/* * linux/arch/arm/plat-omap/mcbsp.c * * Copyright (C) 2004 Nokia Corporation * Author: Samuel Ortiz <samuel.ortiz@nokia.com> * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Multichannel mode not supported. */ #include <linux/module.h> #include <linux/init.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/wait.h> #include <linux/completion.h> #include <linux/interrupt.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/slab.h> #include <plat/dma.h> #include <plat/mcbsp.h> #include <plat/omap_device.h> #include <linux/pm_runtime.h> /* XXX These "sideways" includes are a sign that something is wrong */ #include "../mach-omap2/cm2xxx_3xxx.h" #include "../mach-omap2/cm-regbits-34xx.h" struct omap_mcbsp **mcbsp_ptr; int omap_mcbsp_count, omap_mcbsp_cache_size; static void omap_mcbsp_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val) { if (cpu_class_is_omap1()) { ((u16 *)mcbsp->reg_cache)[reg / sizeof(u16)] = (u16)val; __raw_writew((u16)val, mcbsp->io_base + reg); } else if (cpu_is_omap2420()) { ((u16 *)mcbsp->reg_cache)[reg / sizeof(u32)] = (u16)val; __raw_writew((u16)val, mcbsp->io_base + reg); } else { ((u32 *)mcbsp->reg_cache)[reg / sizeof(u32)] = val; __raw_writel(val, mcbsp->io_base + reg); } } static int omap_mcbsp_read(struct omap_mcbsp *mcbsp, u16 reg, bool from_cache) { if (cpu_class_is_omap1()) { return !from_cache ? __raw_readw(mcbsp->io_base + reg) : ((u16 *)mcbsp->reg_cache)[reg / sizeof(u16)]; } else if (cpu_is_omap2420()) { return !from_cache ? __raw_readw(mcbsp->io_base + reg) : ((u16 *)mcbsp->reg_cache)[reg / sizeof(u32)]; } else { return !from_cache ? __raw_readl(mcbsp->io_base + reg) : ((u32 *)mcbsp->reg_cache)[reg / sizeof(u32)]; } } #ifdef CONFIG_ARCH_OMAP3 static void omap_mcbsp_st_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val) { __raw_writel(val, mcbsp->st_data->io_base_st + reg); } static int omap_mcbsp_st_read(struct omap_mcbsp *mcbsp, u16 reg) { return __raw_readl(mcbsp->st_data->io_base_st + reg); } #endif #define MCBSP_READ(mcbsp, reg) \ omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 0) #define MCBSP_WRITE(mcbsp, reg, val) \ omap_mcbsp_write(mcbsp, OMAP_MCBSP_REG_##reg, val) #define MCBSP_READ_CACHE(mcbsp, reg) \ omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 1) #define MCBSP_ST_READ(mcbsp, reg) \ omap_mcbsp_st_read(mcbsp, OMAP_ST_REG_##reg) #define MCBSP_ST_WRITE(mcbsp, reg, val) \ omap_mcbsp_st_write(mcbsp, OMAP_ST_REG_##reg, val) static void omap_mcbsp_dump_reg(u8 id) { struct omap_mcbsp *mcbsp = id_to_mcbsp_ptr(id); dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id); dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n", MCBSP_READ(mcbsp, DRR2)); dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n", MCBSP_READ(mcbsp, DRR1)); dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n", MCBSP_READ(mcbsp, DXR2)); dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n", MCBSP_READ(mcbsp, DXR1)); dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2)); dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1)); dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n", MCBSP_READ(mcbsp, RCR2)); dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n", MCBSP_READ(mcbsp, RCR1)); dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n", MCBSP_READ(mcbsp, XCR2)); dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n", MCBSP_READ(mcbsp, XCR1)); dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2)); dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1)); dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n", MCBSP_READ(mcbsp, PCR0)); dev_dbg(mcbsp->dev, "***********************\n"); } static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *dev_id) { struct omap_mcbsp *mcbsp_tx = dev_id; u16 irqst_spcr2; irqst_spcr2 = MCBSP_READ(mcbsp_tx, SPCR2); dev_dbg(mcbsp_tx->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2); if (irqst_spcr2 & XSYNC_ERR) { dev_err(mcbsp_tx->dev, "TX Frame Sync Error! : 0x%x\n", irqst_spcr2); /* Writing zero to XSYNC_ERR clears the IRQ */ MCBSP_WRITE(mcbsp_tx, SPCR2, MCBSP_READ_CACHE(mcbsp_tx, SPCR2)); } else { complete(&mcbsp_tx->tx_irq_completion); } return IRQ_HANDLED; } static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *dev_id) { struct omap_mcbsp *mcbsp_rx = dev_id; u16 irqst_spcr1; irqst_spcr1 = MCBSP_READ(mcbsp_rx, SPCR1); dev_dbg(mcbsp_rx->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1); if (irqst_spcr1 & RSYNC_ERR) { dev_err(mcbsp_rx->dev, "RX Frame Sync Error! : 0x%x\n", irqst_spcr1); /* Writing zero to RSYNC_ERR clears the IRQ */ MCBSP_WRITE(mcbsp_rx, SPCR1, MCBSP_READ_CACHE(mcbsp_rx, SPCR1)); } else { complete(&mcbsp_rx->rx_irq_completion); } return IRQ_HANDLED; } static void omap_mcbsp_tx_dma_callback(int lch, u16 ch_status, void *data) { struct omap_mcbsp *mcbsp_dma_tx = data; dev_dbg(mcbsp_dma_tx->dev, "TX DMA callback : 0x%x\n", MCBSP_READ(mcbsp_dma_tx, SPCR2)); /* We can free the channels */ omap_free_dma(mcbsp_dma_tx->dma_tx_lch); mcbsp_dma_tx->dma_tx_lch = -1; complete(&mcbsp_dma_tx->tx_dma_completion); } static void omap_mcbsp_rx_dma_callback(int lch, u16 ch_status, void *data) { struct omap_mcbsp *mcbsp_dma_rx = data; dev_dbg(mcbsp_dma_rx->dev, "RX DMA callback : 0x%x\n", MCBSP_READ(mcbsp_dma_rx, SPCR2)); /* We can free the channels */ omap_free_dma(mcbsp_dma_rx->dma_rx_lch); mcbsp_dma_rx->dma_rx_lch = -1; complete(&mcbsp_dma_rx->rx_dma_completion); } /* * omap_mcbsp_config simply write a config to the * appropriate McBSP. * You either call this function or set the McBSP registers * by yourself before calling omap_mcbsp_start(). */ void omap_mcbsp_config(unsigned int id, const struct omap_mcbsp_reg_cfg *config) { struct omap_mcbsp *mcbsp; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return; } mcbsp = id_to_mcbsp_ptr(id); dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n", mcbsp->id, mcbsp->phys_base); /* We write the given config */ MCBSP_WRITE(mcbsp, SPCR2, config->spcr2); MCBSP_WRITE(mcbsp, SPCR1, config->spcr1); MCBSP_WRITE(mcbsp, RCR2, config->rcr2); MCBSP_WRITE(mcbsp, RCR1, config->rcr1); MCBSP_WRITE(mcbsp, XCR2, config->xcr2); MCBSP_WRITE(mcbsp, XCR1, config->xcr1); MCBSP_WRITE(mcbsp, SRGR2, config->srgr2); MCBSP_WRITE(mcbsp, SRGR1, config->srgr1); MCBSP_WRITE(mcbsp, MCR2, config->mcr2); MCBSP_WRITE(mcbsp, MCR1, config->mcr1); MCBSP_WRITE(mcbsp, PCR0, config->pcr0); if (cpu_is_omap2430() || cpu_is_omap34xx() || cpu_is_omap44xx()) { MCBSP_WRITE(mcbsp, XCCR, config->xccr); MCBSP_WRITE(mcbsp, RCCR, config->rccr); } } EXPORT_SYMBOL(omap_mcbsp_config); /** * omap_mcbsp_dma_params - returns the dma channel number * @id - mcbsp id * @stream - indicates the direction of data flow (rx or tx) * * Returns the dma channel number for the rx channel or tx channel * based on the value of @stream for the requested mcbsp given by @id */ int omap_mcbsp_dma_ch_params(unsigned int id, unsigned int stream) { struct omap_mcbsp *mcbsp; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); if (stream) return mcbsp->dma_rx_sync; else return mcbsp->dma_tx_sync; } EXPORT_SYMBOL(omap_mcbsp_dma_ch_params); /** * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register * @id - mcbsp id * @stream - indicates the direction of data flow (rx or tx) * * Returns the address of mcbsp data transmit register or data receive register * to be used by DMA for transferring/receiving data based on the value of * @stream for the requested mcbsp given by @id */ int omap_mcbsp_dma_reg_params(unsigned int id, unsigned int stream) { struct omap_mcbsp *mcbsp; int data_reg; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); data_reg = mcbsp->phys_dma_base; if (mcbsp->mcbsp_config_type < MCBSP_CONFIG_TYPE2) { if (stream) data_reg += OMAP_MCBSP_REG_DRR1; else data_reg += OMAP_MCBSP_REG_DXR1; } else { if (stream) data_reg += OMAP_MCBSP_REG_DRR; else data_reg += OMAP_MCBSP_REG_DXR; } return data_reg; } EXPORT_SYMBOL(omap_mcbsp_dma_reg_params); #ifdef CONFIG_ARCH_OMAP3 static struct omap_device *find_omap_device_by_dev(struct device *dev) { struct platform_device *pdev = container_of(dev, struct platform_device, dev); return container_of(pdev, struct omap_device, pdev); } static void omap_st_on(struct omap_mcbsp *mcbsp) { unsigned int w; struct omap_device *od; od = find_omap_device_by_dev(mcbsp->dev); /* * Sidetone uses McBSP ICLK - which must not idle when sidetones * are enabled or sidetones start sounding ugly. */ w = omap2_cm_read_mod_reg(OMAP3430_PER_MOD, CM_AUTOIDLE); w &= ~(1 << (mcbsp->id - 2)); omap2_cm_write_mod_reg(w, OMAP3430_PER_MOD, CM_AUTOIDLE); /* Enable McBSP Sidetone */ w = MCBSP_READ(mcbsp, SSELCR); MCBSP_WRITE(mcbsp, SSELCR, w | SIDETONEEN); /* Enable Sidetone from Sidetone Core */ w = MCBSP_ST_READ(mcbsp, SSELCR); MCBSP_ST_WRITE(mcbsp, SSELCR, w | ST_SIDETONEEN); } static void omap_st_off(struct omap_mcbsp *mcbsp) { unsigned int w; struct omap_device *od; od = find_omap_device_by_dev(mcbsp->dev); w = MCBSP_ST_READ(mcbsp, SSELCR); MCBSP_ST_WRITE(mcbsp, SSELCR, w & ~(ST_SIDETONEEN)); w = MCBSP_READ(mcbsp, SSELCR); MCBSP_WRITE(mcbsp, SSELCR, w & ~(SIDETONEEN)); w = omap2_cm_read_mod_reg(OMAP3430_PER_MOD, CM_AUTOIDLE); w |= 1 << (mcbsp->id - 2); omap2_cm_write_mod_reg(w, OMAP3430_PER_MOD, CM_AUTOIDLE); } static void omap_st_fir_write(struct omap_mcbsp *mcbsp, s16 *fir) { u16 val, i; struct omap_device *od; od = find_omap_device_by_dev(mcbsp->dev); val = MCBSP_ST_READ(mcbsp, SSELCR); if (val & ST_COEFFWREN) MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN)); MCBSP_ST_WRITE(mcbsp, SSELCR, val | ST_COEFFWREN); for (i = 0; i < 128; i++) MCBSP_ST_WRITE(mcbsp, SFIRCR, fir[i]); i = 0; val = MCBSP_ST_READ(mcbsp, SSELCR); while (!(val & ST_COEFFWRDONE) && (++i < 1000)) val = MCBSP_ST_READ(mcbsp, SSELCR); MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN)); if (i == 1000) dev_err(mcbsp->dev, "McBSP FIR load error!\n"); } static void omap_st_chgain(struct omap_mcbsp *mcbsp) { u16 w; struct omap_mcbsp_st_data *st_data = mcbsp->st_data; struct omap_device *od; od = find_omap_device_by_dev(mcbsp->dev); w = MCBSP_ST_READ(mcbsp, SSELCR); MCBSP_ST_WRITE(mcbsp, SGAINCR, ST_CH0GAIN(st_data->ch0gain) | \ ST_CH1GAIN(st_data->ch1gain)); } int omap_st_set_chgain(unsigned int id, int channel, s16 chgain) { struct omap_mcbsp *mcbsp; struct omap_mcbsp_st_data *st_data; int ret = 0; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); st_data = mcbsp->st_data; if (!st_data) return -ENOENT; spin_lock_irq(&mcbsp->lock); if (channel == 0) st_data->ch0gain = chgain; else if (channel == 1) st_data->ch1gain = chgain; else ret = -EINVAL; if (st_data->enabled) omap_st_chgain(mcbsp); spin_unlock_irq(&mcbsp->lock); return ret; } EXPORT_SYMBOL(omap_st_set_chgain); int omap_st_get_chgain(unsigned int id, int channel, s16 *chgain) { struct omap_mcbsp *mcbsp; struct omap_mcbsp_st_data *st_data; int ret = 0; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); st_data = mcbsp->st_data; if (!st_data) return -ENOENT; spin_lock_irq(&mcbsp->lock); if (channel == 0) *chgain = st_data->ch0gain; else if (channel == 1) *chgain = st_data->ch1gain; else ret = -EINVAL; spin_unlock_irq(&mcbsp->lock); return ret; } EXPORT_SYMBOL(omap_st_get_chgain); static int omap_st_start(struct omap_mcbsp *mcbsp) { struct omap_mcbsp_st_data *st_data = mcbsp->st_data; if (st_data && st_data->enabled && !st_data->running) { omap_st_fir_write(mcbsp, st_data->taps); omap_st_chgain(mcbsp); if (!mcbsp->free) { omap_st_on(mcbsp); st_data->running = 1; } } return 0; } int omap_st_enable(unsigned int id) { struct omap_mcbsp *mcbsp; struct omap_mcbsp_st_data *st_data; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); st_data = mcbsp->st_data; if (!st_data) return -ENODEV; spin_lock_irq(&mcbsp->lock); st_data->enabled = 1; omap_st_start(mcbsp); spin_unlock_irq(&mcbsp->lock); return 0; } EXPORT_SYMBOL(omap_st_enable); static int omap_st_stop(struct omap_mcbsp *mcbsp) { struct omap_mcbsp_st_data *st_data = mcbsp->st_data; if (st_data && st_data->running) { if (!mcbsp->free) { omap_st_off(mcbsp); st_data->running = 0; } } return 0; } int omap_st_disable(unsigned int id) { struct omap_mcbsp *mcbsp; struct omap_mcbsp_st_data *st_data; int ret = 0; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); st_data = mcbsp->st_data; if (!st_data) return -ENODEV; spin_lock_irq(&mcbsp->lock); omap_st_stop(mcbsp); st_data->enabled = 0; spin_unlock_irq(&mcbsp->lock); return ret; } EXPORT_SYMBOL(omap_st_disable); int omap_st_is_enabled(unsigned int id) { struct omap_mcbsp *mcbsp; struct omap_mcbsp_st_data *st_data; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); st_data = mcbsp->st_data; if (!st_data) return -ENODEV; return st_data->enabled; } EXPORT_SYMBOL(omap_st_is_enabled); /* * omap_mcbsp_set_rx_threshold configures the transmit threshold in words. * The threshold parameter is 1 based, and it is converted (threshold - 1) * for the THRSH2 register. */ void omap_mcbsp_set_tx_threshold(unsigned int id, u16 threshold) { struct omap_mcbsp *mcbsp; if (!cpu_is_omap34xx() && !cpu_is_omap44xx()) return; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return; } mcbsp = id_to_mcbsp_ptr(id); if (threshold && threshold <= mcbsp->max_tx_thres) MCBSP_WRITE(mcbsp, THRSH2, threshold - 1); } EXPORT_SYMBOL(omap_mcbsp_set_tx_threshold); /* * omap_mcbsp_set_rx_threshold configures the receive threshold in words. * The threshold parameter is 1 based, and it is converted (threshold - 1) * for the THRSH1 register. */ void omap_mcbsp_set_rx_threshold(unsigned int id, u16 threshold) { struct omap_mcbsp *mcbsp; if (!cpu_is_omap34xx() && !cpu_is_omap44xx()) return; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return; } mcbsp = id_to_mcbsp_ptr(id); if (threshold && threshold <= mcbsp->max_rx_thres) MCBSP_WRITE(mcbsp, THRSH1, threshold - 1); } EXPORT_SYMBOL(omap_mcbsp_set_rx_threshold); /* * omap_mcbsp_get_max_tx_thres just return the current configured * maximum threshold for transmission */ u16 omap_mcbsp_get_max_tx_threshold(unsigned int id) { struct omap_mcbsp *mcbsp; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); return mcbsp->max_tx_thres; } EXPORT_SYMBOL(omap_mcbsp_get_max_tx_threshold); /* * omap_mcbsp_get_max_rx_thres just return the current configured * maximum threshold for reception */ u16 omap_mcbsp_get_max_rx_threshold(unsigned int id) { struct omap_mcbsp *mcbsp; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); return mcbsp->max_rx_thres; } EXPORT_SYMBOL(omap_mcbsp_get_max_rx_threshold); u16 omap_mcbsp_get_fifo_size(unsigned int id) { struct omap_mcbsp *mcbsp; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); return mcbsp->pdata->buffer_size; } EXPORT_SYMBOL(omap_mcbsp_get_fifo_size); /* * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO */ u16 omap_mcbsp_get_tx_delay(unsigned int id) { struct omap_mcbsp *mcbsp; u16 buffstat; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); /* Returns the number of free locations in the buffer */ buffstat = MCBSP_READ(mcbsp, XBUFFSTAT); /* Number of slots are different in McBSP ports */ return mcbsp->pdata->buffer_size - buffstat; } EXPORT_SYMBOL(omap_mcbsp_get_tx_delay); /* * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO * to reach the threshold value (when the DMA will be triggered to read it) */ u16 omap_mcbsp_get_rx_delay(unsigned int id) { struct omap_mcbsp *mcbsp; u16 buffstat, threshold; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); /* Returns the number of used locations in the buffer */ buffstat = MCBSP_READ(mcbsp, RBUFFSTAT); /* RX threshold */ threshold = MCBSP_READ(mcbsp, THRSH1); /* Return the number of location till we reach the threshold limit */ if (threshold <= buffstat) return 0; else return threshold - buffstat; } EXPORT_SYMBOL(omap_mcbsp_get_rx_delay); /* * omap_mcbsp_get_dma_op_mode just return the current configured * operating mode for the mcbsp channel */ int omap_mcbsp_get_dma_op_mode(unsigned int id) { struct omap_mcbsp *mcbsp; int dma_op_mode; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%u)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); dma_op_mode = mcbsp->dma_op_mode; return dma_op_mode; } EXPORT_SYMBOL(omap_mcbsp_get_dma_op_mode); static inline void omap34xx_mcbsp_request(struct omap_mcbsp *mcbsp) { struct omap_device *od; od = find_omap_device_by_dev(mcbsp->dev); /* * Enable wakup behavior, smart idle and all wakeups * REVISIT: some wakeups may be unnecessary */ if (cpu_is_omap34xx() || cpu_is_omap44xx()) { MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN); } } static inline void omap34xx_mcbsp_free(struct omap_mcbsp *mcbsp) { struct omap_device *od; od = find_omap_device_by_dev(mcbsp->dev); /* * Disable wakup behavior, smart idle and all wakeups */ if (cpu_is_omap34xx() || cpu_is_omap44xx()) { /* * HW bug workaround - If no_idle mode is taken, we need to * go to smart_idle before going to always_idle, or the * device will not hit retention anymore. */ MCBSP_WRITE(mcbsp, WAKEUPEN, 0); } } #else static inline void omap34xx_mcbsp_request(struct omap_mcbsp *mcbsp) {} static inline void omap34xx_mcbsp_free(struct omap_mcbsp *mcbsp) {} static inline void omap_st_start(struct omap_mcbsp *mcbsp) {} static inline void omap_st_stop(struct omap_mcbsp *mcbsp) {} #endif /* * We can choose between IRQ based or polled IO. * This needs to be called before omap_mcbsp_request(). */ int omap_mcbsp_set_io_type(unsigned int id, omap_mcbsp_io_type_t io_type) { struct omap_mcbsp *mcbsp; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); spin_lock(&mcbsp->lock); if (!mcbsp->free) { dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id); spin_unlock(&mcbsp->lock); return -EINVAL; } mcbsp->io_type = io_type; spin_unlock(&mcbsp->lock); return 0; } EXPORT_SYMBOL(omap_mcbsp_set_io_type); int omap_mcbsp_request(unsigned int id) { struct omap_mcbsp *mcbsp; void *reg_cache; int err; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); reg_cache = kzalloc(omap_mcbsp_cache_size, GFP_KERNEL); if (!reg_cache) { return -ENOMEM; } spin_lock(&mcbsp->lock); if (!mcbsp->free) { dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id); err = -EBUSY; goto err_kfree; } mcbsp->free = false; mcbsp->reg_cache = reg_cache; spin_unlock(&mcbsp->lock); if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->request) mcbsp->pdata->ops->request(id); pm_runtime_get_sync(mcbsp->dev); /* Do procedure specific to omap34xx arch, if applicable */ omap34xx_mcbsp_request(mcbsp); /* * Make sure that transmitter, receiver and sample-rate generator are * not running before activating IRQs. */ MCBSP_WRITE(mcbsp, SPCR1, 0); MCBSP_WRITE(mcbsp, SPCR2, 0); if (mcbsp->io_type == OMAP_MCBSP_IRQ_IO) { /* We need to get IRQs here */ init_completion(&mcbsp->tx_irq_completion); err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0, "McBSP", (void *)mcbsp); if (err != 0) { dev_err(mcbsp->dev, "Unable to request TX IRQ %d " "for McBSP%d\n", mcbsp->tx_irq, mcbsp->id); goto err_clk_disable; } if (mcbsp->rx_irq) { init_completion(&mcbsp->rx_irq_completion); err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0, "McBSP", (void *)mcbsp); if (err != 0) { dev_err(mcbsp->dev, "Unable to request RX IRQ %d " "for McBSP%d\n", mcbsp->rx_irq, mcbsp->id); goto err_free_irq; } } } return 0; err_free_irq: free_irq(mcbsp->tx_irq, (void *)mcbsp); err_clk_disable: if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free) mcbsp->pdata->ops->free(id); /* Do procedure specific to omap34xx arch, if applicable */ omap34xx_mcbsp_free(mcbsp); pm_runtime_put_sync(mcbsp->dev); spin_lock(&mcbsp->lock); mcbsp->free = true; mcbsp->reg_cache = NULL; err_kfree: spin_unlock(&mcbsp->lock); kfree(reg_cache); return err; } EXPORT_SYMBOL(omap_mcbsp_request); void omap_mcbsp_free(unsigned int id) { struct omap_mcbsp *mcbsp; void *reg_cache; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return; } mcbsp = id_to_mcbsp_ptr(id); if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free) mcbsp->pdata->ops->free(id); /* Do procedure specific to omap34xx arch, if applicable */ omap34xx_mcbsp_free(mcbsp); pm_runtime_put_sync(mcbsp->dev); if (mcbsp->io_type == OMAP_MCBSP_IRQ_IO) { /* Free IRQs */ if (mcbsp->rx_irq) free_irq(mcbsp->rx_irq, (void *)mcbsp); free_irq(mcbsp->tx_irq, (void *)mcbsp); } reg_cache = mcbsp->reg_cache; spin_lock(&mcbsp->lock); if (mcbsp->free) dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id); else mcbsp->free = true; mcbsp->reg_cache = NULL; spin_unlock(&mcbsp->lock); if (reg_cache) kfree(reg_cache); } EXPORT_SYMBOL(omap_mcbsp_free); /* * Here we start the McBSP, by enabling transmitter, receiver or both. * If no transmitter or receiver is active prior calling, then sample-rate * generator and frame sync are started. */ void omap_mcbsp_start(unsigned int id, int tx, int rx) { struct omap_mcbsp *mcbsp; int enable_srg = 0; u16 w; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return; } mcbsp = id_to_mcbsp_ptr(id); if (cpu_is_omap34xx()) omap_st_start(mcbsp); mcbsp->rx_word_length = (MCBSP_READ_CACHE(mcbsp, RCR1) >> 5) & 0x7; mcbsp->tx_word_length = (MCBSP_READ_CACHE(mcbsp, XCR1) >> 5) & 0x7; /* Only enable SRG, if McBSP is master */ w = MCBSP_READ_CACHE(mcbsp, PCR0); if (w & (FSXM | FSRM | CLKXM | CLKRM)) enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) | MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1); if (enable_srg) { /* Start the sample generator */ w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6)); } /* Enable transmitter and receiver */ tx &= 1; w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w | tx); rx &= 1; w = MCBSP_READ_CACHE(mcbsp, SPCR1); MCBSP_WRITE(mcbsp, SPCR1, w | rx); /* * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec * REVISIT: 100us may give enough time for two CLKSRG, however * due to some unknown PM related, clock gating etc. reason it * is now at 500us. */ udelay(500); if (enable_srg) { /* Start frame sync */ w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7)); } if (cpu_is_omap2430() || cpu_is_omap34xx() || cpu_is_omap44xx()) { /* Release the transmitter and receiver */ w = MCBSP_READ_CACHE(mcbsp, XCCR); w &= ~(tx ? XDISABLE : 0); MCBSP_WRITE(mcbsp, XCCR, w); w = MCBSP_READ_CACHE(mcbsp, RCCR); w &= ~(rx ? RDISABLE : 0); MCBSP_WRITE(mcbsp, RCCR, w); } /* Dump McBSP Regs */ omap_mcbsp_dump_reg(id); } EXPORT_SYMBOL(omap_mcbsp_start); void omap_mcbsp_stop(unsigned int id, int tx, int rx) { struct omap_mcbsp *mcbsp; int idle; u16 w; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return; } mcbsp = id_to_mcbsp_ptr(id); /* Reset transmitter */ tx &= 1; if (cpu_is_omap2430() || cpu_is_omap34xx() || cpu_is_omap44xx()) { w = MCBSP_READ_CACHE(mcbsp, XCCR); w |= (tx ? XDISABLE : 0); MCBSP_WRITE(mcbsp, XCCR, w); } w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w & ~tx); /* Reset receiver */ rx &= 1; if (cpu_is_omap2430() || cpu_is_omap34xx() || cpu_is_omap44xx()) { w = MCBSP_READ_CACHE(mcbsp, RCCR); w |= (rx ? RDISABLE : 0); MCBSP_WRITE(mcbsp, RCCR, w); } w = MCBSP_READ_CACHE(mcbsp, SPCR1); MCBSP_WRITE(mcbsp, SPCR1, w & ~rx); idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) | MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1); if (idle) { /* Reset the sample rate generator */ w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6)); } if (cpu_is_omap34xx()) omap_st_stop(mcbsp); } EXPORT_SYMBOL(omap_mcbsp_stop); /* polled mcbsp i/o operations */ int omap_mcbsp_pollwrite(unsigned int id, u16 buf) { struct omap_mcbsp *mcbsp; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); MCBSP_WRITE(mcbsp, DXR1, buf); /* if frame sync error - clear the error */ if (MCBSP_READ(mcbsp, SPCR2) & XSYNC_ERR) { /* clear error */ MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2)); /* resend */ return -1; } else { /* wait for transmit confirmation */ int attemps = 0; while (!(MCBSP_READ(mcbsp, SPCR2) & XRDY)) { if (attemps++ > 1000) { MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2) & (~XRST)); udelay(10); MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2) | (XRST)); udelay(10); dev_err(mcbsp->dev, "Could not write to" " McBSP%d Register\n", mcbsp->id); return -2; } } } return 0; } EXPORT_SYMBOL(omap_mcbsp_pollwrite); int omap_mcbsp_pollread(unsigned int id, u16 *buf) { struct omap_mcbsp *mcbsp; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); /* if frame sync error - clear the error */ if (MCBSP_READ(mcbsp, SPCR1) & RSYNC_ERR) { /* clear error */ MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1)); /* resend */ return -1; } else { /* wait for receive confirmation */ int attemps = 0; while (!(MCBSP_READ(mcbsp, SPCR1) & RRDY)) { if (attemps++ > 1000) { MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1) & (~RRST)); udelay(10); MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1) | (RRST)); udelay(10); dev_err(mcbsp->dev, "Could not read from" " McBSP%d Register\n", mcbsp->id); return -2; } } } *buf = MCBSP_READ(mcbsp, DRR1); return 0; } EXPORT_SYMBOL(omap_mcbsp_pollread); /* * IRQ based word transmission. */ void omap_mcbsp_xmit_word(unsigned int id, u32 word) { struct omap_mcbsp *mcbsp; omap_mcbsp_word_length word_length; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return; } mcbsp = id_to_mcbsp_ptr(id); word_length = mcbsp->tx_word_length; wait_for_completion(&mcbsp->tx_irq_completion); if (word_length > OMAP_MCBSP_WORD_16) MCBSP_WRITE(mcbsp, DXR2, word >> 16); MCBSP_WRITE(mcbsp, DXR1, word & 0xffff); } EXPORT_SYMBOL(omap_mcbsp_xmit_word); u32 omap_mcbsp_recv_word(unsigned int id) { struct omap_mcbsp *mcbsp; u16 word_lsb, word_msb = 0; omap_mcbsp_word_length word_length; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); word_length = mcbsp->rx_word_length; wait_for_completion(&mcbsp->rx_irq_completion); if (word_length > OMAP_MCBSP_WORD_16) word_msb = MCBSP_READ(mcbsp, DRR2); word_lsb = MCBSP_READ(mcbsp, DRR1); return (word_lsb | (word_msb << 16)); } EXPORT_SYMBOL(omap_mcbsp_recv_word); int omap_mcbsp_spi_master_xmit_word_poll(unsigned int id, u32 word) { struct omap_mcbsp *mcbsp; omap_mcbsp_word_length tx_word_length; omap_mcbsp_word_length rx_word_length; u16 spcr2, spcr1, attempts = 0, word_lsb, word_msb = 0; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); tx_word_length = mcbsp->tx_word_length; rx_word_length = mcbsp->rx_word_length; if (tx_word_length != rx_word_length) return -EINVAL; /* First we wait for the transmitter to be ready */ spcr2 = MCBSP_READ(mcbsp, SPCR2); while (!(spcr2 & XRDY)) { spcr2 = MCBSP_READ(mcbsp, SPCR2); if (attempts++ > 1000) { /* We must reset the transmitter */ MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2) & (~XRST)); udelay(10); MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2) | XRST); udelay(10); dev_err(mcbsp->dev, "McBSP%d transmitter not " "ready\n", mcbsp->id); return -EAGAIN; } } /* Now we can push the data */ if (tx_word_length > OMAP_MCBSP_WORD_16) MCBSP_WRITE(mcbsp, DXR2, word >> 16); MCBSP_WRITE(mcbsp, DXR1, word & 0xffff); /* We wait for the receiver to be ready */ spcr1 = MCBSP_READ(mcbsp, SPCR1); while (!(spcr1 & RRDY)) { spcr1 = MCBSP_READ(mcbsp, SPCR1); if (attempts++ > 1000) { /* We must reset the receiver */ MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1) & (~RRST)); udelay(10); MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1) | RRST); udelay(10); dev_err(mcbsp->dev, "McBSP%d receiver not " "ready\n", mcbsp->id); return -EAGAIN; } } /* Receiver is ready, let's read the dummy data */ if (rx_word_length > OMAP_MCBSP_WORD_16) word_msb = MCBSP_READ(mcbsp, DRR2); word_lsb = MCBSP_READ(mcbsp, DRR1); return 0; } EXPORT_SYMBOL(omap_mcbsp_spi_master_xmit_word_poll); int omap_mcbsp_spi_master_recv_word_poll(unsigned int id, u32 *word) { struct omap_mcbsp *mcbsp; u32 clock_word = 0; omap_mcbsp_word_length tx_word_length; omap_mcbsp_word_length rx_word_length; u16 spcr2, spcr1, attempts = 0, word_lsb, word_msb = 0; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); tx_word_length = mcbsp->tx_word_length; rx_word_length = mcbsp->rx_word_length; if (tx_word_length != rx_word_length) return -EINVAL; /* First we wait for the transmitter to be ready */ spcr2 = MCBSP_READ(mcbsp, SPCR2); while (!(spcr2 & XRDY)) { spcr2 = MCBSP_READ(mcbsp, SPCR2); if (attempts++ > 1000) { /* We must reset the transmitter */ MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2) & (~XRST)); udelay(10); MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2) | XRST); udelay(10); dev_err(mcbsp->dev, "McBSP%d transmitter not " "ready\n", mcbsp->id); return -EAGAIN; } } /* We first need to enable the bus clock */ if (tx_word_length > OMAP_MCBSP_WORD_16) MCBSP_WRITE(mcbsp, DXR2, clock_word >> 16); MCBSP_WRITE(mcbsp, DXR1, clock_word & 0xffff); /* We wait for the receiver to be ready */ spcr1 = MCBSP_READ(mcbsp, SPCR1); while (!(spcr1 & RRDY)) { spcr1 = MCBSP_READ(mcbsp, SPCR1); if (attempts++ > 1000) { /* We must reset the receiver */ MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1) & (~RRST)); udelay(10); MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1) | RRST); udelay(10); dev_err(mcbsp->dev, "McBSP%d receiver not " "ready\n", mcbsp->id); return -EAGAIN; } } /* Receiver is ready, there is something for us */ if (rx_word_length > OMAP_MCBSP_WORD_16) word_msb = MCBSP_READ(mcbsp, DRR2); word_lsb = MCBSP_READ(mcbsp, DRR1); word[0] = (word_lsb | (word_msb << 16)); return 0; } EXPORT_SYMBOL(omap_mcbsp_spi_master_recv_word_poll); /* * Simple DMA based buffer rx/tx routines. * Nothing fancy, just a single buffer tx/rx through DMA. * The DMA resources are released once the transfer is done. * For anything fancier, you should use your own customized DMA * routines and callbacks. */ int omap_mcbsp_xmit_buffer(unsigned int id, dma_addr_t buffer, unsigned int length) { struct omap_mcbsp *mcbsp; int dma_tx_ch; int src_port = 0; int dest_port = 0; int sync_dev = 0; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); if (omap_request_dma(mcbsp->dma_tx_sync, "McBSP TX", omap_mcbsp_tx_dma_callback, mcbsp, &dma_tx_ch)) { dev_err(mcbsp->dev, " Unable to request DMA channel for " "McBSP%d TX. Trying IRQ based TX\n", mcbsp->id); return -EAGAIN; } mcbsp->dma_tx_lch = dma_tx_ch; dev_err(mcbsp->dev, "McBSP%d TX DMA on channel %d\n", mcbsp->id, dma_tx_ch); init_completion(&mcbsp->tx_dma_completion); if (cpu_class_is_omap1()) { src_port = OMAP_DMA_PORT_TIPB; dest_port = OMAP_DMA_PORT_EMIFF; } if (cpu_class_is_omap2()) sync_dev = mcbsp->dma_tx_sync; omap_set_dma_transfer_params(mcbsp->dma_tx_lch, OMAP_DMA_DATA_TYPE_S16, length >> 1, 1, OMAP_DMA_SYNC_ELEMENT, sync_dev, 0); omap_set_dma_dest_params(mcbsp->dma_tx_lch, src_port, OMAP_DMA_AMODE_CONSTANT, mcbsp->phys_base + OMAP_MCBSP_REG_DXR1, 0, 0); omap_set_dma_src_params(mcbsp->dma_tx_lch, dest_port, OMAP_DMA_AMODE_POST_INC, buffer, 0, 0); omap_start_dma(mcbsp->dma_tx_lch); wait_for_completion(&mcbsp->tx_dma_completion); return 0; } EXPORT_SYMBOL(omap_mcbsp_xmit_buffer); int omap_mcbsp_recv_buffer(unsigned int id, dma_addr_t buffer, unsigned int length) { struct omap_mcbsp *mcbsp; int dma_rx_ch; int src_port = 0; int dest_port = 0; int sync_dev = 0; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return -ENODEV; } mcbsp = id_to_mcbsp_ptr(id); if (omap_request_dma(mcbsp->dma_rx_sync, "McBSP RX", omap_mcbsp_rx_dma_callback, mcbsp, &dma_rx_ch)) { dev_err(mcbsp->dev, "Unable to request DMA channel for " "McBSP%d RX. Trying IRQ based RX\n", mcbsp->id); return -EAGAIN; } mcbsp->dma_rx_lch = dma_rx_ch; dev_err(mcbsp->dev, "McBSP%d RX DMA on channel %d\n", mcbsp->id, dma_rx_ch); init_completion(&mcbsp->rx_dma_completion); if (cpu_class_is_omap1()) { src_port = OMAP_DMA_PORT_TIPB; dest_port = OMAP_DMA_PORT_EMIFF; } if (cpu_class_is_omap2()) sync_dev = mcbsp->dma_rx_sync; omap_set_dma_transfer_params(mcbsp->dma_rx_lch, OMAP_DMA_DATA_TYPE_S16, length >> 1, 1, OMAP_DMA_SYNC_ELEMENT, sync_dev, 0); omap_set_dma_src_params(mcbsp->dma_rx_lch, src_port, OMAP_DMA_AMODE_CONSTANT, mcbsp->phys_base + OMAP_MCBSP_REG_DRR1, 0, 0); omap_set_dma_dest_params(mcbsp->dma_rx_lch, dest_port, OMAP_DMA_AMODE_POST_INC, buffer, 0, 0); omap_start_dma(mcbsp->dma_rx_lch); wait_for_completion(&mcbsp->rx_dma_completion); return 0; } EXPORT_SYMBOL(omap_mcbsp_recv_buffer); /* * SPI wrapper. * Since SPI setup is much simpler than the generic McBSP one, * this wrapper just need an omap_mcbsp_spi_cfg structure as an input. * Once this is done, you can call omap_mcbsp_start(). */ void omap_mcbsp_set_spi_mode(unsigned int id, const struct omap_mcbsp_spi_cfg *spi_cfg) { struct omap_mcbsp *mcbsp; struct omap_mcbsp_reg_cfg mcbsp_cfg; if (!omap_mcbsp_check_valid_id(id)) { printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1); return; } mcbsp = id_to_mcbsp_ptr(id); memset(&mcbsp_cfg, 0, sizeof(struct omap_mcbsp_reg_cfg)); /* SPI has only one frame */ mcbsp_cfg.rcr1 |= (RWDLEN1(spi_cfg->word_length) | RFRLEN1(0)); mcbsp_cfg.xcr1 |= (XWDLEN1(spi_cfg->word_length) | XFRLEN1(0)); /* Clock stop mode */ if (spi_cfg->clk_stp_mode == OMAP_MCBSP_CLK_STP_MODE_NO_DELAY) mcbsp_cfg.spcr1 |= (1 << 12); else mcbsp_cfg.spcr1 |= (3 << 11); /* Set clock parities */ if (spi_cfg->rx_clock_polarity == OMAP_MCBSP_CLK_RISING) mcbsp_cfg.pcr0 |= CLKRP; else mcbsp_cfg.pcr0 &= ~CLKRP; if (spi_cfg->tx_clock_polarity == OMAP_MCBSP_CLK_RISING) mcbsp_cfg.pcr0 &= ~CLKXP; else mcbsp_cfg.pcr0 |= CLKXP; /* Set SCLKME to 0 and CLKSM to 1 */ mcbsp_cfg.pcr0 &= ~SCLKME; mcbsp_cfg.srgr2 |= CLKSM; /* Set FSXP */ if (spi_cfg->fsx_polarity == OMAP_MCBSP_FS_ACTIVE_HIGH) mcbsp_cfg.pcr0 &= ~FSXP; else mcbsp_cfg.pcr0 |= FSXP; if (spi_cfg->spi_mode == OMAP_MCBSP_SPI_MASTER) { mcbsp_cfg.pcr0 |= CLKXM; mcbsp_cfg.srgr1 |= CLKGDV(spi_cfg->clk_div - 1); mcbsp_cfg.pcr0 |= FSXM; mcbsp_cfg.srgr2 &= ~FSGM; mcbsp_cfg.xcr2 |= XDATDLY(1); mcbsp_cfg.rcr2 |= RDATDLY(1); } else { mcbsp_cfg.pcr0 &= ~CLKXM; mcbsp_cfg.srgr1 |= CLKGDV(1); mcbsp_cfg.pcr0 &= ~FSXM; mcbsp_cfg.xcr2 &= ~XDATDLY(3); mcbsp_cfg.rcr2 &= ~RDATDLY(3); } mcbsp_cfg.xcr2 &= ~XPHASE; mcbsp_cfg.rcr2 &= ~RPHASE; omap_mcbsp_config(id, &mcbsp_cfg); } EXPORT_SYMBOL(omap_mcbsp_set_spi_mode); #ifdef CONFIG_ARCH_OMAP3 #define max_thres(m) (mcbsp->pdata->buffer_size) #define valid_threshold(m, val) ((val) <= max_thres(m)) #define THRESHOLD_PROP_BUILDER(prop) \ static ssize_t prop##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \ \ return sprintf(buf, "%u\n", mcbsp->prop); \ } \ \ static ssize_t prop##_store(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t size) \ { \ struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \ unsigned long val; \ int status; \ \ status = strict_strtoul(buf, 0, &val); \ if (status) \ return status; \ \ if (!valid_threshold(mcbsp, val)) \ return -EDOM; \ \ mcbsp->prop = val; \ return size; \ } \ \ static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store); THRESHOLD_PROP_BUILDER(max_tx_thres); THRESHOLD_PROP_BUILDER(max_rx_thres); static const char *dma_op_modes[] = { "element", "threshold", "frame", }; static ssize_t dma_op_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); int dma_op_mode, i = 0; ssize_t len = 0; const char * const *s; dma_op_mode = mcbsp->dma_op_mode; for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) { if (dma_op_mode == i) len += sprintf(buf + len, "[%s] ", *s); else len += sprintf(buf + len, "%s ", *s); } len += sprintf(buf + len, "\n"); return len; } static ssize_t dma_op_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); const char * const *s; int i = 0; for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) if (sysfs_streq(buf, *s)) break; if (i == ARRAY_SIZE(dma_op_modes)) return -EINVAL; spin_lock_irq(&mcbsp->lock); if (!mcbsp->free) { size = -EBUSY; goto unlock; } mcbsp->dma_op_mode = i; unlock: spin_unlock_irq(&mcbsp->lock); return size; } static DEVICE_ATTR(dma_op_mode, 0644, dma_op_mode_show, dma_op_mode_store); static ssize_t st_taps_show(struct device *dev, struct device_attribute *attr, char *buf) { struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); struct omap_mcbsp_st_data *st_data = mcbsp->st_data; ssize_t status = 0; int i; spin_lock_irq(&mcbsp->lock); for (i = 0; i < st_data->nr_taps; i++) status += sprintf(&buf[status], (i ? ", %d" : "%d"), st_data->taps[i]); if (i) status += sprintf(&buf[status], "\n"); spin_unlock_irq(&mcbsp->lock); return status; } static ssize_t st_taps_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); struct omap_mcbsp_st_data *st_data = mcbsp->st_data; int val, tmp, status, i = 0; spin_lock_irq(&mcbsp->lock); memset(st_data->taps, 0, sizeof(st_data->taps)); st_data->nr_taps = 0; do { status = sscanf(buf, "%d%n", &val, &tmp); if (status < 0 || status == 0) { size = -EINVAL; goto out; } if (val < -32768 || val > 32767) { size = -EINVAL; goto out; } st_data->taps[i++] = val; buf += tmp; if (*buf != ',') break; buf++; } while (1); st_data->nr_taps = i; out: spin_unlock_irq(&mcbsp->lock); return size; } static DEVICE_ATTR(st_taps, 0644, st_taps_show, st_taps_store); static const struct attribute *additional_attrs[] = { &dev_attr_max_tx_thres.attr, &dev_attr_max_rx_thres.attr, &dev_attr_dma_op_mode.attr, NULL, }; static const struct attribute_group additional_attr_group = { .attrs = (struct attribute **)additional_attrs, }; static inline int __devinit omap_additional_add(struct device *dev) { return sysfs_create_group(&dev->kobj, &additional_attr_group); } static inline void __devexit omap_additional_remove(struct device *dev) { sysfs_remove_group(&dev->kobj, &additional_attr_group); } static const struct attribute *sidetone_attrs[] = { &dev_attr_st_taps.attr, NULL, }; static const struct attribute_group sidetone_attr_group = { .attrs = (struct attribute **)sidetone_attrs, }; static int __devinit omap_st_add(struct omap_mcbsp *mcbsp) { struct platform_device *pdev; struct resource *res; struct omap_mcbsp_st_data *st_data; int err; st_data = kzalloc(sizeof(*mcbsp->st_data), GFP_KERNEL); if (!st_data) { err = -ENOMEM; goto err1; } pdev = container_of(mcbsp->dev, struct platform_device, dev); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sidetone"); st_data->io_base_st = ioremap(res->start, resource_size(res)); if (!st_data->io_base_st) { err = -ENOMEM; goto err2; } err = sysfs_create_group(&mcbsp->dev->kobj, &sidetone_attr_group); if (err) goto err3; mcbsp->st_data = st_data; return 0; err3: iounmap(st_data->io_base_st); err2: kfree(st_data); err1: return err; } static void __devexit omap_st_remove(struct omap_mcbsp *mcbsp) { struct omap_mcbsp_st_data *st_data = mcbsp->st_data; if (st_data) { sysfs_remove_group(&mcbsp->dev->kobj, &sidetone_attr_group); iounmap(st_data->io_base_st); kfree(st_data); } } static inline void __devinit omap34xx_device_init(struct omap_mcbsp *mcbsp) { mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT; if (cpu_is_omap34xx()) { /* * Initially configure the maximum thresholds to a safe value. * The McBSP FIFO usage with these values should not go under * 16 locations. * If the whole FIFO without safety buffer is used, than there * is a possibility that the DMA will be not able to push the * new data on time, causing channel shifts in runtime. */ mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10; mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10; /* * REVISIT: Set dmap_op_mode to THRESHOLD as default * for mcbsp2 instances. */ if (omap_additional_add(mcbsp->dev)) dev_warn(mcbsp->dev, "Unable to create additional controls\n"); if (mcbsp->id == 2 || mcbsp->id == 3) if (omap_st_add(mcbsp)) dev_warn(mcbsp->dev, "Unable to create sidetone controls\n"); } else { mcbsp->max_tx_thres = -EINVAL; mcbsp->max_rx_thres = -EINVAL; } } static inline void __devexit omap34xx_device_exit(struct omap_mcbsp *mcbsp) { if (cpu_is_omap34xx()) { omap_additional_remove(mcbsp->dev); if (mcbsp->id == 2 || mcbsp->id == 3) omap_st_remove(mcbsp); } } #else static inline void __devinit omap34xx_device_init(struct omap_mcbsp *mcbsp) {} static inline void __devexit omap34xx_device_exit(struct omap_mcbsp *mcbsp) {} #endif /* CONFIG_ARCH_OMAP3 */ /* * McBSP1 and McBSP3 are directly mapped on 1610 and 1510. * 730 has only 2 McBSP, and both of them are MPU peripherals. */ static int __devinit omap_mcbsp_probe(struct platform_device *pdev) { struct omap_mcbsp_platform_data *pdata = pdev->dev.platform_data; struct omap_mcbsp *mcbsp; int id = pdev->id - 1; struct resource *res; int ret = 0; if (!pdata) { dev_err(&pdev->dev, "McBSP device initialized without" "platform data\n"); ret = -EINVAL; goto exit; } dev_dbg(&pdev->dev, "Initializing OMAP McBSP (%d).\n", pdev->id); if (id >= omap_mcbsp_count) { dev_err(&pdev->dev, "Invalid McBSP device id (%d)\n", id); ret = -EINVAL; goto exit; } mcbsp = kzalloc(sizeof(struct omap_mcbsp), GFP_KERNEL); if (!mcbsp) { ret = -ENOMEM; goto exit; } spin_lock_init(&mcbsp->lock); mcbsp->id = id + 1; mcbsp->free = true; mcbsp->dma_tx_lch = -1; mcbsp->dma_rx_lch = -1; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu"); if (!res) { res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "%s:mcbsp%d has invalid memory" "resource\n", __func__, pdev->id); ret = -ENOMEM; goto exit; } } mcbsp->phys_base = res->start; omap_mcbsp_cache_size = resource_size(res); mcbsp->io_base = ioremap(res->start, resource_size(res)); if (!mcbsp->io_base) { ret = -ENOMEM; goto err_ioremap; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma"); if (!res) mcbsp->phys_dma_base = mcbsp->phys_base; else mcbsp->phys_dma_base = res->start; /* Default I/O is IRQ based */ mcbsp->io_type = OMAP_MCBSP_IRQ_IO; mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx"); mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx"); /* From OMAP4 there will be a single irq line */ if (mcbsp->tx_irq == -ENXIO) mcbsp->tx_irq = platform_get_irq(pdev, 0); res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx"); if (!res) { dev_err(&pdev->dev, "%s:mcbsp%d has invalid rx DMA channel\n", __func__, pdev->id); ret = -ENODEV; goto err_res; } mcbsp->dma_rx_sync = res->start; res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx"); if (!res) { dev_err(&pdev->dev, "%s:mcbsp%d has invalid tx DMA channel\n", __func__, pdev->id); ret = -ENODEV; goto err_res; } mcbsp->dma_tx_sync = res->start; mcbsp->fclk = clk_get(&pdev->dev, "fck"); if (IS_ERR(mcbsp->fclk)) { ret = PTR_ERR(mcbsp->fclk); dev_err(&pdev->dev, "unable to get fck: %d\n", ret); goto err_res; } mcbsp->pdata = pdata; mcbsp->dev = &pdev->dev; mcbsp_ptr[id] = mcbsp; mcbsp->mcbsp_config_type = pdata->mcbsp_config_type; platform_set_drvdata(pdev, mcbsp); pm_runtime_enable(mcbsp->dev); /* Initialize mcbsp properties for OMAP34XX if needed / applicable */ omap34xx_device_init(mcbsp); return 0; err_res: iounmap(mcbsp->io_base); err_ioremap: kfree(mcbsp); exit: return ret; } static int __devexit omap_mcbsp_remove(struct platform_device *pdev) { struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev); platform_set_drvdata(pdev, NULL); if (mcbsp) { if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free) mcbsp->pdata->ops->free(mcbsp->id); omap34xx_device_exit(mcbsp); clk_put(mcbsp->fclk); iounmap(mcbsp->io_base); kfree(mcbsp); } return 0; } static struct platform_driver omap_mcbsp_driver = { .probe = omap_mcbsp_probe, .remove = __devexit_p(omap_mcbsp_remove), .driver = { .name = "omap-mcbsp", }, }; int __init omap_mcbsp_init(void) { /* Register the McBSP driver */ return platform_driver_register(&omap_mcbsp_driver); }