/* * Copyright 2008-2010 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright (C) 2009-2010 Amit Kucheria <amit.kucheria@canonical.com> * * The code contained herein is licensed under the GNU General Public * License. You may obtain a copy of the GNU General Public License * Version 2 or later at the following locations: * * http://www.opensource.org/licenses/gpl-license.html * http://www.gnu.org/copyleft/gpl.html */ #include <linux/mm.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/clkdev.h> #include <asm/div64.h> #include <mach/hardware.h> #include <mach/common.h> #include <mach/clock.h> #include "crm_regs.h" /* External clock values passed-in by the board code */ static unsigned long external_high_reference, external_low_reference; static unsigned long oscillator_reference, ckih2_reference; static struct clk osc_clk; static struct clk pll1_main_clk; static struct clk pll1_sw_clk; static struct clk pll2_sw_clk; static struct clk pll3_sw_clk; static struct clk mx53_pll4_sw_clk; static struct clk lp_apm_clk; static struct clk periph_apm_clk; static struct clk ahb_clk; static struct clk ipg_clk; static struct clk usboh3_clk; static struct clk emi_fast_clk; static struct clk ipu_clk; static struct clk mipi_hsc1_clk; static struct clk esdhc1_clk; static struct clk esdhc2_clk; static struct clk esdhc3_mx53_clk; #define MAX_DPLL_WAIT_TRIES 1000 /* 1000 * udelay(1) = 1ms */ /* calculate best pre and post dividers to get the required divider */ static void __calc_pre_post_dividers(u32 div, u32 *pre, u32 *post, u32 max_pre, u32 max_post) { if (div >= max_pre * max_post) { *pre = max_pre; *post = max_post; } else if (div >= max_pre) { u32 min_pre, temp_pre, old_err, err; min_pre = DIV_ROUND_UP(div, max_post); old_err = max_pre; for (temp_pre = max_pre; temp_pre >= min_pre; temp_pre--) { err = div % temp_pre; if (err == 0) { *pre = temp_pre; break; } err = temp_pre - err; if (err < old_err) { old_err = err; *pre = temp_pre; } } *post = DIV_ROUND_UP(div, *pre); } else { *pre = div; *post = 1; } } static void _clk_ccgr_setclk(struct clk *clk, unsigned mode) { u32 reg = __raw_readl(clk->enable_reg); reg &= ~(MXC_CCM_CCGRx_CG_MASK << clk->enable_shift); reg |= mode << clk->enable_shift; __raw_writel(reg, clk->enable_reg); } static int _clk_ccgr_enable(struct clk *clk) { _clk_ccgr_setclk(clk, MXC_CCM_CCGRx_MOD_ON); return 0; } static void _clk_ccgr_disable(struct clk *clk) { _clk_ccgr_setclk(clk, MXC_CCM_CCGRx_MOD_OFF); } static int _clk_ccgr_enable_inrun(struct clk *clk) { _clk_ccgr_setclk(clk, MXC_CCM_CCGRx_MOD_IDLE); return 0; } static void _clk_ccgr_disable_inwait(struct clk *clk) { _clk_ccgr_setclk(clk, MXC_CCM_CCGRx_MOD_IDLE); } /* * For the 4-to-1 muxed input clock */ static inline u32 _get_mux(struct clk *parent, struct clk *m0, struct clk *m1, struct clk *m2, struct clk *m3) { if (parent == m0) return 0; else if (parent == m1) return 1; else if (parent == m2) return 2; else if (parent == m3) return 3; else BUG(); return -EINVAL; } static inline void __iomem *_mx51_get_pll_base(struct clk *pll) { if (pll == &pll1_main_clk) return MX51_DPLL1_BASE; else if (pll == &pll2_sw_clk) return MX51_DPLL2_BASE; else if (pll == &pll3_sw_clk) return MX51_DPLL3_BASE; else BUG(); return NULL; } static inline void __iomem *_mx53_get_pll_base(struct clk *pll) { if (pll == &pll1_main_clk) return MX53_DPLL1_BASE; else if (pll == &pll2_sw_clk) return MX53_DPLL2_BASE; else if (pll == &pll3_sw_clk) return MX53_DPLL3_BASE; else if (pll == &mx53_pll4_sw_clk) return MX53_DPLL4_BASE; else BUG(); return NULL; } static inline void __iomem *_get_pll_base(struct clk *pll) { if (cpu_is_mx51()) return _mx51_get_pll_base(pll); else return _mx53_get_pll_base(pll); } static unsigned long clk_pll_get_rate(struct clk *clk) { long mfi, mfn, mfd, pdf, ref_clk, mfn_abs; unsigned long dp_op, dp_mfd, dp_mfn, dp_ctl, pll_hfsm, dbl; void __iomem *pllbase; s64 temp; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); pllbase = _get_pll_base(clk); dp_ctl = __raw_readl(pllbase + MXC_PLL_DP_CTL); pll_hfsm = dp_ctl & MXC_PLL_DP_CTL_HFSM; dbl = dp_ctl & MXC_PLL_DP_CTL_DPDCK0_2_EN; if (pll_hfsm == 0) { dp_op = __raw_readl(pllbase + MXC_PLL_DP_OP); dp_mfd = __raw_readl(pllbase + MXC_PLL_DP_MFD); dp_mfn = __raw_readl(pllbase + MXC_PLL_DP_MFN); } else { dp_op = __raw_readl(pllbase + MXC_PLL_DP_HFS_OP); dp_mfd = __raw_readl(pllbase + MXC_PLL_DP_HFS_MFD); dp_mfn = __raw_readl(pllbase + MXC_PLL_DP_HFS_MFN); } pdf = dp_op & MXC_PLL_DP_OP_PDF_MASK; mfi = (dp_op & MXC_PLL_DP_OP_MFI_MASK) >> MXC_PLL_DP_OP_MFI_OFFSET; mfi = (mfi <= 5) ? 5 : mfi; mfd = dp_mfd & MXC_PLL_DP_MFD_MASK; mfn = mfn_abs = dp_mfn & MXC_PLL_DP_MFN_MASK; /* Sign extend to 32-bits */ if (mfn >= 0x04000000) { mfn |= 0xFC000000; mfn_abs = -mfn; } ref_clk = 2 * parent_rate; if (dbl != 0) ref_clk *= 2; ref_clk /= (pdf + 1); temp = (u64) ref_clk * mfn_abs; do_div(temp, mfd + 1); if (mfn < 0) temp = -temp; temp = (ref_clk * mfi) + temp; return temp; } static int _clk_pll_set_rate(struct clk *clk, unsigned long rate) { u32 reg; void __iomem *pllbase; long mfi, pdf, mfn, mfd = 999999; s64 temp64; unsigned long quad_parent_rate; unsigned long pll_hfsm, dp_ctl; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); pllbase = _get_pll_base(clk); quad_parent_rate = 4 * parent_rate; pdf = mfi = -1; while (++pdf < 16 && mfi < 5) mfi = rate * (pdf+1) / quad_parent_rate; if (mfi > 15) return -EINVAL; pdf--; temp64 = rate * (pdf+1) - quad_parent_rate * mfi; do_div(temp64, quad_parent_rate/1000000); mfn = (long)temp64; dp_ctl = __raw_readl(pllbase + MXC_PLL_DP_CTL); /* use dpdck0_2 */ __raw_writel(dp_ctl | 0x1000L, pllbase + MXC_PLL_DP_CTL); pll_hfsm = dp_ctl & MXC_PLL_DP_CTL_HFSM; if (pll_hfsm == 0) { reg = mfi << 4 | pdf; __raw_writel(reg, pllbase + MXC_PLL_DP_OP); __raw_writel(mfd, pllbase + MXC_PLL_DP_MFD); __raw_writel(mfn, pllbase + MXC_PLL_DP_MFN); } else { reg = mfi << 4 | pdf; __raw_writel(reg, pllbase + MXC_PLL_DP_HFS_OP); __raw_writel(mfd, pllbase + MXC_PLL_DP_HFS_MFD); __raw_writel(mfn, pllbase + MXC_PLL_DP_HFS_MFN); } return 0; } static int _clk_pll_enable(struct clk *clk) { u32 reg; void __iomem *pllbase; int i = 0; pllbase = _get_pll_base(clk); reg = __raw_readl(pllbase + MXC_PLL_DP_CTL) | MXC_PLL_DP_CTL_UPEN; __raw_writel(reg, pllbase + MXC_PLL_DP_CTL); /* Wait for lock */ do { reg = __raw_readl(pllbase + MXC_PLL_DP_CTL); if (reg & MXC_PLL_DP_CTL_LRF) break; udelay(1); } while (++i < MAX_DPLL_WAIT_TRIES); if (i == MAX_DPLL_WAIT_TRIES) { pr_err("MX5: pll locking failed\n"); return -EINVAL; } return 0; } static void _clk_pll_disable(struct clk *clk) { u32 reg; void __iomem *pllbase; pllbase = _get_pll_base(clk); reg = __raw_readl(pllbase + MXC_PLL_DP_CTL) & ~MXC_PLL_DP_CTL_UPEN; __raw_writel(reg, pllbase + MXC_PLL_DP_CTL); } static int _clk_pll1_sw_set_parent(struct clk *clk, struct clk *parent) { u32 reg, step; reg = __raw_readl(MXC_CCM_CCSR); /* When switching from pll_main_clk to a bypass clock, first select a * multiplexed clock in 'step_sel', then shift the glitchless mux * 'pll1_sw_clk_sel'. * * When switching back, do it in reverse order */ if (parent == &pll1_main_clk) { /* Switch to pll1_main_clk */ reg &= ~MXC_CCM_CCSR_PLL1_SW_CLK_SEL; __raw_writel(reg, MXC_CCM_CCSR); /* step_clk mux switched to lp_apm, to save power. */ reg = __raw_readl(MXC_CCM_CCSR); reg &= ~MXC_CCM_CCSR_STEP_SEL_MASK; reg |= (MXC_CCM_CCSR_STEP_SEL_LP_APM << MXC_CCM_CCSR_STEP_SEL_OFFSET); } else { if (parent == &lp_apm_clk) { step = MXC_CCM_CCSR_STEP_SEL_LP_APM; } else if (parent == &pll2_sw_clk) { step = MXC_CCM_CCSR_STEP_SEL_PLL2_DIVIDED; } else if (parent == &pll3_sw_clk) { step = MXC_CCM_CCSR_STEP_SEL_PLL3_DIVIDED; } else return -EINVAL; reg &= ~MXC_CCM_CCSR_STEP_SEL_MASK; reg |= (step << MXC_CCM_CCSR_STEP_SEL_OFFSET); __raw_writel(reg, MXC_CCM_CCSR); /* Switch to step_clk */ reg = __raw_readl(MXC_CCM_CCSR); reg |= MXC_CCM_CCSR_PLL1_SW_CLK_SEL; } __raw_writel(reg, MXC_CCM_CCSR); return 0; } static unsigned long clk_pll1_sw_get_rate(struct clk *clk) { u32 reg, div; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); reg = __raw_readl(MXC_CCM_CCSR); if (clk->parent == &pll2_sw_clk) { div = ((reg & MXC_CCM_CCSR_PLL2_PODF_MASK) >> MXC_CCM_CCSR_PLL2_PODF_OFFSET) + 1; } else if (clk->parent == &pll3_sw_clk) { div = ((reg & MXC_CCM_CCSR_PLL3_PODF_MASK) >> MXC_CCM_CCSR_PLL3_PODF_OFFSET) + 1; } else div = 1; return parent_rate / div; } static int _clk_pll2_sw_set_parent(struct clk *clk, struct clk *parent) { u32 reg; reg = __raw_readl(MXC_CCM_CCSR); if (parent == &pll2_sw_clk) reg &= ~MXC_CCM_CCSR_PLL2_SW_CLK_SEL; else reg |= MXC_CCM_CCSR_PLL2_SW_CLK_SEL; __raw_writel(reg, MXC_CCM_CCSR); return 0; } static int _clk_lp_apm_set_parent(struct clk *clk, struct clk *parent) { u32 reg; if (parent == &osc_clk) reg = __raw_readl(MXC_CCM_CCSR) & ~MXC_CCM_CCSR_LP_APM_SEL; else return -EINVAL; __raw_writel(reg, MXC_CCM_CCSR); return 0; } static unsigned long clk_cpu_get_rate(struct clk *clk) { u32 cacrr, div; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); cacrr = __raw_readl(MXC_CCM_CACRR); div = (cacrr & MXC_CCM_CACRR_ARM_PODF_MASK) + 1; return parent_rate / div; } static int clk_cpu_set_rate(struct clk *clk, unsigned long rate) { u32 reg, cpu_podf; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); cpu_podf = parent_rate / rate - 1; /* use post divider to change freq */ reg = __raw_readl(MXC_CCM_CACRR); reg &= ~MXC_CCM_CACRR_ARM_PODF_MASK; reg |= cpu_podf << MXC_CCM_CACRR_ARM_PODF_OFFSET; __raw_writel(reg, MXC_CCM_CACRR); return 0; } static int _clk_periph_apm_set_parent(struct clk *clk, struct clk *parent) { u32 reg, mux; int i = 0; mux = _get_mux(parent, &pll1_sw_clk, &pll3_sw_clk, &lp_apm_clk, NULL); reg = __raw_readl(MXC_CCM_CBCMR) & ~MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK; reg |= mux << MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET; __raw_writel(reg, MXC_CCM_CBCMR); /* Wait for lock */ do { reg = __raw_readl(MXC_CCM_CDHIPR); if (!(reg & MXC_CCM_CDHIPR_PERIPH_CLK_SEL_BUSY)) break; udelay(1); } while (++i < MAX_DPLL_WAIT_TRIES); if (i == MAX_DPLL_WAIT_TRIES) { pr_err("MX5: Set parent for periph_apm clock failed\n"); return -EINVAL; } return 0; } static int _clk_main_bus_set_parent(struct clk *clk, struct clk *parent) { u32 reg; reg = __raw_readl(MXC_CCM_CBCDR); if (parent == &pll2_sw_clk) reg &= ~MXC_CCM_CBCDR_PERIPH_CLK_SEL; else if (parent == &periph_apm_clk) reg |= MXC_CCM_CBCDR_PERIPH_CLK_SEL; else return -EINVAL; __raw_writel(reg, MXC_CCM_CBCDR); return 0; } static struct clk main_bus_clk = { .parent = &pll2_sw_clk, .set_parent = _clk_main_bus_set_parent, }; static unsigned long clk_ahb_get_rate(struct clk *clk) { u32 reg, div; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); reg = __raw_readl(MXC_CCM_CBCDR); div = ((reg & MXC_CCM_CBCDR_AHB_PODF_MASK) >> MXC_CCM_CBCDR_AHB_PODF_OFFSET) + 1; return parent_rate / div; } static int _clk_ahb_set_rate(struct clk *clk, unsigned long rate) { u32 reg, div; unsigned long parent_rate; int i = 0; parent_rate = clk_get_rate(clk->parent); div = parent_rate / rate; if (div > 8 || div < 1 || ((parent_rate / div) != rate)) return -EINVAL; reg = __raw_readl(MXC_CCM_CBCDR); reg &= ~MXC_CCM_CBCDR_AHB_PODF_MASK; reg |= (div - 1) << MXC_CCM_CBCDR_AHB_PODF_OFFSET; __raw_writel(reg, MXC_CCM_CBCDR); /* Wait for lock */ do { reg = __raw_readl(MXC_CCM_CDHIPR); if (!(reg & MXC_CCM_CDHIPR_AHB_PODF_BUSY)) break; udelay(1); } while (++i < MAX_DPLL_WAIT_TRIES); if (i == MAX_DPLL_WAIT_TRIES) { pr_err("MX5: clk_ahb_set_rate failed\n"); return -EINVAL; } return 0; } static unsigned long _clk_ahb_round_rate(struct clk *clk, unsigned long rate) { u32 div; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); div = parent_rate / rate; if (div > 8) div = 8; else if (div == 0) div++; return parent_rate / div; } static int _clk_max_enable(struct clk *clk) { u32 reg; _clk_ccgr_enable(clk); /* Handshake with MAX when LPM is entered. */ reg = __raw_readl(MXC_CCM_CLPCR); if (cpu_is_mx51()) reg &= ~MX51_CCM_CLPCR_BYPASS_MAX_LPM_HS; else if (cpu_is_mx53()) reg &= ~MX53_CCM_CLPCR_BYPASS_MAX_LPM_HS; __raw_writel(reg, MXC_CCM_CLPCR); return 0; } static void _clk_max_disable(struct clk *clk) { u32 reg; _clk_ccgr_disable_inwait(clk); /* No Handshake with MAX when LPM is entered as its disabled. */ reg = __raw_readl(MXC_CCM_CLPCR); if (cpu_is_mx51()) reg |= MX51_CCM_CLPCR_BYPASS_MAX_LPM_HS; else if (cpu_is_mx53()) reg &= ~MX53_CCM_CLPCR_BYPASS_MAX_LPM_HS; __raw_writel(reg, MXC_CCM_CLPCR); } static unsigned long clk_ipg_get_rate(struct clk *clk) { u32 reg, div; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); reg = __raw_readl(MXC_CCM_CBCDR); div = ((reg & MXC_CCM_CBCDR_IPG_PODF_MASK) >> MXC_CCM_CBCDR_IPG_PODF_OFFSET) + 1; return parent_rate / div; } static unsigned long clk_ipg_per_get_rate(struct clk *clk) { u32 reg, prediv1, prediv2, podf; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); if (clk->parent == &main_bus_clk || clk->parent == &lp_apm_clk) { /* the main_bus_clk is the one before the DVFS engine */ reg = __raw_readl(MXC_CCM_CBCDR); prediv1 = ((reg & MXC_CCM_CBCDR_PERCLK_PRED1_MASK) >> MXC_CCM_CBCDR_PERCLK_PRED1_OFFSET) + 1; prediv2 = ((reg & MXC_CCM_CBCDR_PERCLK_PRED2_MASK) >> MXC_CCM_CBCDR_PERCLK_PRED2_OFFSET) + 1; podf = ((reg & MXC_CCM_CBCDR_PERCLK_PODF_MASK) >> MXC_CCM_CBCDR_PERCLK_PODF_OFFSET) + 1; return parent_rate / (prediv1 * prediv2 * podf); } else if (clk->parent == &ipg_clk) return parent_rate; else BUG(); } static int _clk_ipg_per_set_parent(struct clk *clk, struct clk *parent) { u32 reg; reg = __raw_readl(MXC_CCM_CBCMR); reg &= ~MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL; reg &= ~MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL; if (parent == &ipg_clk) reg |= MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL; else if (parent == &lp_apm_clk) reg |= MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL; else if (parent != &main_bus_clk) return -EINVAL; __raw_writel(reg, MXC_CCM_CBCMR); return 0; } #define clk_nfc_set_parent NULL static unsigned long clk_nfc_get_rate(struct clk *clk) { unsigned long rate; u32 reg, div; reg = __raw_readl(MXC_CCM_CBCDR); div = ((reg & MXC_CCM_CBCDR_NFC_PODF_MASK) >> MXC_CCM_CBCDR_NFC_PODF_OFFSET) + 1; rate = clk_get_rate(clk->parent) / div; WARN_ON(rate == 0); return rate; } static unsigned long clk_nfc_round_rate(struct clk *clk, unsigned long rate) { u32 div; unsigned long parent_rate = clk_get_rate(clk->parent); if (!rate) return -EINVAL; div = parent_rate / rate; if (parent_rate % rate) div++; if (div > 8) return -EINVAL; return parent_rate / div; } static int clk_nfc_set_rate(struct clk *clk, unsigned long rate) { u32 reg, div; div = clk_get_rate(clk->parent) / rate; if (div == 0) div++; if (((clk_get_rate(clk->parent) / div) != rate) || (div > 8)) return -EINVAL; reg = __raw_readl(MXC_CCM_CBCDR); reg &= ~MXC_CCM_CBCDR_NFC_PODF_MASK; reg |= (div - 1) << MXC_CCM_CBCDR_NFC_PODF_OFFSET; __raw_writel(reg, MXC_CCM_CBCDR); while (__raw_readl(MXC_CCM_CDHIPR) & MXC_CCM_CDHIPR_NFC_IPG_INT_MEM_PODF_BUSY){ } return 0; } static unsigned long get_high_reference_clock_rate(struct clk *clk) { return external_high_reference; } static unsigned long get_low_reference_clock_rate(struct clk *clk) { return external_low_reference; } static unsigned long get_oscillator_reference_clock_rate(struct clk *clk) { return oscillator_reference; } static unsigned long get_ckih2_reference_clock_rate(struct clk *clk) { return ckih2_reference; } static unsigned long clk_emi_slow_get_rate(struct clk *clk) { u32 reg, div; reg = __raw_readl(MXC_CCM_CBCDR); div = ((reg & MXC_CCM_CBCDR_EMI_PODF_MASK) >> MXC_CCM_CBCDR_EMI_PODF_OFFSET) + 1; return clk_get_rate(clk->parent) / div; } static unsigned long _clk_ddr_hf_get_rate(struct clk *clk) { unsigned long rate; u32 reg, div; reg = __raw_readl(MXC_CCM_CBCDR); div = ((reg & MXC_CCM_CBCDR_DDR_PODF_MASK) >> MXC_CCM_CBCDR_DDR_PODF_OFFSET) + 1; rate = clk_get_rate(clk->parent) / div; return rate; } /* External high frequency clock */ static struct clk ckih_clk = { .get_rate = get_high_reference_clock_rate, }; static struct clk ckih2_clk = { .get_rate = get_ckih2_reference_clock_rate, }; static struct clk osc_clk = { .get_rate = get_oscillator_reference_clock_rate, }; /* External low frequency (32kHz) clock */ static struct clk ckil_clk = { .get_rate = get_low_reference_clock_rate, }; static struct clk pll1_main_clk = { .parent = &osc_clk, .get_rate = clk_pll_get_rate, .enable = _clk_pll_enable, .disable = _clk_pll_disable, }; /* Clock tree block diagram (WIP): * CCM: Clock Controller Module * * PLL output -> | * | CCM Switcher -> CCM_CLK_ROOT_GEN -> * PLL bypass -> | * */ /* PLL1 SW supplies to ARM core */ static struct clk pll1_sw_clk = { .parent = &pll1_main_clk, .set_parent = _clk_pll1_sw_set_parent, .get_rate = clk_pll1_sw_get_rate, }; /* PLL2 SW supplies to AXI/AHB/IP buses */ static struct clk pll2_sw_clk = { .parent = &osc_clk, .get_rate = clk_pll_get_rate, .set_rate = _clk_pll_set_rate, .set_parent = _clk_pll2_sw_set_parent, .enable = _clk_pll_enable, .disable = _clk_pll_disable, }; /* PLL3 SW supplies to serial clocks like USB, SSI, etc. */ static struct clk pll3_sw_clk = { .parent = &osc_clk, .set_rate = _clk_pll_set_rate, .get_rate = clk_pll_get_rate, .enable = _clk_pll_enable, .disable = _clk_pll_disable, }; /* PLL4 SW supplies to LVDS Display Bridge(LDB) */ static struct clk mx53_pll4_sw_clk = { .parent = &osc_clk, .set_rate = _clk_pll_set_rate, .enable = _clk_pll_enable, .disable = _clk_pll_disable, }; /* Low-power Audio Playback Mode clock */ static struct clk lp_apm_clk = { .parent = &osc_clk, .set_parent = _clk_lp_apm_set_parent, }; static struct clk periph_apm_clk = { .parent = &pll1_sw_clk, .set_parent = _clk_periph_apm_set_parent, }; static struct clk cpu_clk = { .parent = &pll1_sw_clk, .get_rate = clk_cpu_get_rate, .set_rate = clk_cpu_set_rate, }; static struct clk ahb_clk = { .parent = &main_bus_clk, .get_rate = clk_ahb_get_rate, .set_rate = _clk_ahb_set_rate, .round_rate = _clk_ahb_round_rate, }; static struct clk iim_clk = { .parent = &ipg_clk, .enable_reg = MXC_CCM_CCGR0, .enable_shift = MXC_CCM_CCGRx_CG15_OFFSET, }; /* Main IP interface clock for access to registers */ static struct clk ipg_clk = { .parent = &ahb_clk, .get_rate = clk_ipg_get_rate, }; static struct clk ipg_perclk = { .parent = &lp_apm_clk, .get_rate = clk_ipg_per_get_rate, .set_parent = _clk_ipg_per_set_parent, }; static struct clk ahb_max_clk = { .parent = &ahb_clk, .enable_reg = MXC_CCM_CCGR0, .enable_shift = MXC_CCM_CCGRx_CG14_OFFSET, .enable = _clk_max_enable, .disable = _clk_max_disable, }; static struct clk aips_tz1_clk = { .parent = &ahb_clk, .secondary = &ahb_max_clk, .enable_reg = MXC_CCM_CCGR0, .enable_shift = MXC_CCM_CCGRx_CG12_OFFSET, .enable = _clk_ccgr_enable, .disable = _clk_ccgr_disable_inwait, }; static struct clk aips_tz2_clk = { .parent = &ahb_clk, .secondary = &ahb_max_clk, .enable_reg = MXC_CCM_CCGR0, .enable_shift = MXC_CCM_CCGRx_CG13_OFFSET, .enable = _clk_ccgr_enable, .disable = _clk_ccgr_disable_inwait, }; static struct clk gpc_dvfs_clk = { .enable_reg = MXC_CCM_CCGR5, .enable_shift = MXC_CCM_CCGRx_CG12_OFFSET, .enable = _clk_ccgr_enable, .disable = _clk_ccgr_disable, }; static struct clk gpt_32k_clk = { .id = 0, .parent = &ckil_clk, }; static struct clk dummy_clk = { .id = 0, }; static struct clk emi_slow_clk = { .parent = &pll2_sw_clk, .enable_reg = MXC_CCM_CCGR5, .enable_shift = MXC_CCM_CCGRx_CG8_OFFSET, .enable = _clk_ccgr_enable, .disable = _clk_ccgr_disable_inwait, .get_rate = clk_emi_slow_get_rate, }; static int clk_ipu_enable(struct clk *clk) { u32 reg; _clk_ccgr_enable(clk); /* Enable handshake with IPU when certain clock rates are changed */ reg = __raw_readl(MXC_CCM_CCDR); reg &= ~MXC_CCM_CCDR_IPU_HS_MASK; __raw_writel(reg, MXC_CCM_CCDR); /* Enable handshake with IPU when LPM is entered */ reg = __raw_readl(MXC_CCM_CLPCR); reg &= ~MXC_CCM_CLPCR_BYPASS_IPU_LPM_HS; __raw_writel(reg, MXC_CCM_CLPCR); return 0; } static void clk_ipu_disable(struct clk *clk) { u32 reg; _clk_ccgr_disable(clk); /* Disable handshake with IPU whe dividers are changed */ reg = __raw_readl(MXC_CCM_CCDR); reg |= MXC_CCM_CCDR_IPU_HS_MASK; __raw_writel(reg, MXC_CCM_CCDR); /* Disable handshake with IPU when LPM is entered */ reg = __raw_readl(MXC_CCM_CLPCR); reg |= MXC_CCM_CLPCR_BYPASS_IPU_LPM_HS; __raw_writel(reg, MXC_CCM_CLPCR); } static struct clk ahbmux1_clk = { .parent = &ahb_clk, .secondary = &ahb_max_clk, .enable_reg = MXC_CCM_CCGR0, .enable_shift = MXC_CCM_CCGRx_CG8_OFFSET, .enable = _clk_ccgr_enable, .disable = _clk_ccgr_disable_inwait, }; static struct clk ipu_sec_clk = { .parent = &emi_fast_clk, .secondary = &ahbmux1_clk, }; static struct clk ddr_hf_clk = { .parent = &pll1_sw_clk, .get_rate = _clk_ddr_hf_get_rate, }; static struct clk ddr_clk = { .parent = &ddr_hf_clk, }; /* clock definitions for MIPI HSC unit which has been removed * from documentation, but not from hardware */ static int _clk_hsc_enable(struct clk *clk) { u32 reg; _clk_ccgr_enable(clk); /* Handshake with IPU when certain clock rates are changed. */ reg = __raw_readl(MXC_CCM_CCDR); reg &= ~MXC_CCM_CCDR_HSC_HS_MASK; __raw_writel(reg, MXC_CCM_CCDR); reg = __raw_readl(MXC_CCM_CLPCR); reg &= ~MXC_CCM_CLPCR_BYPASS_HSC_LPM_HS; __raw_writel(reg, MXC_CCM_CLPCR); return 0; } static void _clk_hsc_disable(struct clk *clk) { u32 reg; _clk_ccgr_disable(clk); /* No handshake with HSC as its not enabled. */ reg = __raw_readl(MXC_CCM_CCDR); reg |= MXC_CCM_CCDR_HSC_HS_MASK; __raw_writel(reg, MXC_CCM_CCDR); reg = __raw_readl(MXC_CCM_CLPCR); reg |= MXC_CCM_CLPCR_BYPASS_HSC_LPM_HS; __raw_writel(reg, MXC_CCM_CLPCR); } static struct clk mipi_hsp_clk = { .parent = &ipu_clk, .enable_reg = MXC_CCM_CCGR4, .enable_shift = MXC_CCM_CCGRx_CG6_OFFSET, .enable = _clk_hsc_enable, .disable = _clk_hsc_disable, .secondary = &mipi_hsc1_clk, }; #define DEFINE_CLOCK_CCGR(name, i, er, es, pfx, p, s) \ static struct clk name = { \ .id = i, \ .enable_reg = er, \ .enable_shift = es, \ .get_rate = pfx##_get_rate, \ .set_rate = pfx##_set_rate, \ .round_rate = pfx##_round_rate, \ .set_parent = pfx##_set_parent, \ .enable = _clk_ccgr_enable, \ .disable = _clk_ccgr_disable, \ .parent = p, \ .secondary = s, \ } #define DEFINE_CLOCK_MAX(name, i, er, es, pfx, p, s) \ static struct clk name = { \ .id = i, \ .enable_reg = er, \ .enable_shift = es, \ .get_rate = pfx##_get_rate, \ .set_rate = pfx##_set_rate, \ .set_parent = pfx##_set_parent, \ .enable = _clk_max_enable, \ .disable = _clk_max_disable, \ .parent = p, \ .secondary = s, \ } #define CLK_GET_RATE(name, nr, bitsname) \ static unsigned long clk_##name##_get_rate(struct clk *clk) \ { \ u32 reg, pred, podf; \ \ reg = __raw_readl(MXC_CCM_CSCDR##nr); \ pred = (reg & MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_MASK) \ >> MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_OFFSET; \ podf = (reg & MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_MASK) \ >> MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_OFFSET; \ \ return DIV_ROUND_CLOSEST(clk_get_rate(clk->parent), \ (pred + 1) * (podf + 1)); \ } #define CLK_SET_PARENT(name, nr, bitsname) \ static int clk_##name##_set_parent(struct clk *clk, struct clk *parent) \ { \ u32 reg, mux; \ \ mux = _get_mux(parent, &pll1_sw_clk, &pll2_sw_clk, \ &pll3_sw_clk, &lp_apm_clk); \ reg = __raw_readl(MXC_CCM_CSCMR##nr) & \ ~MXC_CCM_CSCMR##nr##_##bitsname##_CLK_SEL_MASK; \ reg |= mux << MXC_CCM_CSCMR##nr##_##bitsname##_CLK_SEL_OFFSET; \ __raw_writel(reg, MXC_CCM_CSCMR##nr); \ \ return 0; \ } #define CLK_SET_RATE(name, nr, bitsname) \ static int clk_##name##_set_rate(struct clk *clk, unsigned long rate) \ { \ u32 reg, div, parent_rate; \ u32 pre = 0, post = 0; \ \ parent_rate = clk_get_rate(clk->parent); \ div = parent_rate / rate; \ \ if ((parent_rate / div) != rate) \ return -EINVAL; \ \ __calc_pre_post_dividers(div, &pre, &post, \ (MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_MASK >> \ MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_OFFSET) + 1, \ (MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_MASK >> \ MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_OFFSET) + 1);\ \ /* Set sdhc1 clock divider */ \ reg = __raw_readl(MXC_CCM_CSCDR##nr) & \ ~(MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_MASK \ | MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_MASK); \ reg |= (post - 1) << \ MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_OFFSET; \ reg |= (pre - 1) << \ MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_OFFSET; \ __raw_writel(reg, MXC_CCM_CSCDR##nr); \ \ return 0; \ } /* UART */ CLK_GET_RATE(uart, 1, UART) CLK_SET_PARENT(uart, 1, UART) static struct clk uart_root_clk = { .parent = &pll2_sw_clk, .get_rate = clk_uart_get_rate, .set_parent = clk_uart_set_parent, }; /* USBOH3 */ CLK_GET_RATE(usboh3, 1, USBOH3) CLK_SET_PARENT(usboh3, 1, USBOH3) static struct clk usboh3_clk = { .parent = &pll2_sw_clk, .get_rate = clk_usboh3_get_rate, .set_parent = clk_usboh3_set_parent, .enable = _clk_ccgr_enable, .disable = _clk_ccgr_disable, .enable_reg = MXC_CCM_CCGR2, .enable_shift = MXC_CCM_CCGRx_CG14_OFFSET, }; static struct clk usb_ahb_clk = { .parent = &ipg_clk, .enable = _clk_ccgr_enable, .disable = _clk_ccgr_disable, .enable_reg = MXC_CCM_CCGR2, .enable_shift = MXC_CCM_CCGRx_CG13_OFFSET, }; static int clk_usb_phy1_set_parent(struct clk *clk, struct clk *parent) { u32 reg; reg = __raw_readl(MXC_CCM_CSCMR1) & ~MXC_CCM_CSCMR1_USB_PHY_CLK_SEL; if (parent == &pll3_sw_clk) reg |= 1 << MXC_CCM_CSCMR1_USB_PHY_CLK_SEL_OFFSET; __raw_writel(reg, MXC_CCM_CSCMR1); return 0; } static struct clk usb_phy1_clk = { .parent = &pll3_sw_clk, .set_parent = clk_usb_phy1_set_parent, .enable = _clk_ccgr_enable, .enable_reg = MXC_CCM_CCGR2, .enable_shift = MXC_CCM_CCGRx_CG0_OFFSET, .disable = _clk_ccgr_disable, }; /* eCSPI */ CLK_GET_RATE(ecspi, 2, CSPI) CLK_SET_PARENT(ecspi, 1, CSPI) static struct clk ecspi_main_clk = { .parent = &pll3_sw_clk, .get_rate = clk_ecspi_get_rate, .set_parent = clk_ecspi_set_parent, }; /* eSDHC */ CLK_GET_RATE(esdhc1, 1, ESDHC1_MSHC1) CLK_SET_PARENT(esdhc1, 1, ESDHC1_MSHC1) CLK_SET_RATE(esdhc1, 1, ESDHC1_MSHC1) /* mx51 specific */ CLK_GET_RATE(esdhc2, 1, ESDHC2_MSHC2) CLK_SET_PARENT(esdhc2, 1, ESDHC2_MSHC2) CLK_SET_RATE(esdhc2, 1, ESDHC2_MSHC2) static int clk_esdhc3_set_parent(struct clk *clk, struct clk *parent) { u32 reg; reg = __raw_readl(MXC_CCM_CSCMR1); if (parent == &esdhc1_clk) reg &= ~MXC_CCM_CSCMR1_ESDHC3_CLK_SEL; else if (parent == &esdhc2_clk) reg |= MXC_CCM_CSCMR1_ESDHC3_CLK_SEL; else return -EINVAL; __raw_writel(reg, MXC_CCM_CSCMR1); return 0; } static int clk_esdhc4_set_parent(struct clk *clk, struct clk *parent) { u32 reg; reg = __raw_readl(MXC_CCM_CSCMR1); if (parent == &esdhc1_clk) reg &= ~MXC_CCM_CSCMR1_ESDHC4_CLK_SEL; else if (parent == &esdhc2_clk) reg |= MXC_CCM_CSCMR1_ESDHC4_CLK_SEL; else return -EINVAL; __raw_writel(reg, MXC_CCM_CSCMR1); return 0; } /* mx53 specific */ static int clk_esdhc2_mx53_set_parent(struct clk *clk, struct clk *parent) { u32 reg; reg = __raw_readl(MXC_CCM_CSCMR1); if (parent == &esdhc1_clk) reg &= ~MXC_CCM_CSCMR1_ESDHC2_MSHC2_MX53_CLK_SEL; else if (parent == &esdhc3_mx53_clk) reg |= MXC_CCM_CSCMR1_ESDHC2_MSHC2_MX53_CLK_SEL; else return -EINVAL; __raw_writel(reg, MXC_CCM_CSCMR1); return 0; } CLK_GET_RATE(esdhc3_mx53, 1, ESDHC3_MX53) CLK_SET_PARENT(esdhc3_mx53, 1, ESDHC3_MX53) CLK_SET_RATE(esdhc3_mx53, 1, ESDHC3_MX53) static int clk_esdhc4_mx53_set_parent(struct clk *clk, struct clk *parent) { u32 reg; reg = __raw_readl(MXC_CCM_CSCMR1); if (parent == &esdhc1_clk) reg &= ~MXC_CCM_CSCMR1_ESDHC4_CLK_SEL; else if (parent == &esdhc3_mx53_clk) reg |= MXC_CCM_CSCMR1_ESDHC4_CLK_SEL; else return -EINVAL; __raw_writel(reg, MXC_CCM_CSCMR1); return 0; } #define DEFINE_CLOCK_FULL(name, i, er, es, gr, sr, e, d, p, s) \ static struct clk name = { \ .id = i, \ .enable_reg = er, \ .enable_shift = es, \ .get_rate = gr, \ .set_rate = sr, \ .enable = e, \ .disable = d, \ .parent = p, \ .secondary = s, \ } #define DEFINE_CLOCK(name, i, er, es, gr, sr, p, s) \ DEFINE_CLOCK_FULL(name, i, er, es, gr, sr, _clk_ccgr_enable, _clk_ccgr_disable, p, s) /* Shared peripheral bus arbiter */ DEFINE_CLOCK(spba_clk, 0, MXC_CCM_CCGR5, MXC_CCM_CCGRx_CG0_OFFSET, NULL, NULL, &ipg_clk, NULL); /* UART */ DEFINE_CLOCK(uart1_ipg_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG3_OFFSET, NULL, NULL, &ipg_clk, &aips_tz1_clk); DEFINE_CLOCK(uart2_ipg_clk, 1, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG5_OFFSET, NULL, NULL, &ipg_clk, &aips_tz1_clk); DEFINE_CLOCK(uart3_ipg_clk, 2, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG7_OFFSET, NULL, NULL, &ipg_clk, &spba_clk); DEFINE_CLOCK(uart1_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG4_OFFSET, NULL, NULL, &uart_root_clk, &uart1_ipg_clk); DEFINE_CLOCK(uart2_clk, 1, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG6_OFFSET, NULL, NULL, &uart_root_clk, &uart2_ipg_clk); DEFINE_CLOCK(uart3_clk, 2, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG8_OFFSET, NULL, NULL, &uart_root_clk, &uart3_ipg_clk); /* GPT */ DEFINE_CLOCK(gpt_ipg_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG10_OFFSET, NULL, NULL, &ipg_clk, NULL); DEFINE_CLOCK(gpt_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG9_OFFSET, NULL, NULL, &ipg_clk, &gpt_ipg_clk); DEFINE_CLOCK(pwm1_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG6_OFFSET, NULL, NULL, &ipg_clk, NULL); DEFINE_CLOCK(pwm2_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG8_OFFSET, NULL, NULL, &ipg_clk, NULL); /* I2C */ DEFINE_CLOCK(i2c1_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG9_OFFSET, NULL, NULL, &ipg_clk, NULL); DEFINE_CLOCK(i2c2_clk, 1, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG10_OFFSET, NULL, NULL, &ipg_clk, NULL); DEFINE_CLOCK(hsi2c_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG11_OFFSET, NULL, NULL, &ipg_clk, NULL); /* FEC */ DEFINE_CLOCK(fec_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG12_OFFSET, NULL, NULL, &ipg_clk, NULL); /* NFC */ DEFINE_CLOCK_CCGR(nfc_clk, 0, MXC_CCM_CCGR5, MXC_CCM_CCGRx_CG10_OFFSET, clk_nfc, &emi_slow_clk, NULL); /* SSI */ DEFINE_CLOCK(ssi1_ipg_clk, 0, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG8_OFFSET, NULL, NULL, &ipg_clk, NULL); DEFINE_CLOCK(ssi1_clk, 0, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG9_OFFSET, NULL, NULL, &pll3_sw_clk, &ssi1_ipg_clk); DEFINE_CLOCK(ssi2_ipg_clk, 1, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG10_OFFSET, NULL, NULL, &ipg_clk, NULL); DEFINE_CLOCK(ssi2_clk, 1, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG11_OFFSET, NULL, NULL, &pll3_sw_clk, &ssi2_ipg_clk); DEFINE_CLOCK(ssi3_ipg_clk, 2, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG12_OFFSET, NULL, NULL, &ipg_clk, NULL); DEFINE_CLOCK(ssi3_clk, 2, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG13_OFFSET, NULL, NULL, &pll3_sw_clk, &ssi3_ipg_clk); /* eCSPI */ DEFINE_CLOCK_FULL(ecspi1_ipg_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG9_OFFSET, NULL, NULL, _clk_ccgr_enable_inrun, _clk_ccgr_disable, &ipg_clk, &spba_clk); DEFINE_CLOCK(ecspi1_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG10_OFFSET, NULL, NULL, &ecspi_main_clk, &ecspi1_ipg_clk); DEFINE_CLOCK_FULL(ecspi2_ipg_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG11_OFFSET, NULL, NULL, _clk_ccgr_enable_inrun, _clk_ccgr_disable, &ipg_clk, &aips_tz2_clk); DEFINE_CLOCK(ecspi2_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG12_OFFSET, NULL, NULL, &ecspi_main_clk, &ecspi2_ipg_clk); /* CSPI */ DEFINE_CLOCK(cspi_ipg_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG9_OFFSET, NULL, NULL, &ipg_clk, &aips_tz2_clk); DEFINE_CLOCK(cspi_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG13_OFFSET, NULL, NULL, &ipg_clk, &cspi_ipg_clk); /* SDMA */ DEFINE_CLOCK(sdma_clk, 1, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG15_OFFSET, NULL, NULL, &ahb_clk, NULL); /* eSDHC */ DEFINE_CLOCK_FULL(esdhc1_ipg_clk, 0, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG0_OFFSET, NULL, NULL, _clk_max_enable, _clk_max_disable, &ipg_clk, NULL); DEFINE_CLOCK_MAX(esdhc1_clk, 0, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG1_OFFSET, clk_esdhc1, &pll2_sw_clk, &esdhc1_ipg_clk); DEFINE_CLOCK_FULL(esdhc2_ipg_clk, 1, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG2_OFFSET, NULL, NULL, _clk_max_enable, _clk_max_disable, &ipg_clk, NULL); DEFINE_CLOCK_FULL(esdhc3_ipg_clk, 2, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG4_OFFSET, NULL, NULL, _clk_max_enable, _clk_max_disable, &ipg_clk, NULL); DEFINE_CLOCK_FULL(esdhc4_ipg_clk, 3, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG6_OFFSET, NULL, NULL, _clk_max_enable, _clk_max_disable, &ipg_clk, NULL); /* mx51 specific */ DEFINE_CLOCK_MAX(esdhc2_clk, 1, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG3_OFFSET, clk_esdhc2, &pll2_sw_clk, &esdhc2_ipg_clk); static struct clk esdhc3_clk = { .id = 2, .parent = &esdhc1_clk, .set_parent = clk_esdhc3_set_parent, .enable_reg = MXC_CCM_CCGR3, .enable_shift = MXC_CCM_CCGRx_CG5_OFFSET, .enable = _clk_max_enable, .disable = _clk_max_disable, .secondary = &esdhc3_ipg_clk, }; static struct clk esdhc4_clk = { .id = 3, .parent = &esdhc1_clk, .set_parent = clk_esdhc4_set_parent, .enable_reg = MXC_CCM_CCGR3, .enable_shift = MXC_CCM_CCGRx_CG7_OFFSET, .enable = _clk_max_enable, .disable = _clk_max_disable, .secondary = &esdhc4_ipg_clk, }; /* mx53 specific */ static struct clk esdhc2_mx53_clk = { .id = 2, .parent = &esdhc1_clk, .set_parent = clk_esdhc2_mx53_set_parent, .enable_reg = MXC_CCM_CCGR3, .enable_shift = MXC_CCM_CCGRx_CG3_OFFSET, .enable = _clk_max_enable, .disable = _clk_max_disable, .secondary = &esdhc3_ipg_clk, }; DEFINE_CLOCK_MAX(esdhc3_mx53_clk, 2, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG5_OFFSET, clk_esdhc3_mx53, &pll2_sw_clk, &esdhc2_ipg_clk); static struct clk esdhc4_mx53_clk = { .id = 3, .parent = &esdhc1_clk, .set_parent = clk_esdhc4_mx53_set_parent, .enable_reg = MXC_CCM_CCGR3, .enable_shift = MXC_CCM_CCGRx_CG7_OFFSET, .enable = _clk_max_enable, .disable = _clk_max_disable, .secondary = &esdhc4_ipg_clk, }; DEFINE_CLOCK(mipi_esc_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG5_OFFSET, NULL, NULL, NULL, &pll2_sw_clk); DEFINE_CLOCK(mipi_hsc2_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG4_OFFSET, NULL, NULL, &mipi_esc_clk, &pll2_sw_clk); DEFINE_CLOCK(mipi_hsc1_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG3_OFFSET, NULL, NULL, &mipi_hsc2_clk, &pll2_sw_clk); /* IPU */ DEFINE_CLOCK_FULL(ipu_clk, 0, MXC_CCM_CCGR5, MXC_CCM_CCGRx_CG5_OFFSET, NULL, NULL, clk_ipu_enable, clk_ipu_disable, &ahb_clk, &ipu_sec_clk); DEFINE_CLOCK_FULL(emi_fast_clk, 0, MXC_CCM_CCGR5, MXC_CCM_CCGRx_CG7_OFFSET, NULL, NULL, _clk_ccgr_enable, _clk_ccgr_disable_inwait, &ddr_clk, NULL); DEFINE_CLOCK(ipu_di0_clk, 0, MXC_CCM_CCGR6, MXC_CCM_CCGRx_CG5_OFFSET, NULL, NULL, &pll3_sw_clk, NULL); DEFINE_CLOCK(ipu_di1_clk, 0, MXC_CCM_CCGR6, MXC_CCM_CCGRx_CG6_OFFSET, NULL, NULL, &pll3_sw_clk, NULL); #define _REGISTER_CLOCK(d, n, c) \ { \ .dev_id = d, \ .con_id = n, \ .clk = &c, \ }, static struct clk_lookup mx51_lookups[] = { _REGISTER_CLOCK("imx-uart.0", NULL, uart1_clk) _REGISTER_CLOCK("imx-uart.1", NULL, uart2_clk) _REGISTER_CLOCK("imx-uart.2", NULL, uart3_clk) _REGISTER_CLOCK(NULL, "gpt", gpt_clk) _REGISTER_CLOCK("fec.0", NULL, fec_clk) _REGISTER_CLOCK("mxc_pwm.0", "pwm", pwm1_clk) _REGISTER_CLOCK("mxc_pwm.1", "pwm", pwm2_clk) _REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk) _REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk) _REGISTER_CLOCK("imx-i2c.2", NULL, hsi2c_clk) _REGISTER_CLOCK("mxc-ehci.0", "usb", usboh3_clk) _REGISTER_CLOCK("mxc-ehci.0", "usb_ahb", usb_ahb_clk) _REGISTER_CLOCK("mxc-ehci.0", "usb_phy1", usb_phy1_clk) _REGISTER_CLOCK("mxc-ehci.1", "usb", usboh3_clk) _REGISTER_CLOCK("mxc-ehci.1", "usb_ahb", usb_ahb_clk) _REGISTER_CLOCK("mxc-ehci.2", "usb", usboh3_clk) _REGISTER_CLOCK("mxc-ehci.2", "usb_ahb", usb_ahb_clk) _REGISTER_CLOCK("fsl-usb2-udc", "usb", usboh3_clk) _REGISTER_CLOCK("fsl-usb2-udc", "usb_ahb", ahb_clk) _REGISTER_CLOCK("imx-keypad", NULL, dummy_clk) _REGISTER_CLOCK("mxc_nand", NULL, nfc_clk) _REGISTER_CLOCK("imx-ssi.0", NULL, ssi1_clk) _REGISTER_CLOCK("imx-ssi.1", NULL, ssi2_clk) _REGISTER_CLOCK("imx-ssi.2", NULL, ssi3_clk) _REGISTER_CLOCK("imx-sdma", NULL, sdma_clk) _REGISTER_CLOCK(NULL, "ckih", ckih_clk) _REGISTER_CLOCK(NULL, "ckih2", ckih2_clk) _REGISTER_CLOCK(NULL, "gpt_32k", gpt_32k_clk) _REGISTER_CLOCK("imx51-ecspi.0", NULL, ecspi1_clk) _REGISTER_CLOCK("imx51-ecspi.1", NULL, ecspi2_clk) _REGISTER_CLOCK("imx51-cspi.0", NULL, cspi_clk) _REGISTER_CLOCK("sdhci-esdhc-imx.0", NULL, esdhc1_clk) _REGISTER_CLOCK("sdhci-esdhc-imx.1", NULL, esdhc2_clk) _REGISTER_CLOCK("sdhci-esdhc-imx.2", NULL, esdhc3_clk) _REGISTER_CLOCK("sdhci-esdhc-imx.3", NULL, esdhc4_clk) _REGISTER_CLOCK(NULL, "cpu_clk", cpu_clk) _REGISTER_CLOCK(NULL, "iim_clk", iim_clk) _REGISTER_CLOCK("imx2-wdt.0", NULL, dummy_clk) _REGISTER_CLOCK("imx2-wdt.1", NULL, dummy_clk) _REGISTER_CLOCK(NULL, "mipi_hsp", mipi_hsp_clk) _REGISTER_CLOCK("imx-ipuv3", NULL, ipu_clk) _REGISTER_CLOCK("imx-ipuv3", "di0", ipu_di0_clk) _REGISTER_CLOCK("imx-ipuv3", "di1", ipu_di1_clk) _REGISTER_CLOCK(NULL, "gpc_dvfs", gpc_dvfs_clk) }; static struct clk_lookup mx53_lookups[] = { _REGISTER_CLOCK("imx-uart.0", NULL, uart1_clk) _REGISTER_CLOCK("imx-uart.1", NULL, uart2_clk) _REGISTER_CLOCK("imx-uart.2", NULL, uart3_clk) _REGISTER_CLOCK(NULL, "gpt", gpt_clk) _REGISTER_CLOCK("fec.0", NULL, fec_clk) _REGISTER_CLOCK(NULL, "iim_clk", iim_clk) _REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk) _REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk) _REGISTER_CLOCK("sdhci-esdhc-imx.0", NULL, esdhc1_clk) _REGISTER_CLOCK("sdhci-esdhc-imx.1", NULL, esdhc2_mx53_clk) _REGISTER_CLOCK("sdhci-esdhc-imx.2", NULL, esdhc3_mx53_clk) _REGISTER_CLOCK("sdhci-esdhc-imx.3", NULL, esdhc4_mx53_clk) _REGISTER_CLOCK("imx53-ecspi.0", NULL, ecspi1_clk) _REGISTER_CLOCK("imx53-ecspi.1", NULL, ecspi2_clk) _REGISTER_CLOCK("imx53-cspi.0", NULL, cspi_clk) _REGISTER_CLOCK("imx2-wdt.0", NULL, dummy_clk) _REGISTER_CLOCK("imx2-wdt.1", NULL, dummy_clk) }; static void clk_tree_init(void) { u32 reg; ipg_perclk.set_parent(&ipg_perclk, &lp_apm_clk); /* * Initialise the IPG PER CLK dividers to 3. IPG_PER_CLK should be at * 8MHz, its derived from lp_apm. * * FIXME: Verify if true for all boards */ reg = __raw_readl(MXC_CCM_CBCDR); reg &= ~MXC_CCM_CBCDR_PERCLK_PRED1_MASK; reg &= ~MXC_CCM_CBCDR_PERCLK_PRED2_MASK; reg &= ~MXC_CCM_CBCDR_PERCLK_PODF_MASK; reg |= (2 << MXC_CCM_CBCDR_PERCLK_PRED1_OFFSET); __raw_writel(reg, MXC_CCM_CBCDR); } int __init mx51_clocks_init(unsigned long ckil, unsigned long osc, unsigned long ckih1, unsigned long ckih2) { int i; external_low_reference = ckil; external_high_reference = ckih1; ckih2_reference = ckih2; oscillator_reference = osc; for (i = 0; i < ARRAY_SIZE(mx51_lookups); i++) clkdev_add(&mx51_lookups[i]); clk_tree_init(); clk_enable(&cpu_clk); clk_enable(&main_bus_clk); clk_enable(&iim_clk); mx51_revision(); clk_disable(&iim_clk); mx51_display_revision(); /* move usb_phy_clk to 24MHz */ clk_set_parent(&usb_phy1_clk, &osc_clk); /* set the usboh3_clk parent to pll2_sw_clk */ clk_set_parent(&usboh3_clk, &pll2_sw_clk); /* Set SDHC parents to be PLL2 */ clk_set_parent(&esdhc1_clk, &pll2_sw_clk); clk_set_parent(&esdhc2_clk, &pll2_sw_clk); /* set SDHC root clock as 166.25MHZ*/ clk_set_rate(&esdhc1_clk, 166250000); clk_set_rate(&esdhc2_clk, 166250000); /* System timer */ mxc_timer_init(&gpt_clk, MX51_IO_ADDRESS(MX51_GPT1_BASE_ADDR), MX51_MXC_INT_GPT); return 0; } int __init mx53_clocks_init(unsigned long ckil, unsigned long osc, unsigned long ckih1, unsigned long ckih2) { int i; external_low_reference = ckil; external_high_reference = ckih1; ckih2_reference = ckih2; oscillator_reference = osc; for (i = 0; i < ARRAY_SIZE(mx53_lookups); i++) clkdev_add(&mx53_lookups[i]); clk_tree_init(); clk_set_parent(&uart_root_clk, &pll3_sw_clk); clk_enable(&cpu_clk); clk_enable(&main_bus_clk); clk_enable(&iim_clk); mx53_revision(); clk_disable(&iim_clk); mx53_display_revision(); /* Set SDHC parents to be PLL2 */ clk_set_parent(&esdhc1_clk, &pll2_sw_clk); clk_set_parent(&esdhc3_mx53_clk, &pll2_sw_clk); /* set SDHC root clock as 200MHZ*/ clk_set_rate(&esdhc1_clk, 200000000); clk_set_rate(&esdhc3_mx53_clk, 200000000); /* System timer */ mxc_timer_init(&gpt_clk, MX53_IO_ADDRESS(MX53_GPT1_BASE_ADDR), MX53_INT_GPT); return 0; }