/* linux/arch/arm/mach-s5pv210/cpufreq.c * * Copyright (c) 2010 Samsung Electronics Co., Ltd. * http://www.samsung.com * * CPU frequency scaling for S5PC110/S5PV210 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/cpufreq.h> #include <mach/map.h> #include <mach/regs-clock.h> static struct clk *cpu_clk; static struct clk *dmc0_clk; static struct clk *dmc1_clk; static struct cpufreq_freqs freqs; /* APLL M,P,S values for 1G/800Mhz */ #define APLL_VAL_1000 ((1 << 31) | (125 << 16) | (3 << 8) | 1) #define APLL_VAL_800 ((1 << 31) | (100 << 16) | (3 << 8) | 1) /* * DRAM configurations to calculate refresh counter for changing * frequency of memory. */ struct dram_conf { unsigned long freq; /* HZ */ unsigned long refresh; /* DRAM refresh counter * 1000 */ }; /* DRAM configuration (DMC0 and DMC1) */ static struct dram_conf s5pv210_dram_conf[2]; enum perf_level { L0, L1, L2, L3, L4, }; enum s5pv210_mem_type { LPDDR = 0x1, LPDDR2 = 0x2, DDR2 = 0x4, }; enum s5pv210_dmc_port { DMC0 = 0, DMC1, }; static struct cpufreq_frequency_table s5pv210_freq_table[] = { {L0, 1000*1000}, {L1, 800*1000}, {L2, 400*1000}, {L3, 200*1000}, {L4, 100*1000}, {0, CPUFREQ_TABLE_END}, }; static u32 clkdiv_val[5][11] = { /* * Clock divider value for following * { APLL, A2M, HCLK_MSYS, PCLK_MSYS, * HCLK_DSYS, PCLK_DSYS, HCLK_PSYS, PCLK_PSYS, * ONEDRAM, MFC, G3D } */ /* L0 : [1000/200/100][166/83][133/66][200/200] */ {0, 4, 4, 1, 3, 1, 4, 1, 3, 0, 0}, /* L1 : [800/200/100][166/83][133/66][200/200] */ {0, 3, 3, 1, 3, 1, 4, 1, 3, 0, 0}, /* L2 : [400/200/100][166/83][133/66][200/200] */ {1, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0}, /* L3 : [200/200/100][166/83][133/66][200/200] */ {3, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0}, /* L4 : [100/100/100][83/83][66/66][100/100] */ {7, 7, 0, 0, 7, 0, 9, 0, 7, 0, 0}, }; /* * This function set DRAM refresh counter * accoriding to operating frequency of DRAM * ch: DMC port number 0 or 1 * freq: Operating frequency of DRAM(KHz) */ static void s5pv210_set_refresh(enum s5pv210_dmc_port ch, unsigned long freq) { unsigned long tmp, tmp1; void __iomem *reg = NULL; if (ch == DMC0) { reg = (S5P_VA_DMC0 + 0x30); } else if (ch == DMC1) { reg = (S5P_VA_DMC1 + 0x30); } else { printk(KERN_ERR "Cannot find DMC port\n"); return; } /* Find current DRAM frequency */ tmp = s5pv210_dram_conf[ch].freq; do_div(tmp, freq); tmp1 = s5pv210_dram_conf[ch].refresh; do_div(tmp1, tmp); __raw_writel(tmp1, reg); } int s5pv210_verify_speed(struct cpufreq_policy *policy) { if (policy->cpu) return -EINVAL; return cpufreq_frequency_table_verify(policy, s5pv210_freq_table); } unsigned int s5pv210_getspeed(unsigned int cpu) { if (cpu) return 0; return clk_get_rate(cpu_clk) / 1000; } static int s5pv210_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { unsigned long reg; unsigned int index, priv_index; unsigned int pll_changing = 0; unsigned int bus_speed_changing = 0; freqs.old = s5pv210_getspeed(0); if (cpufreq_frequency_table_target(policy, s5pv210_freq_table, target_freq, relation, &index)) return -EINVAL; freqs.new = s5pv210_freq_table[index].frequency; freqs.cpu = 0; if (freqs.new == freqs.old) return 0; /* Finding current running level index */ if (cpufreq_frequency_table_target(policy, s5pv210_freq_table, freqs.old, relation, &priv_index)) return -EINVAL; cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); if (freqs.new > freqs.old) { /* Voltage up: will be implemented */ } /* Check if there need to change PLL */ if ((index == L0) || (priv_index == L0)) pll_changing = 1; /* Check if there need to change System bus clock */ if ((index == L4) || (priv_index == L4)) bus_speed_changing = 1; if (bus_speed_changing) { /* * Reconfigure DRAM refresh counter value for minimum * temporary clock while changing divider. * expected clock is 83Mhz : 7.8usec/(1/83Mhz) = 0x287 */ if (pll_changing) s5pv210_set_refresh(DMC1, 83000); else s5pv210_set_refresh(DMC1, 100000); s5pv210_set_refresh(DMC0, 83000); } /* * APLL should be changed in this level * APLL -> MPLL(for stable transition) -> APLL * Some clock source's clock API are not prepared. * Do not use clock API in below code. */ if (pll_changing) { /* * 1. Temporary Change divider for MFC and G3D * SCLKA2M(200/1=200)->(200/4=50)Mhz */ reg = __raw_readl(S5P_CLK_DIV2); reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK); reg |= (3 << S5P_CLKDIV2_G3D_SHIFT) | (3 << S5P_CLKDIV2_MFC_SHIFT); __raw_writel(reg, S5P_CLK_DIV2); /* For MFC, G3D dividing */ do { reg = __raw_readl(S5P_CLKDIV_STAT0); } while (reg & ((1 << 16) | (1 << 17))); /* * 2. Change SCLKA2M(200Mhz)to SCLKMPLL in MFC_MUX, G3D MUX * (200/4=50)->(667/4=166)Mhz */ reg = __raw_readl(S5P_CLK_SRC2); reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK); reg |= (1 << S5P_CLKSRC2_G3D_SHIFT) | (1 << S5P_CLKSRC2_MFC_SHIFT); __raw_writel(reg, S5P_CLK_SRC2); do { reg = __raw_readl(S5P_CLKMUX_STAT1); } while (reg & ((1 << 7) | (1 << 3))); /* * 3. DMC1 refresh count for 133Mhz if (index == L4) is * true refresh counter is already programed in upper * code. 0x287@83Mhz */ if (!bus_speed_changing) s5pv210_set_refresh(DMC1, 133000); /* 4. SCLKAPLL -> SCLKMPLL */ reg = __raw_readl(S5P_CLK_SRC0); reg &= ~(S5P_CLKSRC0_MUX200_MASK); reg |= (0x1 << S5P_CLKSRC0_MUX200_SHIFT); __raw_writel(reg, S5P_CLK_SRC0); do { reg = __raw_readl(S5P_CLKMUX_STAT0); } while (reg & (0x1 << 18)); } /* Change divider */ reg = __raw_readl(S5P_CLK_DIV0); reg &= ~(S5P_CLKDIV0_APLL_MASK | S5P_CLKDIV0_A2M_MASK | S5P_CLKDIV0_HCLK200_MASK | S5P_CLKDIV0_PCLK100_MASK | S5P_CLKDIV0_HCLK166_MASK | S5P_CLKDIV0_PCLK83_MASK | S5P_CLKDIV0_HCLK133_MASK | S5P_CLKDIV0_PCLK66_MASK); reg |= ((clkdiv_val[index][0] << S5P_CLKDIV0_APLL_SHIFT) | (clkdiv_val[index][1] << S5P_CLKDIV0_A2M_SHIFT) | (clkdiv_val[index][2] << S5P_CLKDIV0_HCLK200_SHIFT) | (clkdiv_val[index][3] << S5P_CLKDIV0_PCLK100_SHIFT) | (clkdiv_val[index][4] << S5P_CLKDIV0_HCLK166_SHIFT) | (clkdiv_val[index][5] << S5P_CLKDIV0_PCLK83_SHIFT) | (clkdiv_val[index][6] << S5P_CLKDIV0_HCLK133_SHIFT) | (clkdiv_val[index][7] << S5P_CLKDIV0_PCLK66_SHIFT)); __raw_writel(reg, S5P_CLK_DIV0); do { reg = __raw_readl(S5P_CLKDIV_STAT0); } while (reg & 0xff); /* ARM MCS value changed */ reg = __raw_readl(S5P_ARM_MCS_CON); reg &= ~0x3; if (index >= L3) reg |= 0x3; else reg |= 0x1; __raw_writel(reg, S5P_ARM_MCS_CON); if (pll_changing) { /* 5. Set Lock time = 30us*24Mhz = 0x2cf */ __raw_writel(0x2cf, S5P_APLL_LOCK); /* * 6. Turn on APLL * 6-1. Set PMS values * 6-2. Wait untile the PLL is locked */ if (index == L0) __raw_writel(APLL_VAL_1000, S5P_APLL_CON); else __raw_writel(APLL_VAL_800, S5P_APLL_CON); do { reg = __raw_readl(S5P_APLL_CON); } while (!(reg & (0x1 << 29))); /* * 7. Change souce clock from SCLKMPLL(667Mhz) * to SCLKA2M(200Mhz) in MFC_MUX and G3D MUX * (667/4=166)->(200/4=50)Mhz */ reg = __raw_readl(S5P_CLK_SRC2); reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK); reg |= (0 << S5P_CLKSRC2_G3D_SHIFT) | (0 << S5P_CLKSRC2_MFC_SHIFT); __raw_writel(reg, S5P_CLK_SRC2); do { reg = __raw_readl(S5P_CLKMUX_STAT1); } while (reg & ((1 << 7) | (1 << 3))); /* * 8. Change divider for MFC and G3D * (200/4=50)->(200/1=200)Mhz */ reg = __raw_readl(S5P_CLK_DIV2); reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK); reg |= (clkdiv_val[index][10] << S5P_CLKDIV2_G3D_SHIFT) | (clkdiv_val[index][9] << S5P_CLKDIV2_MFC_SHIFT); __raw_writel(reg, S5P_CLK_DIV2); /* For MFC, G3D dividing */ do { reg = __raw_readl(S5P_CLKDIV_STAT0); } while (reg & ((1 << 16) | (1 << 17))); /* 9. Change MPLL to APLL in MSYS_MUX */ reg = __raw_readl(S5P_CLK_SRC0); reg &= ~(S5P_CLKSRC0_MUX200_MASK); reg |= (0x0 << S5P_CLKSRC0_MUX200_SHIFT); __raw_writel(reg, S5P_CLK_SRC0); do { reg = __raw_readl(S5P_CLKMUX_STAT0); } while (reg & (0x1 << 18)); /* * 10. DMC1 refresh counter * L4 : DMC1 = 100Mhz 7.8us/(1/100) = 0x30c * Others : DMC1 = 200Mhz 7.8us/(1/200) = 0x618 */ if (!bus_speed_changing) s5pv210_set_refresh(DMC1, 200000); } /* * L4 level need to change memory bus speed, hence onedram clock divier * and memory refresh parameter should be changed */ if (bus_speed_changing) { reg = __raw_readl(S5P_CLK_DIV6); reg &= ~S5P_CLKDIV6_ONEDRAM_MASK; reg |= (clkdiv_val[index][8] << S5P_CLKDIV6_ONEDRAM_SHIFT); __raw_writel(reg, S5P_CLK_DIV6); do { reg = __raw_readl(S5P_CLKDIV_STAT1); } while (reg & (1 << 15)); /* Reconfigure DRAM refresh counter value */ if (index != L4) { /* * DMC0 : 166Mhz * DMC1 : 200Mhz */ s5pv210_set_refresh(DMC0, 166000); s5pv210_set_refresh(DMC1, 200000); } else { /* * DMC0 : 83Mhz * DMC1 : 100Mhz */ s5pv210_set_refresh(DMC0, 83000); s5pv210_set_refresh(DMC1, 100000); } } if (freqs.new < freqs.old) { /* Voltage down: will be implemented */ } cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); printk(KERN_DEBUG "Perf changed[L%d]\n", index); return 0; } #ifdef CONFIG_PM static int s5pv210_cpufreq_suspend(struct cpufreq_policy *policy) { return 0; } static int s5pv210_cpufreq_resume(struct cpufreq_policy *policy) { return 0; } #endif static int check_mem_type(void __iomem *dmc_reg) { unsigned long val; val = __raw_readl(dmc_reg + 0x4); val = (val & (0xf << 8)); return val >> 8; } static int __init s5pv210_cpu_init(struct cpufreq_policy *policy) { unsigned long mem_type; cpu_clk = clk_get(NULL, "armclk"); if (IS_ERR(cpu_clk)) return PTR_ERR(cpu_clk); dmc0_clk = clk_get(NULL, "sclk_dmc0"); if (IS_ERR(dmc0_clk)) { clk_put(cpu_clk); return PTR_ERR(dmc0_clk); } dmc1_clk = clk_get(NULL, "hclk_msys"); if (IS_ERR(dmc1_clk)) { clk_put(dmc0_clk); clk_put(cpu_clk); return PTR_ERR(dmc1_clk); } if (policy->cpu != 0) return -EINVAL; /* * check_mem_type : This driver only support LPDDR & LPDDR2. * other memory type is not supported. */ mem_type = check_mem_type(S5P_VA_DMC0); if ((mem_type != LPDDR) && (mem_type != LPDDR2)) { printk(KERN_ERR "CPUFreq doesn't support this memory type\n"); return -EINVAL; } /* Find current refresh counter and frequency each DMC */ s5pv210_dram_conf[0].refresh = (__raw_readl(S5P_VA_DMC0 + 0x30) * 1000); s5pv210_dram_conf[0].freq = clk_get_rate(dmc0_clk); s5pv210_dram_conf[1].refresh = (__raw_readl(S5P_VA_DMC1 + 0x30) * 1000); s5pv210_dram_conf[1].freq = clk_get_rate(dmc1_clk); policy->cur = policy->min = policy->max = s5pv210_getspeed(0); cpufreq_frequency_table_get_attr(s5pv210_freq_table, policy->cpu); policy->cpuinfo.transition_latency = 40000; return cpufreq_frequency_table_cpuinfo(policy, s5pv210_freq_table); } static struct cpufreq_driver s5pv210_driver = { .flags = CPUFREQ_STICKY, .verify = s5pv210_verify_speed, .target = s5pv210_target, .get = s5pv210_getspeed, .init = s5pv210_cpu_init, .name = "s5pv210", #ifdef CONFIG_PM .suspend = s5pv210_cpufreq_suspend, .resume = s5pv210_cpufreq_resume, #endif }; static int __init s5pv210_cpufreq_init(void) { return cpufreq_register_driver(&s5pv210_driver); } late_initcall(s5pv210_cpufreq_init);