/* * OMAP 32ksynctimer/counter_32k-related code * * Copyright (C) 2009 Texas Instruments * Copyright (C) 2010 Nokia Corporation * Tony Lindgren <tony@atomide.com> * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * NOTE: This timer is not the same timer as the old OMAP1 MPU timer. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/sched.h> #include <asm/sched_clock.h> #include <plat/common.h> #include <plat/board.h> #include <plat/clock.h> /* * 32KHz clocksource ... always available, on pretty most chips except * OMAP 730 and 1510. Other timers could be used as clocksources, with * higher resolution in free-running counter modes (e.g. 12 MHz xtal), * but systems won't necessarily want to spend resources that way. */ #define OMAP16XX_TIMER_32K_SYNCHRONIZED 0xfffbc410 #include <linux/clocksource.h> /* * offset_32k holds the init time counter value. It is then subtracted * from every counter read to achieve a counter that counts time from the * kernel boot (needed for sched_clock()). */ static u32 offset_32k __read_mostly; #ifdef CONFIG_ARCH_OMAP16XX static cycle_t notrace omap16xx_32k_read(struct clocksource *cs) { return omap_readl(OMAP16XX_TIMER_32K_SYNCHRONIZED) - offset_32k; } #else #define omap16xx_32k_read NULL #endif #ifdef CONFIG_SOC_OMAP2420 static cycle_t notrace omap2420_32k_read(struct clocksource *cs) { return omap_readl(OMAP2420_32KSYNCT_BASE + 0x10) - offset_32k; } #else #define omap2420_32k_read NULL #endif #ifdef CONFIG_SOC_OMAP2430 static cycle_t notrace omap2430_32k_read(struct clocksource *cs) { return omap_readl(OMAP2430_32KSYNCT_BASE + 0x10) - offset_32k; } #else #define omap2430_32k_read NULL #endif #ifdef CONFIG_ARCH_OMAP3 static cycle_t notrace omap34xx_32k_read(struct clocksource *cs) { return omap_readl(OMAP3430_32KSYNCT_BASE + 0x10) - offset_32k; } #else #define omap34xx_32k_read NULL #endif #ifdef CONFIG_ARCH_OMAP4 static cycle_t notrace omap44xx_32k_read(struct clocksource *cs) { return omap_readl(OMAP4430_32KSYNCT_BASE + 0x10) - offset_32k; } #else #define omap44xx_32k_read NULL #endif /* * Kernel assumes that sched_clock can be called early but may not have * things ready yet. */ static cycle_t notrace omap_32k_read_dummy(struct clocksource *cs) { return 0; } static struct clocksource clocksource_32k = { .name = "32k_counter", .rating = 250, .read = omap_32k_read_dummy, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; /* * Returns current time from boot in nsecs. It's OK for this to wrap * around for now, as it's just a relative time stamp. */ static DEFINE_CLOCK_DATA(cd); /* * Constants generated by clocks_calc_mult_shift(m, s, 32768, NSEC_PER_SEC, 60). * This gives a resolution of about 30us and a wrap period of about 36hrs. */ #define SC_MULT 4000000000u #define SC_SHIFT 17 static inline unsigned long long notrace _omap_32k_sched_clock(void) { u32 cyc = clocksource_32k.read(&clocksource_32k); return cyc_to_fixed_sched_clock(&cd, cyc, (u32)~0, SC_MULT, SC_SHIFT); } #ifndef CONFIG_OMAP_MPU_TIMER unsigned long long notrace sched_clock(void) { return _omap_32k_sched_clock(); } #else unsigned long long notrace omap_32k_sched_clock(void) { return _omap_32k_sched_clock(); } #endif static void notrace omap_update_sched_clock(void) { u32 cyc = clocksource_32k.read(&clocksource_32k); update_sched_clock(&cd, cyc, (u32)~0); } /** * read_persistent_clock - Return time from a persistent clock. * * Reads the time from a source which isn't disabled during PM, the * 32k sync timer. Convert the cycles elapsed since last read into * nsecs and adds to a monotonically increasing timespec. */ static struct timespec persistent_ts; static cycles_t cycles, last_cycles; void read_persistent_clock(struct timespec *ts) { unsigned long long nsecs; cycles_t delta; struct timespec *tsp = &persistent_ts; last_cycles = cycles; cycles = clocksource_32k.read(&clocksource_32k); delta = cycles - last_cycles; nsecs = clocksource_cyc2ns(delta, clocksource_32k.mult, clocksource_32k.shift); timespec_add_ns(tsp, nsecs); *ts = *tsp; } int __init omap_init_clocksource_32k(void) { static char err[] __initdata = KERN_ERR "%s: can't register clocksource!\n"; if (cpu_is_omap16xx() || cpu_class_is_omap2()) { struct clk *sync_32k_ick; if (cpu_is_omap16xx()) clocksource_32k.read = omap16xx_32k_read; else if (cpu_is_omap2420()) clocksource_32k.read = omap2420_32k_read; else if (cpu_is_omap2430()) clocksource_32k.read = omap2430_32k_read; else if (cpu_is_omap34xx()) clocksource_32k.read = omap34xx_32k_read; else if (cpu_is_omap44xx()) clocksource_32k.read = omap44xx_32k_read; else return -ENODEV; sync_32k_ick = clk_get(NULL, "omap_32ksync_ick"); if (!IS_ERR(sync_32k_ick)) clk_enable(sync_32k_ick); offset_32k = clocksource_32k.read(&clocksource_32k); if (clocksource_register_hz(&clocksource_32k, 32768)) printk(err, clocksource_32k.name); init_fixed_sched_clock(&cd, omap_update_sched_clock, 32, 32768, SC_MULT, SC_SHIFT); } return 0; }