/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) 2000, 2001 Kanoj Sarcar * Copyright (C) 2000, 2001 Ralf Baechle * Copyright (C) 2000, 2001 Silicon Graphics, Inc. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation */ #include <linux/cache.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/smp.h> #include <linux/spinlock.h> #include <linux/threads.h> #include <linux/module.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/sched.h> #include <linux/cpumask.h> #include <linux/cpu.h> #include <linux/err.h> #include <linux/ftrace.h> #include <asm/atomic.h> #include <asm/cpu.h> #include <asm/processor.h> #include <asm/r4k-timer.h> #include <asm/system.h> #include <asm/mmu_context.h> #include <asm/time.h> #ifdef CONFIG_MIPS_MT_SMTC #include <asm/mipsmtregs.h> #endif /* CONFIG_MIPS_MT_SMTC */ volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ EXPORT_SYMBOL(__cpu_number_map); int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ EXPORT_SYMBOL(__cpu_logical_map); /* Number of TCs (or siblings in Intel speak) per CPU core */ int smp_num_siblings = 1; EXPORT_SYMBOL(smp_num_siblings); /* representing the TCs (or siblings in Intel speak) of each logical CPU */ cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_sibling_map); /* representing cpus for which sibling maps can be computed */ static cpumask_t cpu_sibling_setup_map; static inline void set_cpu_sibling_map(int cpu) { int i; cpu_set(cpu, cpu_sibling_setup_map); if (smp_num_siblings > 1) { for_each_cpu_mask(i, cpu_sibling_setup_map) { if (cpu_data[cpu].core == cpu_data[i].core) { cpu_set(i, cpu_sibling_map[cpu]); cpu_set(cpu, cpu_sibling_map[i]); } } } else cpu_set(cpu, cpu_sibling_map[cpu]); } struct plat_smp_ops *mp_ops; __cpuinit void register_smp_ops(struct plat_smp_ops *ops) { if (mp_ops) printk(KERN_WARNING "Overriding previously set SMP ops\n"); mp_ops = ops; } /* * First C code run on the secondary CPUs after being started up by * the master. */ asmlinkage __cpuinit void start_secondary(void) { unsigned int cpu; #ifdef CONFIG_MIPS_MT_SMTC /* Only do cpu_probe for first TC of CPU */ if ((read_c0_tcbind() & TCBIND_CURTC) == 0) #endif /* CONFIG_MIPS_MT_SMTC */ cpu_probe(); cpu_report(); per_cpu_trap_init(); mips_clockevent_init(); mp_ops->init_secondary(); /* * XXX parity protection should be folded in here when it's converted * to an option instead of something based on .cputype */ calibrate_delay(); preempt_disable(); cpu = smp_processor_id(); cpu_data[cpu].udelay_val = loops_per_jiffy; notify_cpu_starting(cpu); mp_ops->smp_finish(); set_cpu_sibling_map(cpu); cpu_set(cpu, cpu_callin_map); synchronise_count_slave(); cpu_idle(); } /* * Call into both interrupt handlers, as we share the IPI for them */ void __irq_entry smp_call_function_interrupt(void) { irq_enter(); generic_smp_call_function_single_interrupt(); generic_smp_call_function_interrupt(); irq_exit(); } static void stop_this_cpu(void *dummy) { /* * Remove this CPU: */ cpu_clear(smp_processor_id(), cpu_online_map); for (;;) { if (cpu_wait) (*cpu_wait)(); /* Wait if available. */ } } void smp_send_stop(void) { smp_call_function(stop_this_cpu, NULL, 0); } void __init smp_cpus_done(unsigned int max_cpus) { mp_ops->cpus_done(); synchronise_count_master(); } /* called from main before smp_init() */ void __init smp_prepare_cpus(unsigned int max_cpus) { init_new_context(current, &init_mm); current_thread_info()->cpu = 0; mp_ops->prepare_cpus(max_cpus); set_cpu_sibling_map(0); #ifndef CONFIG_HOTPLUG_CPU init_cpu_present(&cpu_possible_map); #endif } /* preload SMP state for boot cpu */ void __devinit smp_prepare_boot_cpu(void) { set_cpu_possible(0, true); set_cpu_online(0, true); cpu_set(0, cpu_callin_map); } /* * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu * and keep control until "cpu_online(cpu)" is set. Note: cpu is * physical, not logical. */ static struct task_struct *cpu_idle_thread[NR_CPUS]; struct create_idle { struct work_struct work; struct task_struct *idle; struct completion done; int cpu; }; static void __cpuinit do_fork_idle(struct work_struct *work) { struct create_idle *c_idle = container_of(work, struct create_idle, work); c_idle->idle = fork_idle(c_idle->cpu); complete(&c_idle->done); } int __cpuinit __cpu_up(unsigned int cpu) { struct task_struct *idle; /* * Processor goes to start_secondary(), sets online flag * The following code is purely to make sure * Linux can schedule processes on this slave. */ if (!cpu_idle_thread[cpu]) { /* * Schedule work item to avoid forking user task * Ported from arch/x86/kernel/smpboot.c */ struct create_idle c_idle = { .cpu = cpu, .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done), }; INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle); schedule_work(&c_idle.work); wait_for_completion(&c_idle.done); idle = cpu_idle_thread[cpu] = c_idle.idle; if (IS_ERR(idle)) panic(KERN_ERR "Fork failed for CPU %d", cpu); } else { idle = cpu_idle_thread[cpu]; init_idle(idle, cpu); } mp_ops->boot_secondary(cpu, idle); /* * Trust is futile. We should really have timeouts ... */ while (!cpu_isset(cpu, cpu_callin_map)) udelay(100); cpu_set(cpu, cpu_online_map); return 0; } /* Not really SMP stuff ... */ int setup_profiling_timer(unsigned int multiplier) { return 0; } static void flush_tlb_all_ipi(void *info) { local_flush_tlb_all(); } void flush_tlb_all(void) { on_each_cpu(flush_tlb_all_ipi, NULL, 1); } static void flush_tlb_mm_ipi(void *mm) { local_flush_tlb_mm((struct mm_struct *)mm); } /* * Special Variant of smp_call_function for use by TLB functions: * * o No return value * o collapses to normal function call on UP kernels * o collapses to normal function call on systems with a single shared * primary cache. * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core. */ static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) { #ifndef CONFIG_MIPS_MT_SMTC smp_call_function(func, info, 1); #endif } static inline void smp_on_each_tlb(void (*func) (void *info), void *info) { preempt_disable(); smp_on_other_tlbs(func, info); func(info); preempt_enable(); } /* * The following tlb flush calls are invoked when old translations are * being torn down, or pte attributes are changing. For single threaded * address spaces, a new context is obtained on the current cpu, and tlb * context on other cpus are invalidated to force a new context allocation * at switch_mm time, should the mm ever be used on other cpus. For * multithreaded address spaces, intercpu interrupts have to be sent. * Another case where intercpu interrupts are required is when the target * mm might be active on another cpu (eg debuggers doing the flushes on * behalf of debugees, kswapd stealing pages from another process etc). * Kanoj 07/00. */ void flush_tlb_mm(struct mm_struct *mm) { preempt_disable(); if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { smp_on_other_tlbs(flush_tlb_mm_ipi, mm); } else { cpumask_t mask = cpu_online_map; unsigned int cpu; cpu_clear(smp_processor_id(), mask); for_each_cpu_mask(cpu, mask) if (cpu_context(cpu, mm)) cpu_context(cpu, mm) = 0; } local_flush_tlb_mm(mm); preempt_enable(); } struct flush_tlb_data { struct vm_area_struct *vma; unsigned long addr1; unsigned long addr2; }; static void flush_tlb_range_ipi(void *info) { struct flush_tlb_data *fd = info; local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); } void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; preempt_disable(); if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { struct flush_tlb_data fd = { .vma = vma, .addr1 = start, .addr2 = end, }; smp_on_other_tlbs(flush_tlb_range_ipi, &fd); } else { cpumask_t mask = cpu_online_map; unsigned int cpu; cpu_clear(smp_processor_id(), mask); for_each_cpu_mask(cpu, mask) if (cpu_context(cpu, mm)) cpu_context(cpu, mm) = 0; } local_flush_tlb_range(vma, start, end); preempt_enable(); } static void flush_tlb_kernel_range_ipi(void *info) { struct flush_tlb_data *fd = info; local_flush_tlb_kernel_range(fd->addr1, fd->addr2); } void flush_tlb_kernel_range(unsigned long start, unsigned long end) { struct flush_tlb_data fd = { .addr1 = start, .addr2 = end, }; on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); } static void flush_tlb_page_ipi(void *info) { struct flush_tlb_data *fd = info; local_flush_tlb_page(fd->vma, fd->addr1); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { preempt_disable(); if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { struct flush_tlb_data fd = { .vma = vma, .addr1 = page, }; smp_on_other_tlbs(flush_tlb_page_ipi, &fd); } else { cpumask_t mask = cpu_online_map; unsigned int cpu; cpu_clear(smp_processor_id(), mask); for_each_cpu_mask(cpu, mask) if (cpu_context(cpu, vma->vm_mm)) cpu_context(cpu, vma->vm_mm) = 0; } local_flush_tlb_page(vma, page); preempt_enable(); } static void flush_tlb_one_ipi(void *info) { unsigned long vaddr = (unsigned long) info; local_flush_tlb_one(vaddr); } void flush_tlb_one(unsigned long vaddr) { smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); } EXPORT_SYMBOL(flush_tlb_page); EXPORT_SYMBOL(flush_tlb_one);