.gate flag * allowing all the cpu's to proceed with the work. As each cpu disables * interrupts, it'll decrement data.count once. We wait until it hits 0 and * proceed. We clear the data.gate flag and reset data.count. Meanwhile, they * are waiting for that flag to be cleared. Once it's cleared, each * CPU goes through the transition of updating MTRRs. * The CPU vendors may each do it differently, * so we call mtrr_if->set() callback and let them take care of it. * When they're done, they again decrement data->count and wait for data.gate * to be set. * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag * Everyone then enables interrupts and we all continue on. * * Note that the mechanism is the same for UP systems, too; all the SMP stuff * becomes nops. */ static void set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type) { struct set_mtrr_data data; unsigned long flags; int cpu; #ifdef CONFIG_SMP /* * If this cpu is not yet active, we are in the cpu online path. There * can be no stop_machine() in parallel, as stop machine ensures this * by using get_online_cpus(). We can skip taking the stop_cpus_mutex, * as we don't need it and also we can't afford to block while waiting * for the mutex. * * If this cpu is active, we need to prevent stop_machine() happening * in parallel by taking the stop cpus mutex. * * Also, this is called in the context of cpu online path or in the * context where cpu hotplug is prevented. So checking the active status * of the raw_smp_processor_id() is safe. */ if (cpu_active(raw_smp_processor_id())) mutex_lock(&stop_cpus_mutex); #endif preempt_disable(); data.smp_reg = reg; data.smp_base = base; data.smp_size = size; data.smp_type = type; atomic_set(&data.count, num_booting_cpus() - 1); /* Make sure data.count is visible before unleashing other CPUs */ smp_wmb(); atomic_set(&data.gate, 0); /* Start the ball rolling on other CPUs */ for_each_online_cpu(cpu) { struct cpu_stop_work *work = &per_cpu(mtrr_work, cpu); if (cpu == smp_processor_id()) continue; stop_one_cpu_nowait(cpu, mtrr_work_handler, &data, work); } while (atomic_read(&data.count)) cpu_relax(); /* Ok, reset count and toggle gate */ atomic_set(&data.count, num_booting_cpus() - 1); smp_wmb(); atomic_set(&data.gate, 1); local_irq_save(flags); while (atomic_read(&data.count)) cpu_relax(); /* Ok, reset count and toggle gate */ atomic_set(&data.count, num_booting_cpus() - 1); smp_wmb(); atomic_set(&data.gate, 0); /* Do our MTRR business */ /* * HACK! * * We use this same function to initialize the mtrrs during boot, * resume, runtime cpu online and on an explicit request to set a * specific MTRR. * * During boot or suspend, the state of the boot cpu's mtrrs has been * saved, and we want to replicate that across all the cpus that come * online (either at the end of boot or resume or during a runtime cpu * online). If we're doing that, @reg is set to something special and on * this cpu we still do mtrr_if->set_all(). During boot/resume, this * is unnecessary if at this point we are still on the cpu that started * the boot/resume sequence. But there is no guarantee that we are still * on the same cpu. So we do mtrr_if->set_all() on this cpu aswell to be * sure that we are in sync with everyone else. */ if (reg != ~0U) mtrr_if->set(reg, base, size, type); else mtrr_if->set_all(); /* Wait for the others */ while (atomic_read(&data.count)) cpu_relax(); atomic_set(&data.count, num_booting_cpus() - 1); smp_wmb(); atomic_set(&data.gate, 1); /* * Wait here for everyone to have seen the gate change * So we're the last ones to touch 'data' */ while (atomic_read(&data.count)) cpu_relax(); local_irq_restore(flags); preempt_enable(); #ifdef CONFIG_SMP if (cpu_active(raw_smp_processor_id())) mutex_unlock(&stop_cpus_mutex); #endif } /** * mtrr_add_page - Add a memory type region * @base: Physical base address of region in pages (in units of 4 kB!) * @size: Physical size of region in pages (4 kB) * @type: Type of MTRR desired * @increment: If this is true do usage counting on the region * * Memory type region registers control the caching on newer Intel and * non Intel processors. This function allows drivers to request an * MTRR is added. The details and hardware specifics of each processor's * implementation are hidden from the caller, but nevertheless the * caller should expect to need to provide a power of two size on an * equivalent power of two boundary. * * If the region cannot be added either because all regions are in use * or the CPU cannot support it a negative value is returned. On success * the register number for this entry is returned, but should be treated * as a cookie only. * * On a multiprocessor machine the changes are made to all processors. * This is required on x86 by the Intel processors. * * The available types are * * %MTRR_TYPE_UNCACHABLE - No caching * * %MTRR_TYPE_WRBACK - Write data back in bursts whenever * * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts * * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes * * BUGS: Needs a quiet flag for the cases where drivers do not mind * failures and do not wish system log messages to be sent. */ int mtrr_add_page(unsigned long base, unsigned long size, unsigned int type, bool increment) { unsigned long lbase, lsize; int i, replace, error; mtrr_type ltype; if (!mtrr_if) return -ENXIO; error = mtrr_if->validate_add_page(base, size, type); if (error) return error; if (type >= MTRR_NUM_TYPES) { pr_warning("mtrr: type: %u invalid\n", type); return -EINVAL; } /* If the type is WC, check that this processor supports it */ if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) { pr_warning("mtrr: your processor doesn't support write-combining\n"); return -ENOSYS; } if (!size) { pr_warning("mtrr: zero sized request\n"); return -EINVAL; } if (base & size_or_mask || size & size_or_mask) { pr_warning("mtrr: base or size exceeds the MTRR width\n"); return -EINVAL; } error = -EINVAL; replace = -1; /* No CPU hotplug when we change MTRR entries */ get_online_cpus(); /* Search for existing MTRR */ mutex_lock(&mtrr_mutex); for (i = 0; i < num_var_ranges; ++i) { mtrr_if->get(i, &lbase, &lsize, <ype); if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase) continue; /* * At this point we know there is some kind of * overlap/enclosure */ if (base < lbase || base + size - 1 > lbase + lsize - 1) { if (base <= lbase && base + size - 1 >= lbase + lsize - 1) { /* New region encloses an existing region */ if (type == ltype) { replace = replace == -1 ? i : -2; continue; } else if (types_compatible(type, ltype)) continue; } pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing" " 0x%lx000,0x%lx000\n", base, size, lbase, lsize); goto out; } /* New region is enclosed by an existing region */ if (ltype != type) { if (types_compatible(type, ltype)) continue; pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n", base, size, mtrr_attrib_to_str(ltype), mtrr_attrib_to_str(type)); goto out; } if (increment) ++mtrr_usage_table[i]; error = i; goto out; } /* Search for an empty MTRR */ i = mtrr_if->get_free_region(base, size, replace); if (i >= 0) { set_mtrr(i, base, size, type); if (likely(replace < 0)) { mtrr_usage_table[i] = 1; } else { mtrr_usage_table[i] = mtrr_usage_table[replace]; if (increment) mtrr_usage_table[i]++; if (unlikely(replace != i)) { set_mtrr(replace, 0, 0, 0); mtrr_usage_table[replace] = 0; } } } else { pr_info("mtrr: no more MTRRs available\n"); } error = i; out: mutex_unlock(&mtrr_mutex); put_online_cpus(); return error; } static int mtrr_check(unsigned long base, unsigned long size) { if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) { pr_warning("mtrr: size and base must be multiples of 4 kiB\n"); pr_debug("mtrr: size: 0x%lx base: 0x%lx\n", size, base); dump_stack(); return -1; } return 0; } /** * mtrr_add - Add a memory type region * @base: Physical base address of region * @size: Physical size of region * @type: Type of MTRR desired * @increment: If this is true do usage counting on the region * * Memory type region registers control the caching on newer Intel and * non Intel processors. This function allows drivers to request an * MTRR is added. The details and hardware specifics of each processor's * implementation are hidden from the caller, but nevertheless the * caller should expect to need to provide a power of two size on an * equivalent power of two boundary. * * If the region cannot be added either because all regions are in use * or the CPU cannot support it a negative value is returned. On success * the register number for this entry is returned, but should be treated * as a cookie only. * * On a multiprocessor machine the changes are made to all processors. * This is required on x86 by the Intel processors. * * The available types are * * %MTRR_TYPE_UNCACHABLE - No caching * * %MTRR_TYPE_WRBACK - Write data back in bursts whenever * * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts * * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes * * BUGS: Needs a quiet flag for the cases where drivers do not mind * failures and do not wish system log messages to be sent. */ int mtrr_add(unsigned long base, unsigned long size, unsigned int type, bool increment) { if (mtrr_check(base, size)) return -EINVAL; return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type, increment); } EXPORT_SYMBOL(mtrr_add); /** * mtrr_del_page - delete a memory type region * @reg: Register returned by mtrr_add * @base: Physical base address * @size: Size of region * * If register is supplied then base and size are ignored. This is * how drivers should call it. * * Releases an MTRR region. If the usage count drops to zero the * register is freed and the region returns to default state. * On success the register is returned, on failure a negative error * code. */ int mtrr_del_page(int reg, unsigned long base, unsigned long size) { int i, max; mtrr_type ltype; unsigned long lbase, lsize; int error = -EINVAL; if (!mtrr_if) return -ENXIO; max = num_var_ranges; /* No CPU hotplug when we change MTRR entries */ get_online_cpus(); mutex_lock(&mtrr_mutex); if (reg < 0) { /* Search for existing MTRR */ for (i = 0; i < max; ++i) { mtrr_if->get(i, &lbase, &lsize, <ype); if (lbase == base && lsize == size) { reg = i; break; } } if (reg < 0) { pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n", base, size); goto out; } } if (reg >= max) { pr_warning("mtrr: register: %d too big\n", reg); goto out; } mtrr_if->get(reg, &lbase, &lsize, <ype); if (lsize < 1) { pr_warning("mtrr: MTRR %d not used\n", reg); goto out; } if (mtrr_usage_table[reg] < 1) { pr_warning("mtrr: reg: %d has count=0\n", reg); goto out; } if (--mtrr_usage_table[reg] < 1) set_mtrr(reg, 0, 0, 0); error = reg; out: mutex_unlock(&mtrr_mutex); put_online_cpus(); return error; } /** * mtrr_del - delete a memory type region * @reg: Register returned by mtrr_add * @base: Physical base address * @size: Size of region * * If register is supplied then base and size are ignored. This is * how drivers should call it. * * Releases an MTRR region. If the usage count drops to zero the * register is freed and the region returns to default state. * On success the register is returned, on failure a negative error * code. */ int mtrr_del(int reg, unsigned long base, unsigned long size) { if (mtrr_check(base, size)) return -EINVAL; return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT); } EXPORT_SYMBOL(mtrr_del); /* * HACK ALERT! * These should be called implicitly, but we can't yet until all the initcall * stuff is done... */ static void __init init_ifs(void) { #ifndef CONFIG_X86_64 amd_init_mtrr(); cyrix_init_mtrr(); centaur_init_mtrr(); #endif } /* The suspend/resume methods are only for CPU without MTRR. CPU using generic * MTRR driver doesn't require this */ struct mtrr_value { mtrr_type ltype; unsigned long lbase; unsigned long lsize; }; static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES]; static int mtrr_save(void) { int i; for (i = 0; i < num_var_ranges; i++) { mtrr_if->get(i, &mtrr_value[i].lbase, &mtrr_value[i].lsize, &mtrr_value[i].ltype); } return 0; } static void mtrr_restore(void) { int i; for (i = 0; i < num_var_ranges; i++) { if (mtrr_value[i].lsize) { set_mtrr(i, mtrr_value[i].lbase, mtrr_value[i].lsize, mtrr_value[i].ltype); } } } static struct syscore_ops mtrr_syscore_ops = { .suspend = mtrr_save, .resume = mtrr_restore, }; int __initdata changed_by_mtrr_cleanup; /** * mtrr_bp_init - initialize mtrrs on the boot CPU * * This needs to be called early; before any of the other CPUs are * initialized (i.e. before smp_init()). * */ void __init mtrr_bp_init(void) { u32 phys_addr; init_ifs(); phys_addr = 32; if (cpu_has_mtrr) { mtrr_if = &generic_mtrr_ops; size_or_mask = 0xff000000; /* 36 bits */ size_and_mask = 0x00f00000; phys_addr = 36; /* * This is an AMD specific MSR, but we assume(hope?) that * Intel will implement it to when they extend the address * bus of the Xeon. */ if (cpuid_eax(0x80000000) >= 0x80000008) { phys_addr = cpuid_eax(0x80000008) & 0xff; /* CPUID workaround for Intel 0F33/0F34 CPU */ if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && boot_cpu_data.x86 == 0xF && boot_cpu_data.x86_model == 0x3 && (boot_cpu_data.x86_mask == 0x3 || boot_cpu_data.x86_mask == 0x4)) phys_addr = 36; size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1); size_and_mask = ~size_or_mask & 0xfffff00000ULL; } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR && boot_cpu_data.x86 == 6) { /* * VIA C* family have Intel style MTRRs, * but don't support PAE */ size_or_mask = 0xfff00000; /* 32 bits */ size_and_mask = 0; phys_addr = 32; } } else { switch (boot_cpu_data.x86_vendor) { case X86_VENDOR_AMD: if (cpu_has_k6_mtrr) { /* Pre-Athlon (K6) AMD CPU MTRRs */ mtrr_if = mtrr_ops[X86_VENDOR_AMD]; size_or_mask = 0xfff00000; /* 32 bits */ size_and_mask = 0; } break; case X86_VENDOR_CENTAUR: if (cpu_has_centaur_mcr) { mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR]; size_or_mask = 0xfff00000; /* 32 bits */ size_and_mask = 0; } break; case X86_VENDOR_CYRIX: if (cpu_has_cyrix_arr) { mtrr_if = mtrr_ops[X86_VENDOR_CYRIX]; size_or_mask = 0xfff00000; /* 32 bits */ size_and_mask = 0; } break; default: break; } } if (mtrr_if) { set_num_var_ranges(); init_table(); if (use_intel()) { get_mtrr_state(); if (mtrr_cleanup(phys_addr)) { changed_by_mtrr_cleanup = 1; mtrr_if->set_all(); } } } } void mtrr_ap_init(void) { if (!use_intel() || mtrr_aps_delayed_init) return; /* * Ideally we should hold mtrr_mutex here to avoid mtrr entries * changed, but this routine will be called in cpu boot time, * holding the lock breaks it. * * This routine is called in two cases: * * 1. very earily time of software resume, when there absolutely * isn't mtrr entry changes; * * 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug * lock to prevent mtrr entry changes */ set_mtrr(~0U, 0, 0, 0); } /** * Save current fixed-range MTRR state of the BSP */ void mtrr_save_state(void) { smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1); } void set_mtrr_aps_delayed_init(void) { if (!use_intel()) return; mtrr_aps_delayed_init = true; } /* * Delayed MTRR initialization for all AP's */ void mtrr_aps_init(void) { if (!use_intel()) return; /* * Check if someone has requested the delay of AP MTRR initialization, * by doing set_mtrr_aps_delayed_init(), prior to this point. If not, * then we are done. */ if (!mtrr_aps_delayed_init) return; set_mtrr(~0U, 0, 0, 0); mtrr_aps_delayed_init = false; } void mtrr_bp_restore(void) { if (!use_intel()) return; mtrr_if->set_all(); } static int __init mtrr_init_finialize(void) { if (!mtrr_if) return 0; if (use_intel()) { if (!changed_by_mtrr_cleanup) mtrr_state_warn(); return 0; } /* * The CPU has no MTRR and seems to not support SMP. They have * specific drivers, we use a tricky method to support * suspend/resume for them. * * TBD: is there any system with such CPU which supports * suspend/resume? If no, we should remove the code. */ register_syscore_ops(&mtrr_syscore_ops); return 0; } subsys_initcall(mtrr_init_finialize);