/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * A small micro-assembler. It is intentionally kept simple, does only * support a subset of instructions, and does not try to hide pipeline * effects like branch delay slots. * * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer * Copyright (C) 2005, 2007 Maciej W. Rozycki * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/init.h> #include <asm/inst.h> #include <asm/elf.h> #include <asm/bugs.h> #include <asm/uasm.h> enum fields { RS = 0x001, RT = 0x002, RD = 0x004, RE = 0x008, SIMM = 0x010, UIMM = 0x020, BIMM = 0x040, JIMM = 0x080, FUNC = 0x100, SET = 0x200, SCIMM = 0x400 }; #define OP_MASK 0x3f #define OP_SH 26 #define RS_MASK 0x1f #define RS_SH 21 #define RT_MASK 0x1f #define RT_SH 16 #define RD_MASK 0x1f #define RD_SH 11 #define RE_MASK 0x1f #define RE_SH 6 #define IMM_MASK 0xffff #define IMM_SH 0 #define JIMM_MASK 0x3ffffff #define JIMM_SH 0 #define FUNC_MASK 0x3f #define FUNC_SH 0 #define SET_MASK 0x7 #define SET_SH 0 #define SCIMM_MASK 0xfffff #define SCIMM_SH 6 enum opcode { insn_invalid, insn_addu, insn_addiu, insn_and, insn_andi, insn_beq, insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl, insn_bne, insn_cache, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0, insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32, insn_drotr, insn_drotr32, insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld, insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0, insn_or, insn_ori, insn_pref, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll, insn_sra, insn_srl, insn_rotr, insn_subu, insn_sw, insn_tlbp, insn_tlbr, insn_tlbwi, insn_tlbwr, insn_xor, insn_xori, insn_dins, insn_dinsm, insn_syscall, insn_bbit0, insn_bbit1, insn_lwx, insn_ldx }; struct insn { enum opcode opcode; u32 match; enum fields fields; }; /* This macro sets the non-variable bits of an instruction. */ #define M(a, b, c, d, e, f) \ ((a) << OP_SH \ | (b) << RS_SH \ | (c) << RT_SH \ | (d) << RD_SH \ | (e) << RE_SH \ | (f) << FUNC_SH) static struct insn insn_table[] __uasminitdata = { { insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD }, { insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD }, { insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM }, { insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, { insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, { insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM }, { insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM }, { insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM }, { insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM }, { insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, { insn_cache, M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD }, { insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET}, { insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET}, { insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE }, { insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE }, { insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE }, { insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE }, { insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE }, { insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE }, { insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE }, { insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD }, { insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 }, { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM }, { insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM }, { insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS }, { insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM }, { insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET}, { insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET}, { insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD }, { insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM }, { insn_pref, M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 }, { insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE }, { insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE }, { insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE }, { insn_rotr, M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE }, { insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD }, { insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, { insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 }, { insn_tlbr, M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0 }, { insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 }, { insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 }, { insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD }, { insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM }, { insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE }, { insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE }, { insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM}, { insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, { insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, { insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD }, { insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD }, { insn_invalid, 0, 0 } }; #undef M static inline __uasminit u32 build_rs(u32 arg) { WARN(arg & ~RS_MASK, KERN_WARNING "Micro-assembler field overflow\n"); return (arg & RS_MASK) << RS_SH; } static inline __uasminit u32 build_rt(u32 arg) { WARN(arg & ~RT_MASK, KERN_WARNING "Micro-assembler field overflow\n"); return (arg & RT_MASK) << RT_SH; } static inline __uasminit u32 build_rd(u32 arg) { WARN(arg & ~RD_MASK, KERN_WARNING "Micro-assembler field overflow\n"); return (arg & RD_MASK) << RD_SH; } static inline __uasminit u32 build_re(u32 arg) { WARN(arg & ~RE_MASK, KERN_WARNING "Micro-assembler field overflow\n"); return (arg & RE_MASK) << RE_SH; } static inline __uasminit u32 build_simm(s32 arg) { WARN(arg > 0x7fff || arg < -0x8000, KERN_WARNING "Micro-assembler field overflow\n"); return arg & 0xffff; } static inline __uasminit u32 build_uimm(u32 arg) { WARN(arg & ~IMM_MASK, KERN_WARNING "Micro-assembler field overflow\n"); return arg & IMM_MASK; } static inline __uasminit u32 build_bimm(s32 arg) { WARN(arg > 0x1ffff || arg < -0x20000, KERN_WARNING "Micro-assembler field overflow\n"); WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n"); return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff); } static inline __uasminit u32 build_jimm(u32 arg) { WARN(arg & ~(JIMM_MASK << 2), KERN_WARNING "Micro-assembler field overflow\n"); return (arg >> 2) & JIMM_MASK; } static inline __uasminit u32 build_scimm(u32 arg) { WARN(arg & ~SCIMM_MASK, KERN_WARNING "Micro-assembler field overflow\n"); return (arg & SCIMM_MASK) << SCIMM_SH; } static inline __uasminit u32 build_func(u32 arg) { WARN(arg & ~FUNC_MASK, KERN_WARNING "Micro-assembler field overflow\n"); return arg & FUNC_MASK; } static inline __uasminit u32 build_set(u32 arg) { WARN(arg & ~SET_MASK, KERN_WARNING "Micro-assembler field overflow\n"); return arg & SET_MASK; } /* * The order of opcode arguments is implicitly left to right, * starting with RS and ending with FUNC or IMM. */ static void __uasminit build_insn(u32 **buf, enum opcode opc, ...) { struct insn *ip = NULL; unsigned int i; va_list ap; u32 op; for (i = 0; insn_table[i].opcode != insn_invalid; i++) if (insn_table[i].opcode == opc) { ip = &insn_table[i]; break; } if (!ip || (opc == insn_daddiu && r4k_daddiu_bug())) panic("Unsupported Micro-assembler instruction %d", opc); op = ip->match; va_start(ap, opc); if (ip->fields & RS) op |= build_rs(va_arg(ap, u32)); if (ip->fields & RT) op |= build_rt(va_arg(ap, u32)); if (ip->fields & RD) op |= build_rd(va_arg(ap, u32)); if (ip->fields & RE) op |= build_re(va_arg(ap, u32)); if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32)); if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32)); if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32)); if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32)); if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32)); if (ip->fields & SET) op |= build_set(va_arg(ap, u32)); if (ip->fields & SCIMM) op |= build_scimm(va_arg(ap, u32)); va_end(ap); **buf = op; (*buf)++; } #define I_u1u2u3(op) \ Ip_u1u2u3(op) \ { \ build_insn(buf, insn##op, a, b, c); \ } \ UASM_EXPORT_SYMBOL(uasm_i##op); #define I_u2u1u3(op) \ Ip_u2u1u3(op) \ { \ build_insn(buf, insn##op, b, a, c); \ } \ UASM_EXPORT_SYMBOL(uasm_i##op); #define I_u3u1u2(op) \ Ip_u3u1u2(op) \ { \ build_insn(buf, insn##op, b, c, a); \ } \ UASM_EXPORT_SYMBOL(uasm_i##op); #define I_u1u2s3(op) \ Ip_u1u2s3(op) \ { \ build_insn(buf, insn##op, a, b, c); \ } \ UASM_EXPORT_SYMBOL(uasm_i##op); #define I_u2s3u1(op) \ Ip_u2s3u1(op) \ { \ build_insn(buf, insn##op, c, a, b); \ } \ UASM_EXPORT_SYMBOL(uasm_i##op); #define I_u2u1s3(op) \ Ip_u2u1s3(op) \ { \ build_insn(buf, insn##op, b, a, c); \ } \ UASM_EXPORT_SYMBOL(uasm_i##op); #define I_u2u1msbu3(op) \ Ip_u2u1msbu3(op) \ { \ build_insn(buf, insn##op, b, a, c+d-1, c); \ } \ UASM_EXPORT_SYMBOL(uasm_i##op); #define I_u2u1msb32u3(op) \ Ip_u2u1msbu3(op) \ { \ build_insn(buf, insn##op, b, a, c+d-33, c); \ } \ UASM_EXPORT_SYMBOL(uasm_i##op); #define I_u1u2(op) \ Ip_u1u2(op) \ { \ build_insn(buf, insn##op, a, b); \ } \ UASM_EXPORT_SYMBOL(uasm_i##op); #define I_u1s2(op) \ Ip_u1s2(op) \ { \ build_insn(buf, insn##op, a, b); \ } \ UASM_EXPORT_SYMBOL(uasm_i##op); #define I_u1(op) \ Ip_u1(op) \ { \ build_insn(buf, insn##op, a); \ } \ UASM_EXPORT_SYMBOL(uasm_i##op); #define I_0(op) \ Ip_0(op) \ { \ build_insn(buf, insn##op); \ } \ UASM_EXPORT_SYMBOL(uasm_i##op); I_u2u1s3(_addiu) I_u3u1u2(_addu) I_u2u1u3(_andi) I_u3u1u2(_and) I_u1u2s3(_beq) I_u1u2s3(_beql) I_u1s2(_bgez) I_u1s2(_bgezl) I_u1s2(_bltz) I_u1s2(_bltzl) I_u1u2s3(_bne) I_u2s3u1(_cache) I_u1u2u3(_dmfc0) I_u1u2u3(_dmtc0) I_u2u1s3(_daddiu) I_u3u1u2(_daddu) I_u2u1u3(_dsll) I_u2u1u3(_dsll32) I_u2u1u3(_dsra) I_u2u1u3(_dsrl) I_u2u1u3(_dsrl32) I_u2u1u3(_drotr) I_u2u1u3(_drotr32) I_u3u1u2(_dsubu) I_0(_eret) I_u1(_j) I_u1(_jal) I_u1(_jr) I_u2s3u1(_ld) I_u2s3u1(_ll) I_u2s3u1(_lld) I_u1s2(_lui) I_u2s3u1(_lw) I_u1u2u3(_mfc0) I_u1u2u3(_mtc0) I_u2u1u3(_ori) I_u3u1u2(_or) I_0(_rfe) I_u2s3u1(_sc) I_u2s3u1(_scd) I_u2s3u1(_sd) I_u2u1u3(_sll) I_u2u1u3(_sra) I_u2u1u3(_srl) I_u2u1u3(_rotr) I_u3u1u2(_subu) I_u2s3u1(_sw) I_0(_tlbp) I_0(_tlbr) I_0(_tlbwi) I_0(_tlbwr) I_u3u1u2(_xor) I_u2u1u3(_xori) I_u2u1msbu3(_dins); I_u2u1msb32u3(_dinsm); I_u1(_syscall); I_u1u2s3(_bbit0); I_u1u2s3(_bbit1); I_u3u1u2(_lwx) I_u3u1u2(_ldx) #ifdef CONFIG_CPU_CAVIUM_OCTEON #include <asm/octeon/octeon.h> void __uasminit uasm_i_pref(u32 **buf, unsigned int a, signed int b, unsigned int c) { if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X) && a <= 24 && a != 5) /* * As per erratum Core-14449, replace prefetches 0-4, * 6-24 with 'pref 28'. */ build_insn(buf, insn_pref, c, 28, b); else build_insn(buf, insn_pref, c, a, b); } UASM_EXPORT_SYMBOL(uasm_i_pref); #else I_u2s3u1(_pref) #endif /* Handle labels. */ void __uasminit uasm_build_label(struct uasm_label **lab, u32 *addr, int lid) { (*lab)->addr = addr; (*lab)->lab = lid; (*lab)++; } UASM_EXPORT_SYMBOL(uasm_build_label); int __uasminit uasm_in_compat_space_p(long addr) { /* Is this address in 32bit compat space? */ #ifdef CONFIG_64BIT return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L); #else return 1; #endif } UASM_EXPORT_SYMBOL(uasm_in_compat_space_p); static int __uasminit uasm_rel_highest(long val) { #ifdef CONFIG_64BIT return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000; #else return 0; #endif } static int __uasminit uasm_rel_higher(long val) { #ifdef CONFIG_64BIT return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000; #else return 0; #endif } int __uasminit uasm_rel_hi(long val) { return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000; } UASM_EXPORT_SYMBOL(uasm_rel_hi); int __uasminit uasm_rel_lo(long val) { return ((val & 0xffff) ^ 0x8000) - 0x8000; } UASM_EXPORT_SYMBOL(uasm_rel_lo); void __uasminit UASM_i_LA_mostly(u32 **buf, unsigned int rs, long addr) { if (!uasm_in_compat_space_p(addr)) { uasm_i_lui(buf, rs, uasm_rel_highest(addr)); if (uasm_rel_higher(addr)) uasm_i_daddiu(buf, rs, rs, uasm_rel_higher(addr)); if (uasm_rel_hi(addr)) { uasm_i_dsll(buf, rs, rs, 16); uasm_i_daddiu(buf, rs, rs, uasm_rel_hi(addr)); uasm_i_dsll(buf, rs, rs, 16); } else uasm_i_dsll32(buf, rs, rs, 0); } else uasm_i_lui(buf, rs, uasm_rel_hi(addr)); } UASM_EXPORT_SYMBOL(UASM_i_LA_mostly); void __uasminit UASM_i_LA(u32 **buf, unsigned int rs, long addr) { UASM_i_LA_mostly(buf, rs, addr); if (uasm_rel_lo(addr)) { if (!uasm_in_compat_space_p(addr)) uasm_i_daddiu(buf, rs, rs, uasm_rel_lo(addr)); else uasm_i_addiu(buf, rs, rs, uasm_rel_lo(addr)); } } UASM_EXPORT_SYMBOL(UASM_i_LA); /* Handle relocations. */ void __uasminit uasm_r_mips_pc16(struct uasm_reloc **rel, u32 *addr, int lid) { (*rel)->addr = addr; (*rel)->type = R_MIPS_PC16; (*rel)->lab = lid; (*rel)++; } UASM_EXPORT_SYMBOL(uasm_r_mips_pc16); static inline void __uasminit __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab) { long laddr = (long)lab->addr; long raddr = (long)rel->addr; switch (rel->type) { case R_MIPS_PC16: *rel->addr |= build_bimm(laddr - (raddr + 4)); break; default: panic("Unsupported Micro-assembler relocation %d", rel->type); } } void __uasminit uasm_resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab) { struct uasm_label *l; for (; rel->lab != UASM_LABEL_INVALID; rel++) for (l = lab; l->lab != UASM_LABEL_INVALID; l++) if (rel->lab == l->lab) __resolve_relocs(rel, l); } UASM_EXPORT_SYMBOL(uasm_resolve_relocs); void __uasminit uasm_move_relocs(struct uasm_reloc *rel, u32 *first, u32 *end, long off) { for (; rel->lab != UASM_LABEL_INVALID; rel++) if (rel->addr >= first && rel->addr < end) rel->addr += off; } UASM_EXPORT_SYMBOL(uasm_move_relocs); void __uasminit uasm_move_labels(struct uasm_label *lab, u32 *first, u32 *end, long off) { for (; lab->lab != UASM_LABEL_INVALID; lab++) if (lab->addr >= first && lab->addr < end) lab->addr += off; } UASM_EXPORT_SYMBOL(uasm_move_labels); void __uasminit uasm_copy_handler(struct uasm_reloc *rel, struct uasm_label *lab, u32 *first, u32 *end, u32 *target) { long off = (long)(target - first); memcpy(target, first, (end - first) * sizeof(u32)); uasm_move_relocs(rel, first, end, off); uasm_move_labels(lab, first, end, off); } UASM_EXPORT_SYMBOL(uasm_copy_handler); int __uasminit uasm_insn_has_bdelay(struct uasm_reloc *rel, u32 *addr) { for (; rel->lab != UASM_LABEL_INVALID; rel++) { if (rel->addr == addr && (rel->type == R_MIPS_PC16 || rel->type == R_MIPS_26)) return 1; } return 0; } UASM_EXPORT_SYMBOL(uasm_insn_has_bdelay); /* Convenience functions for labeled branches. */ void __uasminit uasm_il_bltz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid) { uasm_r_mips_pc16(r, *p, lid); uasm_i_bltz(p, reg, 0); } UASM_EXPORT_SYMBOL(uasm_il_bltz); void __uasminit uasm_il_b(u32 **p, struct uasm_reloc **r, int lid) { uasm_r_mips_pc16(r, *p, lid); uasm_i_b(p, 0); } UASM_EXPORT_SYMBOL(uasm_il_b); void __uasminit uasm_il_beqz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid) { uasm_r_mips_pc16(r, *p, lid); uasm_i_beqz(p, reg, 0); } UASM_EXPORT_SYMBOL(uasm_il_beqz); void __uasminit uasm_il_beqzl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid) { uasm_r_mips_pc16(r, *p, lid); uasm_i_beqzl(p, reg, 0); } UASM_EXPORT_SYMBOL(uasm_il_beqzl); void __uasminit uasm_il_bne(u32 **p, struct uasm_reloc **r, unsigned int reg1, unsigned int reg2, int lid) { uasm_r_mips_pc16(r, *p, lid); uasm_i_bne(p, reg1, reg2, 0); } UASM_EXPORT_SYMBOL(uasm_il_bne); void __uasminit uasm_il_bnez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid) { uasm_r_mips_pc16(r, *p, lid); uasm_i_bnez(p, reg, 0); } UASM_EXPORT_SYMBOL(uasm_il_bnez); void __uasminit uasm_il_bgezl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid) { uasm_r_mips_pc16(r, *p, lid); uasm_i_bgezl(p, reg, 0); } UASM_EXPORT_SYMBOL(uasm_il_bgezl); void __uasminit uasm_il_bgez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid) { uasm_r_mips_pc16(r, *p, lid); uasm_i_bgez(p, reg, 0); } UASM_EXPORT_SYMBOL(uasm_il_bgez); void __uasminit uasm_il_bbit0(u32 **p, struct uasm_reloc **r, unsigned int reg, unsigned int bit, int lid) { uasm_r_mips_pc16(r, *p, lid); uasm_i_bbit0(p, reg, bit, 0); } UASM_EXPORT_SYMBOL(uasm_il_bbit0); void __uasminit uasm_il_bbit1(u32 **p, struct uasm_reloc **r, unsigned int reg, unsigned int bit, int lid) { uasm_r_mips_pc16(r, *p, lid); uasm_i_bbit1(p, reg, bit, 0); } UASM_EXPORT_SYMBOL(uasm_il_bbit1);