/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994, 95, 96, 97, 98, 99, 2003, 06 by Ralf Baechle * Copyright (C) 1996 by Paul M. Antoine * Copyright (C) 1999 Silicon Graphics * Kevin D. Kissell, kevink@mips.org and Carsten Langgaard, carstenl@mips.com * Copyright (C) 2000 MIPS Technologies, Inc. */ #ifndef _ASM_SYSTEM_H #define _ASM_SYSTEM_H #include <linux/kernel.h> #include <linux/types.h> #include <linux/irqflags.h> #include <asm/addrspace.h> #include <asm/barrier.h> #include <asm/cmpxchg.h> #include <asm/cpu-features.h> #include <asm/dsp.h> #include <asm/watch.h> #include <asm/war.h> /* * switch_to(n) should switch tasks to task nr n, first * checking that n isn't the current task, in which case it does nothing. */ extern asmlinkage void *resume(void *last, void *next, void *next_ti); struct task_struct; extern unsigned int ll_bit; extern struct task_struct *ll_task; #ifdef CONFIG_MIPS_MT_FPAFF /* * Handle the scheduler resume end of FPU affinity management. We do this * inline to try to keep the overhead down. If we have been forced to run on * a "CPU" with an FPU because of a previous high level of FP computation, * but did not actually use the FPU during the most recent time-slice (CU1 * isn't set), we undo the restriction on cpus_allowed. * * We're not calling set_cpus_allowed() here, because we have no need to * force prompt migration - we're already switching the current CPU to a * different thread. */ #define __mips_mt_fpaff_switch_to(prev) \ do { \ struct thread_info *__prev_ti = task_thread_info(prev); \ \ if (cpu_has_fpu && \ test_ti_thread_flag(__prev_ti, TIF_FPUBOUND) && \ (!(KSTK_STATUS(prev) & ST0_CU1))) { \ clear_ti_thread_flag(__prev_ti, TIF_FPUBOUND); \ prev->cpus_allowed = prev->thread.user_cpus_allowed; \ } \ next->thread.emulated_fp = 0; \ } while(0) #else #define __mips_mt_fpaff_switch_to(prev) do { (void) (prev); } while (0) #endif #define __clear_software_ll_bit() \ do { \ if (!__builtin_constant_p(cpu_has_llsc) || !cpu_has_llsc) \ ll_bit = 0; \ } while (0) #define switch_to(prev, next, last) \ do { \ __mips_mt_fpaff_switch_to(prev); \ if (cpu_has_dsp) \ __save_dsp(prev); \ __clear_software_ll_bit(); \ (last) = resume(prev, next, task_thread_info(next)); \ } while (0) #define finish_arch_switch(prev) \ do { \ if (cpu_has_dsp) \ __restore_dsp(current); \ if (cpu_has_userlocal) \ write_c0_userlocal(current_thread_info()->tp_value); \ __restore_watch(); \ } while (0) static inline unsigned long __xchg_u32(volatile int * m, unsigned int val) { __u32 retval; smp_mb__before_llsc(); if (kernel_uses_llsc && R10000_LLSC_WAR) { unsigned long dummy; __asm__ __volatile__( " .set mips3 \n" "1: ll %0, %3 # xchg_u32 \n" " .set mips0 \n" " move %2, %z4 \n" " .set mips3 \n" " sc %2, %1 \n" " beqzl %2, 1b \n" " .set mips0 \n" : "=&r" (retval), "=m" (*m), "=&r" (dummy) : "R" (*m), "Jr" (val) : "memory"); } else if (kernel_uses_llsc) { unsigned long dummy; do { __asm__ __volatile__( " .set mips3 \n" " ll %0, %3 # xchg_u32 \n" " .set mips0 \n" " move %2, %z4 \n" " .set mips3 \n" " sc %2, %1 \n" " .set mips0 \n" : "=&r" (retval), "=m" (*m), "=&r" (dummy) : "R" (*m), "Jr" (val) : "memory"); } while (unlikely(!dummy)); } else { unsigned long flags; raw_local_irq_save(flags); retval = *m; *m = val; raw_local_irq_restore(flags); /* implies memory barrier */ } smp_llsc_mb(); return retval; } #ifdef CONFIG_64BIT static inline __u64 __xchg_u64(volatile __u64 * m, __u64 val) { __u64 retval; smp_mb__before_llsc(); if (kernel_uses_llsc && R10000_LLSC_WAR) { unsigned long dummy; __asm__ __volatile__( " .set mips3 \n" "1: lld %0, %3 # xchg_u64 \n" " move %2, %z4 \n" " scd %2, %1 \n" " beqzl %2, 1b \n" " .set mips0 \n" : "=&r" (retval), "=m" (*m), "=&r" (dummy) : "R" (*m), "Jr" (val) : "memory"); } else if (kernel_uses_llsc) { unsigned long dummy; do { __asm__ __volatile__( " .set mips3 \n" " lld %0, %3 # xchg_u64 \n" " move %2, %z4 \n" " scd %2, %1 \n" " .set mips0 \n" : "=&r" (retval), "=m" (*m), "=&r" (dummy) : "R" (*m), "Jr" (val) : "memory"); } while (unlikely(!dummy)); } else { unsigned long flags; raw_local_irq_save(flags); retval = *m; *m = val; raw_local_irq_restore(flags); /* implies memory barrier */ } smp_llsc_mb(); return retval; } #else extern __u64 __xchg_u64_unsupported_on_32bit_kernels(volatile __u64 * m, __u64 val); #define __xchg_u64 __xchg_u64_unsupported_on_32bit_kernels #endif static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size) { switch (size) { case 4: return __xchg_u32(ptr, x); case 8: return __xchg_u64(ptr, x); } return x; } #define xchg(ptr, x) \ ({ \ BUILD_BUG_ON(sizeof(*(ptr)) & ~0xc); \ \ ((__typeof__(*(ptr))) \ __xchg((unsigned long)(x), (ptr), sizeof(*(ptr)))); \ }) extern void set_handler(unsigned long offset, void *addr, unsigned long len); extern void set_uncached_handler(unsigned long offset, void *addr, unsigned long len); typedef void (*vi_handler_t)(void); extern void *set_vi_handler(int n, vi_handler_t addr); extern void *set_except_vector(int n, void *addr); extern unsigned long ebase; extern void per_cpu_trap_init(void); /* * See include/asm-ia64/system.h; prevents deadlock on SMP * systems. */ #define __ARCH_WANT_UNLOCKED_CTXSW extern unsigned long arch_align_stack(unsigned long sp); #endif /* _ASM_SYSTEM_H */