/* * arch/arm/mach-lpc32xx/clock.c * * Author: Kevin Wells <kevin.wells@nxp.com> * * Copyright (C) 2010 NXP Semiconductors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* * LPC32xx clock management driver overview * * The LPC32XX contains a number of high level system clocks that can be * generated from different sources. These system clocks are used to * generate the CPU and bus rates and the individual peripheral clocks in * the system. When Linux is started by the boot loader, the system * clocks are already running. Stopping a system clock during normal * Linux operation should never be attempted, as peripherals that require * those clocks will quit working (ie, DRAM). * * The LPC32xx high level clock tree looks as follows. Clocks marked with * an asterisk are always on and cannot be disabled. Clocks marked with * an ampersand can only be disabled in CPU suspend mode. Clocks marked * with a caret are always on if it is the selected clock for the SYSCLK * source. The clock that isn't used for SYSCLK can be enabled and * disabled normally. * 32KHz oscillator* * / | \ * RTC* PLL397^ TOUCH * / * Main oscillator^ / * | \ / * | SYSCLK& * | \ * | \ * USB_PLL HCLK_PLL& * | | | * USB host/device PCLK& | * | | * Peripherals * * The CPU and chip bus rates are derived from the HCLK PLL, which can * generate various clock rates up to 266MHz and beyond. The internal bus * rates (PCLK and HCLK) are generated from dividers based on the HCLK * PLL rate. HCLK can be a ratio of 1:1, 1:2, or 1:4 or HCLK PLL rate, * while PCLK can be 1:1 to 1:32 of HCLK PLL rate. Most peripherals high * level clocks are based on either HCLK or PCLK, but have their own * dividers as part of the IP itself. Because of this, the system clock * rates should not be changed. * * The HCLK PLL is clocked from SYSCLK, which can be derived from the * main oscillator or PLL397. PLL397 generates a rate that is 397 times * the 32KHz oscillator rate. The main oscillator runs at the selected * oscillator/crystal rate on the mosc_in pin of the LPC32xx. This rate * is normally 13MHz, but depends on the selection of external crystals * or oscillators. If USB operation is required, the main oscillator must * be used in the system. * * Switching SYSCLK between sources during normal Linux operation is not * supported. SYSCLK is preset in the bootloader. Because of the * complexities of clock management during clock frequency changes, * there are some limitations to the clock driver explained below: * - The PLL397 and main oscillator can be enabled and disabled by the * clk_enable() and clk_disable() functions unless SYSCLK is based * on that clock. This allows the other oscillator that isn't driving * the HCLK PLL to be used as another system clock that can be routed * to an external pin. * - The muxed SYSCLK input and HCLK_PLL rate cannot be changed with * this driver. * - HCLK and PCLK rates cannot be changed as part of this driver. * - Most peripherals have their own dividers are part of the peripheral * block. Changing SYSCLK, HCLK PLL, HCLK, or PCLK sources or rates * will also impact the individual peripheral rates. */ #include <linux/kernel.h> #include <linux/list.h> #include <linux/errno.h> #include <linux/device.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/amba/bus.h> #include <linux/amba/clcd.h> #include <linux/clkdev.h> #include <mach/hardware.h> #include <mach/platform.h> #include "clock.h" #include "common.h" static struct clk clk_armpll; static struct clk clk_usbpll; static DEFINE_MUTEX(clkm_lock); /* * Post divider values for PLLs based on selected register value */ static const u32 pll_postdivs[4] = {1, 2, 4, 8}; static unsigned long local_return_parent_rate(struct clk *clk) { /* * If a clock has a rate of 0, then it inherits it's parent * clock rate */ while (clk->rate == 0) clk = clk->parent; return clk->rate; } /* 32KHz clock has a fixed rate and is not stoppable */ static struct clk osc_32KHz = { .rate = LPC32XX_CLOCK_OSC_FREQ, .get_rate = local_return_parent_rate, }; static int local_pll397_enable(struct clk *clk, int enable) { u32 reg; unsigned long timeout = 1 + msecs_to_jiffies(10); reg = __raw_readl(LPC32XX_CLKPWR_PLL397_CTRL); if (enable == 0) { reg |= LPC32XX_CLKPWR_SYSCTRL_PLL397_DIS; __raw_writel(reg, LPC32XX_CLKPWR_PLL397_CTRL); } else { /* Enable PLL397 */ reg &= ~LPC32XX_CLKPWR_SYSCTRL_PLL397_DIS; __raw_writel(reg, LPC32XX_CLKPWR_PLL397_CTRL); /* Wait for PLL397 lock */ while (((__raw_readl(LPC32XX_CLKPWR_PLL397_CTRL) & LPC32XX_CLKPWR_SYSCTRL_PLL397_STS) == 0) && (timeout > jiffies)) cpu_relax(); if ((__raw_readl(LPC32XX_CLKPWR_PLL397_CTRL) & LPC32XX_CLKPWR_SYSCTRL_PLL397_STS) == 0) return -ENODEV; } return 0; } static int local_oscmain_enable(struct clk *clk, int enable) { u32 reg; unsigned long timeout = 1 + msecs_to_jiffies(10); reg = __raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL); if (enable == 0) { reg |= LPC32XX_CLKPWR_MOSC_DISABLE; __raw_writel(reg, LPC32XX_CLKPWR_MAIN_OSC_CTRL); } else { /* Enable main oscillator */ reg &= ~LPC32XX_CLKPWR_MOSC_DISABLE; __raw_writel(reg, LPC32XX_CLKPWR_MAIN_OSC_CTRL); /* Wait for main oscillator to start */ while (((__raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL) & LPC32XX_CLKPWR_MOSC_DISABLE) != 0) && (timeout > jiffies)) cpu_relax(); if ((__raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL) & LPC32XX_CLKPWR_MOSC_DISABLE) != 0) return -ENODEV; } return 0; } static struct clk osc_pll397 = { .parent = &osc_32KHz, .enable = local_pll397_enable, .rate = LPC32XX_CLOCK_OSC_FREQ * 397, .get_rate = local_return_parent_rate, }; static struct clk osc_main = { .enable = local_oscmain_enable, .rate = LPC32XX_MAIN_OSC_FREQ, .get_rate = local_return_parent_rate, }; static struct clk clk_sys; /* * Convert a PLL register value to a PLL output frequency */ u32 clk_get_pllrate_from_reg(u32 inputclk, u32 regval) { struct clk_pll_setup pllcfg; pllcfg.cco_bypass_b15 = 0; pllcfg.direct_output_b14 = 0; pllcfg.fdbk_div_ctrl_b13 = 0; if ((regval & LPC32XX_CLKPWR_HCLKPLL_CCO_BYPASS) != 0) pllcfg.cco_bypass_b15 = 1; if ((regval & LPC32XX_CLKPWR_HCLKPLL_POSTDIV_BYPASS) != 0) pllcfg.direct_output_b14 = 1; if ((regval & LPC32XX_CLKPWR_HCLKPLL_FDBK_SEL_FCLK) != 0) pllcfg.fdbk_div_ctrl_b13 = 1; pllcfg.pll_m = 1 + ((regval >> 1) & 0xFF); pllcfg.pll_n = 1 + ((regval >> 9) & 0x3); pllcfg.pll_p = pll_postdivs[((regval >> 11) & 0x3)]; return clk_check_pll_setup(inputclk, &pllcfg); } /* * Setup the HCLK PLL with a PLL structure */ static u32 local_clk_pll_setup(struct clk_pll_setup *PllSetup) { u32 tv, tmp = 0; if (PllSetup->analog_on != 0) tmp |= LPC32XX_CLKPWR_HCLKPLL_POWER_UP; if (PllSetup->cco_bypass_b15 != 0) tmp |= LPC32XX_CLKPWR_HCLKPLL_CCO_BYPASS; if (PllSetup->direct_output_b14 != 0) tmp |= LPC32XX_CLKPWR_HCLKPLL_POSTDIV_BYPASS; if (PllSetup->fdbk_div_ctrl_b13 != 0) tmp |= LPC32XX_CLKPWR_HCLKPLL_FDBK_SEL_FCLK; tv = ffs(PllSetup->pll_p) - 1; if ((!is_power_of_2(PllSetup->pll_p)) || (tv > 3)) return 0; tmp |= LPC32XX_CLKPWR_HCLKPLL_POSTDIV_2POW(tv); tmp |= LPC32XX_CLKPWR_HCLKPLL_PREDIV_PLUS1(PllSetup->pll_n - 1); tmp |= LPC32XX_CLKPWR_HCLKPLL_PLLM(PllSetup->pll_m - 1); return tmp; } /* * Update the ARM core PLL frequency rate variable from the actual PLL setting */ static void local_update_armpll_rate(void) { u32 clkin, pllreg; clkin = clk_armpll.parent->rate; pllreg = __raw_readl(LPC32XX_CLKPWR_HCLKPLL_CTRL) & 0x1FFFF; clk_armpll.rate = clk_get_pllrate_from_reg(clkin, pllreg); } /* * Find a PLL configuration for the selected input frequency */ static u32 local_clk_find_pll_cfg(u32 pllin_freq, u32 target_freq, struct clk_pll_setup *pllsetup) { u32 ifreq, freqtol, m, n, p, fclkout; /* Determine frequency tolerance limits */ freqtol = target_freq / 250; ifreq = pllin_freq; /* Is direct bypass mode possible? */ if (abs(pllin_freq - target_freq) <= freqtol) { pllsetup->analog_on = 0; pllsetup->cco_bypass_b15 = 1; pllsetup->direct_output_b14 = 1; pllsetup->fdbk_div_ctrl_b13 = 1; pllsetup->pll_p = pll_postdivs[0]; pllsetup->pll_n = 1; pllsetup->pll_m = 1; return clk_check_pll_setup(ifreq, pllsetup); } else if (target_freq <= ifreq) { pllsetup->analog_on = 0; pllsetup->cco_bypass_b15 = 1; pllsetup->direct_output_b14 = 0; pllsetup->fdbk_div_ctrl_b13 = 1; pllsetup->pll_n = 1; pllsetup->pll_m = 1; for (p = 0; p <= 3; p++) { pllsetup->pll_p = pll_postdivs[p]; fclkout = clk_check_pll_setup(ifreq, pllsetup); if (abs(target_freq - fclkout) <= freqtol) return fclkout; } } /* Is direct mode possible? */ pllsetup->analog_on = 1; pllsetup->cco_bypass_b15 = 0; pllsetup->direct_output_b14 = 1; pllsetup->fdbk_div_ctrl_b13 = 0; pllsetup->pll_p = pll_postdivs[0]; for (m = 1; m <= 256; m++) { for (n = 1; n <= 4; n++) { /* Compute output frequency for this value */ pllsetup->pll_n = n; pllsetup->pll_m = m; fclkout = clk_check_pll_setup(ifreq, pllsetup); if (abs(target_freq - fclkout) <= freqtol) return fclkout; } } /* Is integer mode possible? */ pllsetup->analog_on = 1; pllsetup->cco_bypass_b15 = 0; pllsetup->direct_output_b14 = 0; pllsetup->fdbk_div_ctrl_b13 = 1; for (m = 1; m <= 256; m++) { for (n = 1; n <= 4; n++) { for (p = 0; p < 4; p++) { /* Compute output frequency */ pllsetup->pll_p = pll_postdivs[p]; pllsetup->pll_n = n; pllsetup->pll_m = m; fclkout = clk_check_pll_setup( ifreq, pllsetup); if (abs(target_freq - fclkout) <= freqtol) return fclkout; } } } /* Try non-integer mode */ pllsetup->analog_on = 1; pllsetup->cco_bypass_b15 = 0; pllsetup->direct_output_b14 = 0; pllsetup->fdbk_div_ctrl_b13 = 0; for (m = 1; m <= 256; m++) { for (n = 1; n <= 4; n++) { for (p = 0; p < 4; p++) { /* Compute output frequency */ pllsetup->pll_p = pll_postdivs[p]; pllsetup->pll_n = n; pllsetup->pll_m = m; fclkout = clk_check_pll_setup( ifreq, pllsetup); if (abs(target_freq - fclkout) <= freqtol) return fclkout; } } } return 0; } static struct clk clk_armpll = { .parent = &clk_sys, .get_rate = local_return_parent_rate, }; /* * Setup the USB PLL with a PLL structure */ static u32 local_clk_usbpll_setup(struct clk_pll_setup *pHCLKPllSetup) { u32 reg, tmp = local_clk_pll_setup(pHCLKPllSetup); reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL) & ~0x1FFFF; reg |= tmp; __raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL); return clk_check_pll_setup(clk_usbpll.parent->rate, pHCLKPllSetup); } static int local_usbpll_enable(struct clk *clk, int enable) { u32 reg; int ret = -ENODEV; unsigned long timeout = 1 + msecs_to_jiffies(10); reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL); if (enable == 0) { reg &= ~(LPC32XX_CLKPWR_USBCTRL_CLK_EN1 | LPC32XX_CLKPWR_USBCTRL_CLK_EN2); __raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL); } else if (reg & LPC32XX_CLKPWR_USBCTRL_PLL_PWRUP) { reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN1; __raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL); /* Wait for PLL lock */ while ((timeout > jiffies) & (ret == -ENODEV)) { reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL); if (reg & LPC32XX_CLKPWR_USBCTRL_PLL_STS) ret = 0; } if (ret == 0) { reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN2; __raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL); } } return ret; } static unsigned long local_usbpll_round_rate(struct clk *clk, unsigned long rate) { u32 clkin, usbdiv; struct clk_pll_setup pllsetup; /* * Unlike other clocks, this clock has a KHz input rate, so bump * it up to work with the PLL function */ rate = rate * 1000; clkin = clk->parent->rate; usbdiv = (__raw_readl(LPC32XX_CLKPWR_USBCLK_PDIV) & LPC32XX_CLKPWR_USBPDIV_PLL_MASK) + 1; clkin = clkin / usbdiv; /* Try to find a good rate setup */ if (local_clk_find_pll_cfg(clkin, rate, &pllsetup) == 0) return 0; return clk_check_pll_setup(clkin, &pllsetup); } static int local_usbpll_set_rate(struct clk *clk, unsigned long rate) { u32 clkin, reg, usbdiv; struct clk_pll_setup pllsetup; /* * Unlike other clocks, this clock has a KHz input rate, so bump * it up to work with the PLL function */ rate = rate * 1000; clkin = clk->get_rate(clk); usbdiv = (__raw_readl(LPC32XX_CLKPWR_USBCLK_PDIV) & LPC32XX_CLKPWR_USBPDIV_PLL_MASK) + 1; clkin = clkin / usbdiv; /* Try to find a good rate setup */ if (local_clk_find_pll_cfg(clkin, rate, &pllsetup) == 0) return -EINVAL; local_usbpll_enable(clk, 0); reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL); reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN1; __raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL); pllsetup.analog_on = 1; local_clk_usbpll_setup(&pllsetup); clk->rate = clk_check_pll_setup(clkin, &pllsetup); reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL); reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN2; __raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL); return 0; } static struct clk clk_usbpll = { .parent = &osc_main, .set_rate = local_usbpll_set_rate, .enable = local_usbpll_enable, .rate = 48000, /* In KHz */ .get_rate = local_return_parent_rate, .round_rate = local_usbpll_round_rate, }; static u32 clk_get_hclk_div(void) { static const u32 hclkdivs[4] = {1, 2, 4, 4}; return hclkdivs[LPC32XX_CLKPWR_HCLKDIV_DIV_2POW( __raw_readl(LPC32XX_CLKPWR_HCLK_DIV))]; } static struct clk clk_hclk = { .parent = &clk_armpll, .get_rate = local_return_parent_rate, }; static struct clk clk_pclk = { .parent = &clk_armpll, .get_rate = local_return_parent_rate, }; static int local_onoff_enable(struct clk *clk, int enable) { u32 tmp; tmp = __raw_readl(clk->enable_reg); if (enable == 0) tmp &= ~clk->enable_mask; else tmp |= clk->enable_mask; __raw_writel(tmp, clk->enable_reg); return 0; } /* Peripheral clock sources */ static struct clk clk_timer0 = { .parent = &clk_pclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1, .enable_mask = LPC32XX_CLKPWR_TMRPWMCLK_TIMER0_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_timer1 = { .parent = &clk_pclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1, .enable_mask = LPC32XX_CLKPWR_TMRPWMCLK_TIMER1_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_timer2 = { .parent = &clk_pclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1, .enable_mask = LPC32XX_CLKPWR_TMRPWMCLK_TIMER2_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_timer3 = { .parent = &clk_pclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1, .enable_mask = LPC32XX_CLKPWR_TMRPWMCLK_TIMER3_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_wdt = { .parent = &clk_pclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_TIMER_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_PWMCLK_WDOG_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_vfp9 = { .parent = &clk_pclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_DEBUG_CTRL, .enable_mask = LPC32XX_CLKPWR_VFP_CLOCK_ENABLE_BIT, .get_rate = local_return_parent_rate, }; static struct clk clk_dma = { .parent = &clk_hclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_DMA_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_DMACLKCTRL_CLK_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_uart3 = { .parent = &clk_pclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_UART_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_UARTCLKCTRL_UART3_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_uart4 = { .parent = &clk_pclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_UART_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_UARTCLKCTRL_UART4_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_uart5 = { .parent = &clk_pclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_UART_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_UARTCLKCTRL_UART5_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_uart6 = { .parent = &clk_pclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_UART_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_UARTCLKCTRL_UART6_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_i2c0 = { .parent = &clk_hclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_I2C_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_I2CCLK_I2C1CLK_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_i2c1 = { .parent = &clk_hclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_I2C_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_I2CCLK_I2C2CLK_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_i2c2 = { .parent = &clk_pclk, .enable = local_onoff_enable, .enable_reg = io_p2v(LPC32XX_USB_BASE + 0xFF4), .enable_mask = 0x4, .get_rate = local_return_parent_rate, }; static struct clk clk_ssp0 = { .parent = &clk_hclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_SSP_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_SSPCTRL_SSPCLK0_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_ssp1 = { .parent = &clk_hclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_SSP_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_SSPCTRL_SSPCLK1_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_kscan = { .parent = &osc_32KHz, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_KEY_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_KEYCLKCTRL_CLK_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_nand = { .parent = &clk_hclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_NAND_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_NANDCLK_SLCCLK_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_i2s0 = { .parent = &clk_hclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_I2S_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_I2SCTRL_I2SCLK0_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_i2s1 = { .parent = &clk_hclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_I2S_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_I2SCTRL_I2SCLK1_EN, .get_rate = local_return_parent_rate, }; static struct clk clk_net = { .parent = &clk_hclk, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_MACCLK_CTRL, .enable_mask = (LPC32XX_CLKPWR_MACCTRL_DMACLK_EN | LPC32XX_CLKPWR_MACCTRL_MMIOCLK_EN | LPC32XX_CLKPWR_MACCTRL_HRCCLK_EN), .get_rate = local_return_parent_rate, }; static struct clk clk_rtc = { .parent = &osc_32KHz, .rate = 1, /* 1 Hz */ .get_rate = local_return_parent_rate, }; static struct clk clk_usbd = { .parent = &clk_usbpll, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_USB_CTRL, .enable_mask = LPC32XX_CLKPWR_USBCTRL_HCLK_EN, .get_rate = local_return_parent_rate, }; static int tsc_onoff_enable(struct clk *clk, int enable) { u32 tmp; /* Make sure 32KHz clock is the selected clock */ tmp = __raw_readl(LPC32XX_CLKPWR_ADC_CLK_CTRL_1); tmp &= ~LPC32XX_CLKPWR_ADCCTRL1_PCLK_SEL; __raw_writel(tmp, LPC32XX_CLKPWR_ADC_CLK_CTRL_1); if (enable == 0) __raw_writel(0, clk->enable_reg); else __raw_writel(clk->enable_mask, clk->enable_reg); return 0; } static struct clk clk_tsc = { .parent = &osc_32KHz, .enable = tsc_onoff_enable, .enable_reg = LPC32XX_CLKPWR_ADC_CLK_CTRL, .enable_mask = LPC32XX_CLKPWR_ADC32CLKCTRL_CLK_EN, .get_rate = local_return_parent_rate, }; static int mmc_onoff_enable(struct clk *clk, int enable) { u32 tmp; tmp = __raw_readl(LPC32XX_CLKPWR_MS_CTRL) & ~LPC32XX_CLKPWR_MSCARD_SDCARD_EN; /* If rate is 0, disable clock */ if (enable != 0) tmp |= LPC32XX_CLKPWR_MSCARD_SDCARD_EN; __raw_writel(tmp, LPC32XX_CLKPWR_MS_CTRL); return 0; } static unsigned long mmc_get_rate(struct clk *clk) { u32 div, rate, oldclk; /* The MMC clock must be on when accessing an MMC register */ oldclk = __raw_readl(LPC32XX_CLKPWR_MS_CTRL); __raw_writel(oldclk | LPC32XX_CLKPWR_MSCARD_SDCARD_EN, LPC32XX_CLKPWR_MS_CTRL); div = __raw_readl(LPC32XX_CLKPWR_MS_CTRL); __raw_writel(oldclk, LPC32XX_CLKPWR_MS_CTRL); /* Get the parent clock rate */ rate = clk->parent->get_rate(clk->parent); /* Get the MMC controller clock divider value */ div = div & LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(0xf); if (!div) div = 1; return rate / div; } static unsigned long mmc_round_rate(struct clk *clk, unsigned long rate) { unsigned long div, prate; /* Get the parent clock rate */ prate = clk->parent->get_rate(clk->parent); if (rate >= prate) return prate; div = prate / rate; if (div > 0xf) div = 0xf; return prate / div; } static int mmc_set_rate(struct clk *clk, unsigned long rate) { u32 oldclk, tmp; unsigned long prate, div, crate = mmc_round_rate(clk, rate); prate = clk->parent->get_rate(clk->parent); div = prate / crate; /* The MMC clock must be on when accessing an MMC register */ oldclk = __raw_readl(LPC32XX_CLKPWR_MS_CTRL); __raw_writel(oldclk | LPC32XX_CLKPWR_MSCARD_SDCARD_EN, LPC32XX_CLKPWR_MS_CTRL); tmp = __raw_readl(LPC32XX_CLKPWR_MS_CTRL) & ~LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(0xf); tmp |= LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(div); __raw_writel(tmp, LPC32XX_CLKPWR_MS_CTRL); __raw_writel(oldclk, LPC32XX_CLKPWR_MS_CTRL); return 0; } static struct clk clk_mmc = { .parent = &clk_armpll, .set_rate = mmc_set_rate, .get_rate = mmc_get_rate, .round_rate = mmc_round_rate, .enable = mmc_onoff_enable, .enable_reg = LPC32XX_CLKPWR_MS_CTRL, .enable_mask = LPC32XX_CLKPWR_MSCARD_SDCARD_EN, }; static unsigned long clcd_get_rate(struct clk *clk) { u32 tmp, div, rate, oldclk; /* The LCD clock must be on when accessing an LCD register */ oldclk = __raw_readl(LPC32XX_CLKPWR_LCDCLK_CTRL); __raw_writel(oldclk | LPC32XX_CLKPWR_LCDCTRL_CLK_EN, LPC32XX_CLKPWR_LCDCLK_CTRL); tmp = __raw_readl(io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2)); __raw_writel(oldclk, LPC32XX_CLKPWR_LCDCLK_CTRL); rate = clk->parent->get_rate(clk->parent); /* Only supports internal clocking */ if (tmp & TIM2_BCD) return rate; div = (tmp & 0x1F) | ((tmp & 0xF8) >> 22); tmp = rate / (2 + div); return tmp; } static int clcd_set_rate(struct clk *clk, unsigned long rate) { u32 tmp, prate, div, oldclk; /* The LCD clock must be on when accessing an LCD register */ oldclk = __raw_readl(LPC32XX_CLKPWR_LCDCLK_CTRL); __raw_writel(oldclk | LPC32XX_CLKPWR_LCDCTRL_CLK_EN, LPC32XX_CLKPWR_LCDCLK_CTRL); tmp = __raw_readl(io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2)) | TIM2_BCD; prate = clk->parent->get_rate(clk->parent); if (rate < prate) { /* Find closest divider */ div = prate / rate; if (div >= 2) { div -= 2; tmp &= ~TIM2_BCD; } tmp &= ~(0xF800001F); tmp |= (div & 0x1F); tmp |= (((div >> 5) & 0x1F) << 27); } __raw_writel(tmp, io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2)); __raw_writel(oldclk, LPC32XX_CLKPWR_LCDCLK_CTRL); return 0; } static unsigned long clcd_round_rate(struct clk *clk, unsigned long rate) { u32 prate, div; prate = clk->parent->get_rate(clk->parent); if (rate >= prate) rate = prate; else { div = prate / rate; if (div > 0x3ff) div = 0x3ff; rate = prate / div; } return rate; } static struct clk clk_lcd = { .parent = &clk_hclk, .set_rate = clcd_set_rate, .get_rate = clcd_get_rate, .round_rate = clcd_round_rate, .enable = local_onoff_enable, .enable_reg = LPC32XX_CLKPWR_LCDCLK_CTRL, .enable_mask = LPC32XX_CLKPWR_LCDCTRL_CLK_EN, }; static inline void clk_lock(void) { mutex_lock(&clkm_lock); } static inline void clk_unlock(void) { mutex_unlock(&clkm_lock); } static void local_clk_disable(struct clk *clk) { WARN_ON(clk->usecount == 0); /* Don't attempt to disable clock if it has no users */ if (clk->usecount > 0) { clk->usecount--; /* Only disable clock when it has no more users */ if ((clk->usecount == 0) && (clk->enable)) clk->enable(clk, 0); /* Check parent clocks, they may need to be disabled too */ if (clk->parent) local_clk_disable(clk->parent); } } static int local_clk_enable(struct clk *clk) { int ret = 0; /* Enable parent clocks first and update use counts */ if (clk->parent) ret = local_clk_enable(clk->parent); if (!ret) { /* Only enable clock if it's currently disabled */ if ((clk->usecount == 0) && (clk->enable)) ret = clk->enable(clk, 1); if (!ret) clk->usecount++; else if (clk->parent) local_clk_disable(clk->parent); } return ret; } /* * clk_enable - inform the system when the clock source should be running. */ int clk_enable(struct clk *clk) { int ret; clk_lock(); ret = local_clk_enable(clk); clk_unlock(); return ret; } EXPORT_SYMBOL(clk_enable); /* * clk_disable - inform the system when the clock source is no longer required */ void clk_disable(struct clk *clk) { clk_lock(); local_clk_disable(clk); clk_unlock(); } EXPORT_SYMBOL(clk_disable); /* * clk_get_rate - obtain the current clock rate (in Hz) for a clock source */ unsigned long clk_get_rate(struct clk *clk) { unsigned long rate; clk_lock(); rate = clk->get_rate(clk); clk_unlock(); return rate; } EXPORT_SYMBOL(clk_get_rate); /* * clk_set_rate - set the clock rate for a clock source */ int clk_set_rate(struct clk *clk, unsigned long rate) { int ret = -EINVAL; /* * Most system clocks can only be enabled or disabled, with * the actual rate set as part of the peripheral dividers * instead of high level clock control */ if (clk->set_rate) { clk_lock(); ret = clk->set_rate(clk, rate); clk_unlock(); } return ret; } EXPORT_SYMBOL(clk_set_rate); /* * clk_round_rate - adjust a rate to the exact rate a clock can provide */ long clk_round_rate(struct clk *clk, unsigned long rate) { clk_lock(); if (clk->round_rate) rate = clk->round_rate(clk, rate); else rate = clk->get_rate(clk); clk_unlock(); return rate; } EXPORT_SYMBOL(clk_round_rate); /* * clk_set_parent - set the parent clock source for this clock */ int clk_set_parent(struct clk *clk, struct clk *parent) { /* Clock re-parenting is not supported */ return -EINVAL; } EXPORT_SYMBOL(clk_set_parent); /* * clk_get_parent - get the parent clock source for this clock */ struct clk *clk_get_parent(struct clk *clk) { return clk->parent; } EXPORT_SYMBOL(clk_get_parent); #define _REGISTER_CLOCK(d, n, c) \ { \ .dev_id = (d), \ .con_id = (n), \ .clk = &(c), \ }, static struct clk_lookup lookups[] = { _REGISTER_CLOCK(NULL, "osc_32KHz", osc_32KHz) _REGISTER_CLOCK(NULL, "osc_pll397", osc_pll397) _REGISTER_CLOCK(NULL, "osc_main", osc_main) _REGISTER_CLOCK(NULL, "sys_ck", clk_sys) _REGISTER_CLOCK(NULL, "arm_pll_ck", clk_armpll) _REGISTER_CLOCK(NULL, "ck_pll5", clk_usbpll) _REGISTER_CLOCK(NULL, "hclk_ck", clk_hclk) _REGISTER_CLOCK(NULL, "pclk_ck", clk_pclk) _REGISTER_CLOCK(NULL, "timer0_ck", clk_timer0) _REGISTER_CLOCK(NULL, "timer1_ck", clk_timer1) _REGISTER_CLOCK(NULL, "timer2_ck", clk_timer2) _REGISTER_CLOCK(NULL, "timer3_ck", clk_timer3) _REGISTER_CLOCK(NULL, "vfp9_ck", clk_vfp9) _REGISTER_CLOCK(NULL, "clk_dmac", clk_dma) _REGISTER_CLOCK("pnx4008-watchdog", NULL, clk_wdt) _REGISTER_CLOCK(NULL, "uart3_ck", clk_uart3) _REGISTER_CLOCK(NULL, "uart4_ck", clk_uart4) _REGISTER_CLOCK(NULL, "uart5_ck", clk_uart5) _REGISTER_CLOCK(NULL, "uart6_ck", clk_uart6) _REGISTER_CLOCK("pnx-i2c.0", NULL, clk_i2c0) _REGISTER_CLOCK("pnx-i2c.1", NULL, clk_i2c1) _REGISTER_CLOCK("pnx-i2c.2", NULL, clk_i2c2) _REGISTER_CLOCK("dev:ssp0", NULL, clk_ssp0) _REGISTER_CLOCK("dev:ssp1", NULL, clk_ssp1) _REGISTER_CLOCK("lpc32xx_keys.0", NULL, clk_kscan) _REGISTER_CLOCK("lpc32xx-nand.0", "nand_ck", clk_nand) _REGISTER_CLOCK("tbd", "i2s0_ck", clk_i2s0) _REGISTER_CLOCK("tbd", "i2s1_ck", clk_i2s1) _REGISTER_CLOCK("lpc32xx-ts", NULL, clk_tsc) _REGISTER_CLOCK("dev:mmc0", "MCLK", clk_mmc) _REGISTER_CLOCK("lpc-net.0", NULL, clk_net) _REGISTER_CLOCK("dev:clcd", NULL, clk_lcd) _REGISTER_CLOCK("lpc32xx_udc", "ck_usbd", clk_usbd) _REGISTER_CLOCK("lpc32xx_rtc", NULL, clk_rtc) }; static int __init clk_init(void) { int i; for (i = 0; i < ARRAY_SIZE(lookups); i++) clkdev_add(&lookups[i]); /* * Setup muxed SYSCLK for HCLK PLL base -this selects the * parent clock used for the ARM PLL and is used to derive * the many system clock rates in the device. */ if (clk_is_sysclk_mainosc() != 0) clk_sys.parent = &osc_main; else clk_sys.parent = &osc_pll397; clk_sys.rate = clk_sys.parent->rate; /* Compute the current ARM PLL and USB PLL frequencies */ local_update_armpll_rate(); /* Compute HCLK and PCLK bus rates */ clk_hclk.rate = clk_hclk.parent->rate / clk_get_hclk_div(); clk_pclk.rate = clk_pclk.parent->rate / clk_get_pclk_div(); /* * Enable system clocks - this step is somewhat formal, as the * clocks are already running, but it does get the clock data * inline with the actual system state. Never disable these * clocks as they will only stop if the system is going to sleep. * In that case, the chip/system power management functions will * handle clock gating. */ if (clk_enable(&clk_hclk) || clk_enable(&clk_pclk)) printk(KERN_ERR "Error enabling system HCLK and PCLK\n"); /* * Timers 0 and 1 were enabled and are being used by the high * resolution tick function prior to this driver being initialized. * Tag them now as used. */ if (clk_enable(&clk_timer0) || clk_enable(&clk_timer1)) printk(KERN_ERR "Error enabling timer tick clocks\n"); return 0; } core_initcall(clk_init);