#ifndef _PARISC_PGTABLE_H #define _PARISC_PGTABLE_H #include <asm-generic/4level-fixup.h> #include <asm/fixmap.h> #ifndef __ASSEMBLY__ /* * we simulate an x86-style page table for the linux mm code */ #include <linux/bitops.h> #include <linux/spinlock.h> #include <linux/mm_types.h> #include <asm/processor.h> #include <asm/cache.h> /* * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel * memory. For the return value to be meaningful, ADDR must be >= * PAGE_OFFSET. This operation can be relatively expensive (e.g., * require a hash-, or multi-level tree-lookup or something of that * sort) but it guarantees to return TRUE only if accessing the page * at that address does not cause an error. Note that there may be * addresses for which kern_addr_valid() returns FALSE even though an * access would not cause an error (e.g., this is typically true for * memory mapped I/O regions. * * XXX Need to implement this for parisc. */ #define kern_addr_valid(addr) (1) /* Certain architectures need to do special things when PTEs * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) \ do{ \ *(pteptr) = (pteval); \ } while(0) extern void purge_tlb_entries(struct mm_struct *, unsigned long); #define set_pte_at(mm, addr, ptep, pteval) \ do { \ set_pte(ptep, pteval); \ purge_tlb_entries(mm, addr); \ } while (0) #endif /* !__ASSEMBLY__ */ #define pte_ERROR(e) \ printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e)) /* This is the size of the initially mapped kernel memory */ #define KERNEL_INITIAL_ORDER 24 /* 0 to 1<<24 = 16MB */ #define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER) #if defined(CONFIG_64BIT) && defined(CONFIG_PARISC_PAGE_SIZE_4KB) #define PT_NLEVELS 3 #define PGD_ORDER 1 /* Number of pages per pgd */ #define PMD_ORDER 1 /* Number of pages per pmd */ #define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */ #else #define PT_NLEVELS 2 #define PGD_ORDER 1 /* Number of pages per pgd */ #define PGD_ALLOC_ORDER PGD_ORDER #endif /* Definitions for 3rd level (we use PLD here for Page Lower directory * because PTE_SHIFT is used lower down to mean shift that has to be * done to get usable bits out of the PTE) */ #define PLD_SHIFT PAGE_SHIFT #define PLD_SIZE PAGE_SIZE #define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY) #define PTRS_PER_PTE (1UL << BITS_PER_PTE) /* Definitions for 2nd level */ #define pgtable_cache_init() do { } while (0) #define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #if PT_NLEVELS == 3 #define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY) #else #define BITS_PER_PMD 0 #endif #define PTRS_PER_PMD (1UL << BITS_PER_PMD) /* Definitions for 1st level */ #define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD) #if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG #define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT) #else #define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) #endif #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define PTRS_PER_PGD (1UL << BITS_PER_PGD) #define USER_PTRS_PER_PGD PTRS_PER_PGD #ifdef CONFIG_64BIT #define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD) #define MAX_ADDRESS (1UL << MAX_ADDRBITS) #define SPACEID_SHIFT (MAX_ADDRBITS - 32) #else #define MAX_ADDRBITS (BITS_PER_LONG) #define MAX_ADDRESS (1UL << MAX_ADDRBITS) #define SPACEID_SHIFT 0 #endif /* This calculates the number of initial pages we need for the initial * page tables */ #if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT) # define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT)) #else # define PT_INITIAL (1) /* all initial PTEs fit into one page */ #endif /* * pgd entries used up by user/kernel: */ #define FIRST_USER_ADDRESS 0 /* NB: The tlb miss handlers make certain assumptions about the order */ /* of the following bits, so be careful (One example, bits 25-31 */ /* are moved together in one instruction). */ #define _PAGE_READ_BIT 31 /* (0x001) read access allowed */ #define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */ #define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */ #define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */ #define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */ #define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */ #define _PAGE_FILE_BIT _PAGE_DIRTY_BIT /* overload this bit */ #define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */ #define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */ #define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */ #define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */ /* bit 21 was formerly the FLUSH bit but is now unused */ #define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */ /* N.B. The bits are defined in terms of a 32 bit word above, so the */ /* following macro is ok for both 32 and 64 bit. */ #define xlate_pabit(x) (31 - x) /* this defines the shift to the usable bits in the PTE it is set so * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set * to zero */ #define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT) /* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */ #define PFN_PTE_SHIFT 12 /* this is how many bits may be used by the file functions */ #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT) #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT) #define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE }) #define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT)) #define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT)) #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) #define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT)) #define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT)) #define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT)) #define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT)) #define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT)) #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT)) #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT)) #define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT)) #define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT)) #define _PAGE_FILE (1 << xlate_pabit(_PAGE_FILE_BIT)) #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED) #define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC) #define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE) #define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE) /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds * are page-aligned, we don't care about the PAGE_OFFSET bits, except * for a few meta-information bits, so we shift the address to be * able to effectively address 40/42/44-bits of physical address space * depending on 4k/16k/64k PAGE_SIZE */ #define _PxD_PRESENT_BIT 31 #define _PxD_ATTACHED_BIT 30 #define _PxD_VALID_BIT 29 #define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT)) #define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT)) #define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT)) #define PxD_FLAG_MASK (0xf) #define PxD_FLAG_SHIFT (4) #define PxD_VALUE_SHIFT (8) /* (PAGE_SHIFT-PxD_FLAG_SHIFT) */ #ifndef __ASSEMBLY__ #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED) /* Others seem to make this executable, I don't know if that's correct or not. The stack is mapped this way though so this is necessary in the short term - dhd@linuxcare.com, 2000-08-08 */ #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED) #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED) #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED) #define PAGE_COPY PAGE_EXECREAD #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED) #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC) #define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX) #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO) #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ) /* * We could have an execute only page using "gateway - promote to priv * level 3", but that is kind of silly. So, the way things are defined * now, we must always have read permission for pages with execute * permission. For the fun of it we'll go ahead and support write only * pages. */ /*xwr*/ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 __P000 /* copy on write */ #define __P011 __P001 /* copy on write */ #define __P100 PAGE_EXECREAD #define __P101 PAGE_EXECREAD #define __P110 __P100 /* copy on write */ #define __P111 __P101 /* copy on write */ #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_WRITEONLY #define __S011 PAGE_SHARED #define __S100 PAGE_EXECREAD #define __S101 PAGE_EXECREAD #define __S110 PAGE_RWX #define __S111 PAGE_RWX extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */ /* initial page tables for 0-8MB for kernel */ extern pte_t pg0[]; /* zero page used for uninitialized stuff */ extern unsigned long *empty_zero_page; /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #define pte_none(x) (pte_val(x) == 0) #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) #define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0) #define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK) #define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) #define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK) #define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) #if PT_NLEVELS == 3 /* The first entry of the permanent pmd is not there if it contains * the gateway marker */ #define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED) #else #define pmd_none(x) (!pmd_val(x)) #endif #define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID)) #define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT) static inline void pmd_clear(pmd_t *pmd) { #if PT_NLEVELS == 3 if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED) /* This is the entry pointing to the permanent pmd * attached to the pgd; cannot clear it */ __pmd_val_set(*pmd, PxD_FLAG_ATTACHED); else #endif __pmd_val_set(*pmd, 0); } #if PT_NLEVELS == 3 #define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd))) #define pgd_page(pgd) virt_to_page((void *)pgd_page_vaddr(pgd)) /* For 64 bit we have three level tables */ #define pgd_none(x) (!pgd_val(x)) #define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID)) #define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT) static inline void pgd_clear(pgd_t *pgd) { #if PT_NLEVELS == 3 if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED) /* This is the permanent pmd attached to the pgd; cannot * free it */ return; #endif __pgd_val_set(*pgd, 0); } #else /* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */ static inline int pgd_none(pgd_t pgd) { return 0; } static inline int pgd_bad(pgd_t pgd) { return 0; } static inline int pgd_present(pgd_t pgd) { return 1; } static inline void pgd_clear(pgd_t * pgdp) { } #endif /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } static inline int pte_special(pte_t pte) { return 0; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } static inline pte_t pte_mkspecial(pte_t pte) { return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define __mk_pte(addr,pgprot) \ ({ \ pte_t __pte; \ \ pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \ \ __pte; \ }) #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { pte_t pte; pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot); return pte; } static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } /* Permanent address of a page. On parisc we don't have highmem. */ #define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT) #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_address(pmd))) #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd))) #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd)) #define pgd_index(address) ((address) >> PGDIR_SHIFT) /* to find an entry in a page-table-directory */ #define pgd_offset(mm, address) \ ((mm)->pgd + ((address) >> PGDIR_SHIFT)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* Find an entry in the second-level page table.. */ #if PT_NLEVELS == 3 #define pmd_offset(dir,address) \ ((pmd_t *) pgd_page_vaddr(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1))) #else #define pmd_offset(dir,addr) ((pmd_t *) dir) #endif /* Find an entry in the third-level page table.. */ #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) #define pte_offset_kernel(pmd, address) \ ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address)) #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) #define pte_unmap(pte) do { } while (0) #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) extern void paging_init (void); /* Used for deferring calls to flush_dcache_page() */ #define PG_dcache_dirty PG_arch_1 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); /* Encode and de-code a swap entry */ #define __swp_type(x) ((x).val & 0x1f) #define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \ (((x).val >> 8) & ~0x7) ) #define __swp_entry(type, offset) ((swp_entry_t) { (type) | \ ((offset & 0x7) << 6) | \ ((offset & ~0x7) << 8) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { #ifdef CONFIG_SMP if (!pte_young(*ptep)) return 0; return test_and_clear_bit(xlate_pabit(_PAGE_ACCESSED_BIT), &pte_val(*ptep)); #else pte_t pte = *ptep; if (!pte_young(pte)) return 0; set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); return 1; #endif } extern spinlock_t pa_dbit_lock; struct mm_struct; static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t old_pte; spin_lock(&pa_dbit_lock); old_pte = *ptep; pte_clear(mm,addr,ptep); spin_unlock(&pa_dbit_lock); return old_pte; } static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { #ifdef CONFIG_SMP unsigned long new, old; do { old = pte_val(*ptep); new = pte_val(pte_wrprotect(__pte (old))); } while (cmpxchg((unsigned long *) ptep, old, new) != old); purge_tlb_entries(mm, addr); #else pte_t old_pte = *ptep; set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); #endif } #define pte_same(A,B) (pte_val(A) == pte_val(B)) #endif /* !__ASSEMBLY__ */ /* TLB page size encoding - see table 3-1 in parisc20.pdf */ #define _PAGE_SIZE_ENCODING_4K 0 #define _PAGE_SIZE_ENCODING_16K 1 #define _PAGE_SIZE_ENCODING_64K 2 #define _PAGE_SIZE_ENCODING_256K 3 #define _PAGE_SIZE_ENCODING_1M 4 #define _PAGE_SIZE_ENCODING_4M 5 #define _PAGE_SIZE_ENCODING_16M 6 #define _PAGE_SIZE_ENCODING_64M 7 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K #elif defined(CONFIG_PARISC_PAGE_SIZE_16KB) # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K #elif defined(CONFIG_PARISC_PAGE_SIZE_64KB) # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K #endif #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ remap_pfn_range(vma, vaddr, pfn, size, prot) #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE) /* We provide our own get_unmapped_area to provide cache coherency */ #define HAVE_ARCH_UNMAPPED_AREA #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define __HAVE_ARCH_PTEP_GET_AND_CLEAR #define __HAVE_ARCH_PTEP_SET_WRPROTECT #define __HAVE_ARCH_PTE_SAME #include <asm-generic/pgtable.h> #endif /* _PARISC_PGTABLE_H */