/* * linux/arch/arm/mach-omap2/gpmc-onenand.c * * Copyright (C) 2006 - 2009 Nokia Corporation * Contacts: Juha Yrjola * Tony Lindgren * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/mtd/onenand_regs.h> #include <linux/io.h> #include <asm/mach/flash.h> #include <plat/onenand.h> #include <plat/board.h> #include <plat/gpmc.h> static struct omap_onenand_platform_data *gpmc_onenand_data; static struct platform_device gpmc_onenand_device = { .name = "omap2-onenand", .id = -1, }; static int omap2_onenand_set_async_mode(int cs, void __iomem *onenand_base) { struct gpmc_timings t; u32 reg; int err; const int t_cer = 15; const int t_avdp = 12; const int t_aavdh = 7; const int t_ce = 76; const int t_aa = 76; const int t_oe = 20; const int t_cez = 20; /* max of t_cez, t_oez */ const int t_ds = 30; const int t_wpl = 40; const int t_wph = 30; /* Ensure sync read and sync write are disabled */ reg = readw(onenand_base + ONENAND_REG_SYS_CFG1); reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE; writew(reg, onenand_base + ONENAND_REG_SYS_CFG1); memset(&t, 0, sizeof(t)); t.sync_clk = 0; t.cs_on = 0; t.adv_on = 0; /* Read */ t.adv_rd_off = gpmc_round_ns_to_ticks(max_t(int, t_avdp, t_cer)); t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(t_aavdh); t.access = t.adv_on + gpmc_round_ns_to_ticks(t_aa); t.access = max_t(int, t.access, t.cs_on + gpmc_round_ns_to_ticks(t_ce)); t.access = max_t(int, t.access, t.oe_on + gpmc_round_ns_to_ticks(t_oe)); t.oe_off = t.access + gpmc_round_ns_to_ticks(1); t.cs_rd_off = t.oe_off; t.rd_cycle = t.cs_rd_off + gpmc_round_ns_to_ticks(t_cez); /* Write */ t.adv_wr_off = t.adv_rd_off; t.we_on = t.oe_on; if (cpu_is_omap34xx()) { t.wr_data_mux_bus = t.we_on; t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds); } t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl); t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph); t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez); /* Configure GPMC for asynchronous read */ gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, GPMC_CONFIG1_DEVICESIZE_16 | GPMC_CONFIG1_MUXADDDATA); err = gpmc_cs_set_timings(cs, &t); if (err) return err; /* Ensure sync read and sync write are disabled */ reg = readw(onenand_base + ONENAND_REG_SYS_CFG1); reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE; writew(reg, onenand_base + ONENAND_REG_SYS_CFG1); return 0; } static void set_onenand_cfg(void __iomem *onenand_base, int latency, int sync_read, int sync_write, int hf, int vhf) { u32 reg; reg = readw(onenand_base + ONENAND_REG_SYS_CFG1); reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9)); reg |= (latency << ONENAND_SYS_CFG1_BRL_SHIFT) | ONENAND_SYS_CFG1_BL_16; if (sync_read) reg |= ONENAND_SYS_CFG1_SYNC_READ; else reg &= ~ONENAND_SYS_CFG1_SYNC_READ; if (sync_write) reg |= ONENAND_SYS_CFG1_SYNC_WRITE; else reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE; if (hf) reg |= ONENAND_SYS_CFG1_HF; else reg &= ~ONENAND_SYS_CFG1_HF; if (vhf) reg |= ONENAND_SYS_CFG1_VHF; else reg &= ~ONENAND_SYS_CFG1_VHF; writew(reg, onenand_base + ONENAND_REG_SYS_CFG1); } static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg, void __iomem *onenand_base, bool *clk_dep) { u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID); int freq = 0; if (cfg->get_freq) { struct onenand_freq_info fi; fi.maf_id = readw(onenand_base + ONENAND_REG_MANUFACTURER_ID); fi.dev_id = readw(onenand_base + ONENAND_REG_DEVICE_ID); fi.ver_id = ver; freq = cfg->get_freq(&fi, clk_dep); if (freq) return freq; } switch ((ver >> 4) & 0xf) { case 0: freq = 40; break; case 1: freq = 54; break; case 2: freq = 66; break; case 3: freq = 83; break; case 4: freq = 104; break; default: freq = 54; break; } return freq; } static int omap2_onenand_set_sync_mode(struct omap_onenand_platform_data *cfg, void __iomem *onenand_base, int *freq_ptr) { struct gpmc_timings t; const int t_cer = 15; const int t_avdp = 12; const int t_cez = 20; /* max of t_cez, t_oez */ const int t_ds = 30; const int t_wpl = 40; const int t_wph = 30; int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo; int tick_ns, div, fclk_offset_ns, fclk_offset, gpmc_clk_ns, latency; int first_time = 0, hf = 0, vhf = 0, sync_read = 0, sync_write = 0; int err, ticks_cez; int cs = cfg->cs, freq = *freq_ptr; u32 reg; bool clk_dep = false; if (cfg->flags & ONENAND_SYNC_READ) { sync_read = 1; } else if (cfg->flags & ONENAND_SYNC_READWRITE) { sync_read = 1; sync_write = 1; } else return omap2_onenand_set_async_mode(cs, onenand_base); if (!freq) { /* Very first call freq is not known */ err = omap2_onenand_set_async_mode(cs, onenand_base); if (err) return err; freq = omap2_onenand_get_freq(cfg, onenand_base, &clk_dep); first_time = 1; } switch (freq) { case 104: min_gpmc_clk_period = 9600; /* 104 MHz */ t_ces = 3; t_avds = 4; t_avdh = 2; t_ach = 3; t_aavdh = 6; t_rdyo = 6; break; case 83: min_gpmc_clk_period = 12000; /* 83 MHz */ t_ces = 5; t_avds = 4; t_avdh = 2; t_ach = 6; t_aavdh = 6; t_rdyo = 9; break; case 66: min_gpmc_clk_period = 15000; /* 66 MHz */ t_ces = 6; t_avds = 5; t_avdh = 2; t_ach = 6; t_aavdh = 6; t_rdyo = 11; break; default: min_gpmc_clk_period = 18500; /* 54 MHz */ t_ces = 7; t_avds = 7; t_avdh = 7; t_ach = 9; t_aavdh = 7; t_rdyo = 15; sync_write = 0; break; } tick_ns = gpmc_ticks_to_ns(1); div = gpmc_cs_calc_divider(cs, min_gpmc_clk_period); gpmc_clk_ns = gpmc_ticks_to_ns(div); if (gpmc_clk_ns < 15) /* >66Mhz */ hf = 1; if (gpmc_clk_ns < 12) /* >83Mhz */ vhf = 1; if (vhf) latency = 8; else if (hf) latency = 6; else if (gpmc_clk_ns >= 25) /* 40 MHz*/ latency = 3; else latency = 4; if (clk_dep) { if (gpmc_clk_ns < 12) { /* >83Mhz */ t_ces = 3; t_avds = 4; } else if (gpmc_clk_ns < 15) { /* >66Mhz */ t_ces = 5; t_avds = 4; } else if (gpmc_clk_ns < 25) { /* >40Mhz */ t_ces = 6; t_avds = 5; } else { t_ces = 7; t_avds = 7; } } if (first_time) set_onenand_cfg(onenand_base, latency, sync_read, sync_write, hf, vhf); if (div == 1) { reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2); reg |= (1 << 7); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg); reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3); reg |= (1 << 7); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg); reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4); reg |= (1 << 7); reg |= (1 << 23); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg); } else { reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2); reg &= ~(1 << 7); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg); reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3); reg &= ~(1 << 7); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg); reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4); reg &= ~(1 << 7); reg &= ~(1 << 23); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg); } /* Set synchronous read timings */ memset(&t, 0, sizeof(t)); t.sync_clk = min_gpmc_clk_period; t.cs_on = 0; t.adv_on = 0; fclk_offset_ns = gpmc_round_ns_to_ticks(max_t(int, t_ces, t_avds)); fclk_offset = gpmc_ns_to_ticks(fclk_offset_ns); t.page_burst_access = gpmc_clk_ns; /* Read */ t.adv_rd_off = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_avdh)); t.oe_on = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_ach)); /* Force at least 1 clk between AVD High to OE Low */ if (t.oe_on <= t.adv_rd_off) t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(1); t.access = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div); t.oe_off = t.access + gpmc_round_ns_to_ticks(1); t.cs_rd_off = t.oe_off; ticks_cez = ((gpmc_ns_to_ticks(t_cez) + div - 1) / div) * div; t.rd_cycle = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div + ticks_cez); /* Write */ if (sync_write) { t.adv_wr_off = t.adv_rd_off; t.we_on = 0; t.we_off = t.cs_rd_off; t.cs_wr_off = t.cs_rd_off; t.wr_cycle = t.rd_cycle; if (cpu_is_omap34xx()) { t.wr_data_mux_bus = gpmc_ticks_to_ns(fclk_offset + gpmc_ps_to_ticks(min_gpmc_clk_period + t_rdyo * 1000)); t.wr_access = t.access; } } else { t.adv_wr_off = gpmc_round_ns_to_ticks(max_t(int, t_avdp, t_cer)); t.we_on = t.adv_wr_off + gpmc_round_ns_to_ticks(t_aavdh); t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl); t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph); t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez); if (cpu_is_omap34xx()) { t.wr_data_mux_bus = t.we_on; t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds); } } /* Configure GPMC for synchronous read */ gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, GPMC_CONFIG1_WRAPBURST_SUPP | GPMC_CONFIG1_READMULTIPLE_SUPP | (sync_read ? GPMC_CONFIG1_READTYPE_SYNC : 0) | (sync_write ? GPMC_CONFIG1_WRITEMULTIPLE_SUPP : 0) | (sync_write ? GPMC_CONFIG1_WRITETYPE_SYNC : 0) | GPMC_CONFIG1_CLKACTIVATIONTIME(fclk_offset) | GPMC_CONFIG1_PAGE_LEN(2) | (cpu_is_omap34xx() ? 0 : (GPMC_CONFIG1_WAIT_READ_MON | GPMC_CONFIG1_WAIT_PIN_SEL(0))) | GPMC_CONFIG1_DEVICESIZE_16 | GPMC_CONFIG1_DEVICETYPE_NOR | GPMC_CONFIG1_MUXADDDATA); err = gpmc_cs_set_timings(cs, &t); if (err) return err; set_onenand_cfg(onenand_base, latency, sync_read, sync_write, hf, vhf); *freq_ptr = freq; return 0; } static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr) { struct device *dev = &gpmc_onenand_device.dev; /* Set sync timings in GPMC */ if (omap2_onenand_set_sync_mode(gpmc_onenand_data, onenand_base, freq_ptr) < 0) { dev_err(dev, "Unable to set synchronous mode\n"); return -EINVAL; } return 0; } void __init gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data) { gpmc_onenand_data = _onenand_data; gpmc_onenand_data->onenand_setup = gpmc_onenand_setup; gpmc_onenand_device.dev.platform_data = gpmc_onenand_data; if (cpu_is_omap24xx() && (gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) { printk(KERN_ERR "Onenand using only SYNC_READ on 24xx\n"); gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE; gpmc_onenand_data->flags |= ONENAND_SYNC_READ; } if (platform_device_register(&gpmc_onenand_device) < 0) { printk(KERN_ERR "Unable to register OneNAND device\n"); return; } }