Kernel  |  2.6.39

下载     查看原文件
C++程序  |  1630行  |  46.59 KB
//#include "r8180.h"
#include "r8180_dm.h"
#include "r8180_hw.h"
#include "r8180_93cx6.h"
//{by amy 080312

//
//	Description:
//		Return TRUE if we shall perform High Power Mecahnism, FALSE otherwise.
//
//+by amy 080312
#define RATE_ADAPTIVE_TIMER_PERIOD      300

bool CheckHighPower(struct net_device *dev)
{
	struct r8180_priv *priv = ieee80211_priv(dev);
	struct ieee80211_device *ieee = priv->ieee80211;

	if(!priv->bRegHighPowerMechanism)
	{
		return false;
	}

	if(ieee->state == IEEE80211_LINKED_SCANNING)
	{
		return false;
	}

	return true;
}

//
//	Description:
//		Update Tx power level if necessary.
//		See also DoRxHighPower() and SetTxPowerLevel8185() for reference.
//
//	Note:
//		The reason why we udpate Tx power level here instead of DoRxHighPower()
//		is the number of IO to change Tx power is much more than channel TR switch
//		and they are related to OFDM and MAC registers.
//		So, we don't want to update it so frequently in per-Rx packet base.
//
void
DoTxHighPower(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = ieee80211_priv(dev);
	u16			HiPwrUpperTh = 0;
	u16			HiPwrLowerTh = 0;
	u8			RSSIHiPwrUpperTh;
	u8			RSSIHiPwrLowerTh;
	u8			u1bTmp;
	char			OfdmTxPwrIdx, CckTxPwrIdx;

	//printk("----> DoTxHighPower()\n");

	HiPwrUpperTh = priv->RegHiPwrUpperTh;
	HiPwrLowerTh = priv->RegHiPwrLowerTh;

	HiPwrUpperTh = HiPwrUpperTh * 10;
	HiPwrLowerTh = HiPwrLowerTh * 10;
	RSSIHiPwrUpperTh = priv->RegRSSIHiPwrUpperTh;
	RSSIHiPwrLowerTh = priv->RegRSSIHiPwrLowerTh;

	//lzm add 080826
	OfdmTxPwrIdx  = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel];
	CckTxPwrIdx  = priv->chtxpwr[priv->ieee80211->current_network.channel];

	//	printk("DoTxHighPower() - UndecoratedSmoothedSS:%d, CurCCKRSSI = %d , bCurCCKPkt= %d \n", priv->UndecoratedSmoothedSS, priv->CurCCKRSSI, priv->bCurCCKPkt );

	if((priv->UndecoratedSmoothedSS > HiPwrUpperTh) ||
		(priv->bCurCCKPkt && (priv->CurCCKRSSI > RSSIHiPwrUpperTh)))
	{
		// Stevenl suggested that degrade 8dbm in high power sate. 2007-12-04 Isaiah

	//	printk("=====>DoTxHighPower() - High Power - UndecoratedSmoothedSS:%d,  HiPwrUpperTh = %d \n", priv->UndecoratedSmoothedSS, HiPwrUpperTh );
		priv->bToUpdateTxPwr = true;
		u1bTmp= read_nic_byte(dev, CCK_TXAGC);

		// If it never enter High Power.
		if( CckTxPwrIdx == u1bTmp)
		{
		u1bTmp = (u1bTmp > 16) ? (u1bTmp -16): 0;  // 8dbm
		write_nic_byte(dev, CCK_TXAGC, u1bTmp);

		u1bTmp= read_nic_byte(dev, OFDM_TXAGC);
		u1bTmp = (u1bTmp > 16) ? (u1bTmp -16): 0;  // 8dbm
		write_nic_byte(dev, OFDM_TXAGC, u1bTmp);
		}

	}
	else if((priv->UndecoratedSmoothedSS < HiPwrLowerTh) &&
		(!priv->bCurCCKPkt || priv->CurCCKRSSI < RSSIHiPwrLowerTh))
	{
	//	 printk("DoTxHighPower() - lower Power - UndecoratedSmoothedSS:%d,  HiPwrUpperTh = %d \n", priv->UndecoratedSmoothedSS, HiPwrLowerTh );
		if(priv->bToUpdateTxPwr)
		{
			priv->bToUpdateTxPwr = false;
			//SD3 required.
			u1bTmp= read_nic_byte(dev, CCK_TXAGC);
			if(u1bTmp < CckTxPwrIdx)
			{
			//u1bTmp = ((u1bTmp+16) > 35) ? 35: (u1bTmp+16);  // 8dbm
			//write_nic_byte(dev, CCK_TXAGC, u1bTmp);
			write_nic_byte(dev, CCK_TXAGC, CckTxPwrIdx);
			}

			u1bTmp= read_nic_byte(dev, OFDM_TXAGC);
			if(u1bTmp < OfdmTxPwrIdx)
			{
			//u1bTmp = ((u1bTmp+16) > 35) ? 35: (u1bTmp+16);  // 8dbm
			//write_nic_byte(dev, OFDM_TXAGC, u1bTmp);
			write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx);
			}
		}
	}

	//printk("<---- DoTxHighPower()\n");
}


//
//	Description:
//		Callback function of UpdateTxPowerWorkItem.
//		Because of some event happened, e.g. CCX TPC, High Power Mechanism,
//		We update Tx power of current channel again.
//
void rtl8180_tx_pw_wq (struct work_struct *work)
{
//      struct r8180_priv *priv = container_of(work, struct r8180_priv, watch_dog_wq);
//      struct ieee80211_device * ieee = (struct ieee80211_device*)
//                                             container_of(work, struct ieee80211_device, watch_dog_wq);
	struct delayed_work *dwork = to_delayed_work(work);
        struct ieee80211_device *ieee = container_of(dwork,struct ieee80211_device,tx_pw_wq);
        struct net_device *dev = ieee->dev;

//	printk("----> UpdateTxPowerWorkItemCallback()\n");

	DoTxHighPower(dev);

//	printk("<---- UpdateTxPowerWorkItemCallback()\n");
}


//
//	Description:
//		Return TRUE if we shall perform DIG Mecahnism, FALSE otherwise.
//
bool
CheckDig(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = ieee80211_priv(dev);
	struct ieee80211_device *ieee = priv->ieee80211;

	if(!priv->bDigMechanism)
		return false;

	if(ieee->state != IEEE80211_LINKED)
		return false;

	//if(priv->CurrentOperaRate < 36) // Schedule Dig under all OFDM rates. By Bruce, 2007-06-01.
	if((priv->ieee80211->rate/5) < 36) // Schedule Dig under all OFDM rates. By Bruce, 2007-06-01.
		return false;
	return true;
}
//
//	Description:
//		Implementation of DIG for Zebra and Zebra2.
//
void
DIG_Zebra(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = ieee80211_priv(dev);
	u16			CCKFalseAlarm, OFDMFalseAlarm;
	u16			OfdmFA1, OfdmFA2;
	int			InitialGainStep = 7; // The number of initial gain stages.
	int			LowestGainStage = 4; // The capable lowest stage of performing dig workitem.
	u32 			AwakePeriodIn2Sec=0;

	//printk("---------> DIG_Zebra()\n");

	CCKFalseAlarm = (u16)(priv->FalseAlarmRegValue & 0x0000ffff);
	OFDMFalseAlarm = (u16)((priv->FalseAlarmRegValue >> 16) & 0x0000ffff);
	OfdmFA1 =  0x15;
	OfdmFA2 = ((u16)(priv->RegDigOfdmFaUpTh)) << 8;

//	printk("DIG**********CCK False Alarm: %#X \n",CCKFalseAlarm);
//	printk("DIG**********OFDM False Alarm: %#X \n",OFDMFalseAlarm);

        // The number of initial gain steps is different, by Bruce, 2007-04-13.
	if (priv->InitialGain == 0 ) //autoDIG
	{ // Advised from SD3 DZ
		priv->InitialGain = 4; // In 87B, m74dBm means State 4 (m82dBm)
	}
	{ // Advised from SD3 DZ
		OfdmFA1 =  0x20;
	}

#if 1 //lzm reserved 080826
	AwakePeriodIn2Sec = (2000-priv ->DozePeriodInPast2Sec);
	//printk("&&& DozePeriod=%d AwakePeriod=%d\n", priv->DozePeriodInPast2Sec, AwakePeriodIn2Sec);
	priv ->DozePeriodInPast2Sec=0;

	if(AwakePeriodIn2Sec)
	{
		//RT_TRACE(COMP_DIG, DBG_TRACE, ("DIG: AwakePeriodIn2Sec(%d) - FATh(0x%X , 0x%X) ->",AwakePeriodIn2Sec, OfdmFA1, OfdmFA2));
		// adjuest DIG threshold.
		OfdmFA1 =  (u16)((OfdmFA1*AwakePeriodIn2Sec)  / 2000) ;
		OfdmFA2 =  (u16)((OfdmFA2*AwakePeriodIn2Sec)  / 2000) ;
		//RT_TRACE(COMP_DIG, DBG_TRACE, ("( 0x%X , 0x%X)\n", OfdmFA1, OfdmFA2));
	}
	else
	{
		;//RT_TRACE(COMP_DIG, DBG_WARNING, ("ERROR!!  AwakePeriodIn2Sec should not be ZERO!!\n"));
	}
#endif

	InitialGainStep = 8;
	LowestGainStage = priv->RegBModeGainStage; // Lowest gain stage.

	if (OFDMFalseAlarm > OfdmFA1)
	{
		if (OFDMFalseAlarm > OfdmFA2)
		{
			priv->DIG_NumberFallbackVote++;
			if (priv->DIG_NumberFallbackVote >1)
			{
				//serious OFDM  False Alarm, need fallback
				if (priv->InitialGain < InitialGainStep)
				{
					priv->InitialGainBackUp= priv->InitialGain;

					priv->InitialGain = (priv->InitialGain + 1);
//					printk("DIG**********OFDM False Alarm: %#X,  OfdmFA1: %#X, OfdmFA2: %#X\n", OFDMFalseAlarm, OfdmFA1, OfdmFA2);
//					printk("DIG+++++++ fallback OFDM:%d \n", priv->InitialGain);
					UpdateInitialGain(dev);
				}
				priv->DIG_NumberFallbackVote = 0;
				priv->DIG_NumberUpgradeVote=0;
			}
		}
		else
		{
			if (priv->DIG_NumberFallbackVote)
				priv->DIG_NumberFallbackVote--;
		}
		priv->DIG_NumberUpgradeVote=0;
	}
	else
	{
		if (priv->DIG_NumberFallbackVote)
			priv->DIG_NumberFallbackVote--;
		priv->DIG_NumberUpgradeVote++;

		if (priv->DIG_NumberUpgradeVote>9)
		{
			if (priv->InitialGain > LowestGainStage) // In 87B, m78dBm means State 4 (m864dBm)
			{
				priv->InitialGainBackUp= priv->InitialGain;

				priv->InitialGain = (priv->InitialGain - 1);
//				printk("DIG**********OFDM False Alarm: %#X,  OfdmFA1: %#X, OfdmFA2: %#X\n", OFDMFalseAlarm, OfdmFA1, OfdmFA2);
//				printk("DIG--------- Upgrade OFDM:%d \n", priv->InitialGain);
				UpdateInitialGain(dev);
			}
			priv->DIG_NumberFallbackVote = 0;
			priv->DIG_NumberUpgradeVote=0;
		}
	}

//	printk("DIG+++++++ OFDM:%d\n", priv->InitialGain);
	//printk("<--------- DIG_Zebra()\n");
}

//
//	Description:
//		Dispatch DIG implementation according to RF.
//
void
DynamicInitGain(struct net_device *dev)
{
	DIG_Zebra(dev);
}

void rtl8180_hw_dig_wq (struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
        struct ieee80211_device *ieee = container_of(dwork,struct ieee80211_device,hw_dig_wq);
        struct net_device *dev = ieee->dev;
	struct r8180_priv *priv = ieee80211_priv(dev);

	// Read CCK and OFDM False Alarm.
	priv->FalseAlarmRegValue = read_nic_dword(dev, CCK_FALSE_ALARM);


	// Adjust Initial Gain dynamically.
	DynamicInitGain(dev);

}

int
IncludedInSupportedRates(
        struct r8180_priv       *priv,
        u8              TxRate  )
{
    u8 rate_len;
        u8 rate_ex_len;
        u8                      RateMask = 0x7F;
        u8                      idx;
        unsigned short          Found = 0;
        u8                      NaiveTxRate = TxRate&RateMask;

    rate_len = priv->ieee80211->current_network.rates_len;
        rate_ex_len = priv->ieee80211->current_network.rates_ex_len;
        for( idx=0; idx< rate_len; idx++ )
        {
                if( (priv->ieee80211->current_network.rates[idx] & RateMask) == NaiveTxRate )
                {
                        Found = 1;
                        goto found_rate;
                }
        }
    for( idx=0; idx< rate_ex_len; idx++ )
        {
                if( (priv->ieee80211->current_network.rates_ex[idx] & RateMask) == NaiveTxRate )
                {
                        Found = 1;
                        goto found_rate;
                }
        }
        return Found;
        found_rate:
        return Found;
}

//
//      Description:
//              Get the Tx rate one degree up form the input rate in the supported rates.
//              Return the upgrade rate if it is successed, otherwise return the input rate.
//      By Bruce, 2007-06-05.
//
u8
GetUpgradeTxRate(
        struct net_device *dev,
        u8                              rate
        )
{
        struct r8180_priv *priv = ieee80211_priv(dev);
        u8                      UpRate;

        // Upgrade 1 degree.
        switch(rate)
        {
        case 108: // Up to 54Mbps.
                UpRate = 108;
                break;

        case 96: // Up to 54Mbps.
                UpRate = 108;
                break;

        case 72: // Up to 48Mbps.
                UpRate = 96;
                break;

        case 48: // Up to 36Mbps.
                UpRate = 72;
                break;

        case 36: // Up to 24Mbps.
                UpRate = 48;
                break;

        case 22: // Up to 18Mbps.
                UpRate = 36;
                break;

        case 11: // Up to 11Mbps.
                UpRate = 22;
                break;

        case 4: // Up to 5.5Mbps.
                UpRate = 11;
                break;

        case 2: // Up to 2Mbps.
                UpRate = 4;
                break;

        default:
                printk("GetUpgradeTxRate(): Input Tx Rate(%d) is undefined!\n", rate);
                return rate;
        }
        // Check if the rate is valid.
        if(IncludedInSupportedRates(priv, UpRate))
        {
//              printk("GetUpgradeTxRate(): GetUpgrade Tx rate(%d) from %d !\n", UpRate, priv->CurrentOperaRate);
                return UpRate;
        }
        else
        {
                //printk("GetUpgradeTxRate(): Tx rate (%d) is not in supported rates\n", UpRate);
                return rate;
        }
        return rate;
}
//
//      Description:
//              Get the Tx rate one degree down form the input rate in the supported rates.
//              Return the degrade rate if it is successed, otherwise return the input rate.
//      By Bruce, 2007-06-05.
//
u8
GetDegradeTxRate(
        struct net_device *dev,
        u8         rate
        )
{
        struct r8180_priv *priv = ieee80211_priv(dev);
        u8                      DownRate;

        // Upgrade 1 degree.
        switch(rate)
        {
        case 108: // Down to 48Mbps.
                DownRate = 96;
                break;

        case 96: // Down to 36Mbps.
                DownRate = 72;
                break;

        case 72: // Down to 24Mbps.
                DownRate = 48;
                break;

        case 48: // Down to 18Mbps.
                DownRate = 36;
                break;

        case 36: // Down to 11Mbps.
                DownRate = 22;
                break;

        case 22: // Down to 5.5Mbps.
                DownRate = 11;
                break;

        case 11: // Down to 2Mbps.
                DownRate = 4;
                break;

        case 4: // Down to 1Mbps.
                DownRate = 2;
                break;

        case 2: // Down to 1Mbps.
                DownRate = 2;
                break;

        default:
                printk("GetDegradeTxRate(): Input Tx Rate(%d) is undefined!\n", rate);
                return rate;
        }
        // Check if the rate is valid.
        if(IncludedInSupportedRates(priv, DownRate))
        {
//              printk("GetDegradeTxRate(): GetDegrade Tx rate(%d) from %d!\n", DownRate, priv->CurrentOperaRate);
                return DownRate;
        }
        else
        {
                //printk("GetDegradeTxRate(): Tx rate (%d) is not in supported rates\n", DownRate);
                return rate;
        }
        return rate;
}
//
//      Helper function to determine if specified data rate is
//      CCK rate.
//      2005.01.25, by rcnjko.
//
bool
MgntIsCckRate(
        u16     rate
        )
{
        bool bReturn = false;

        if((rate <= 22) && (rate != 12) && (rate != 18))
        {
                bReturn = true;
        }

        return bReturn;
}
//
//	Description:
//		Tx Power tracking mechanism routine on 87SE.
// 	Created by Roger, 2007.12.11.
//
void
TxPwrTracking87SE(
	struct net_device *dev
)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	u8	tmpu1Byte, CurrentThermal, Idx;
	char	CckTxPwrIdx, OfdmTxPwrIdx;
	//u32	u4bRfReg;

	tmpu1Byte = read_nic_byte(dev, EN_LPF_CAL);
	CurrentThermal = (tmpu1Byte & 0xf0)>>4; //[ 7:4]: thermal meter indication.
	CurrentThermal = (CurrentThermal>0x0c)? 0x0c:CurrentThermal;//lzm add 080826

	//printk("TxPwrTracking87SE(): CurrentThermal(%d)\n", CurrentThermal);

	if( CurrentThermal != priv->ThermalMeter)
	{
//		printk("TxPwrTracking87SE(): Thermal meter changed!!!\n");

		// Update Tx Power level on each channel.
		for(Idx = 1; Idx<15; Idx++)
		{
			CckTxPwrIdx = priv->chtxpwr[Idx];
			OfdmTxPwrIdx = priv->chtxpwr_ofdm[Idx];

			if( CurrentThermal > priv->ThermalMeter )
			{ // higher thermal meter.
				CckTxPwrIdx += (CurrentThermal - priv->ThermalMeter)*2;
				OfdmTxPwrIdx += (CurrentThermal - priv->ThermalMeter)*2;

				if(CckTxPwrIdx >35)
					CckTxPwrIdx = 35; // Force TxPower to maximal index.
				if(OfdmTxPwrIdx >35)
					OfdmTxPwrIdx = 35;
			}
			else
			{ // lower thermal meter.
				CckTxPwrIdx -= (priv->ThermalMeter - CurrentThermal)*2;
				OfdmTxPwrIdx -= (priv->ThermalMeter - CurrentThermal)*2;

				if(CckTxPwrIdx <0)
					CckTxPwrIdx = 0;
				if(OfdmTxPwrIdx <0)
					OfdmTxPwrIdx = 0;
			}

			// Update TxPower level on CCK and OFDM resp.
			priv->chtxpwr[Idx] = CckTxPwrIdx;
			priv->chtxpwr_ofdm[Idx] = OfdmTxPwrIdx;
		}

		// Update TxPower level immediately.
		rtl8225z2_SetTXPowerLevel(dev, priv->ieee80211->current_network.channel);
	}
	priv->ThermalMeter = CurrentThermal;
}
void
StaRateAdaptive87SE(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	unsigned long 			CurrTxokCnt;
	u16			CurrRetryCnt;
	u16			CurrRetryRate;
	//u16			i,idx;
	unsigned long       	CurrRxokCnt;
	bool			bTryUp = false;
	bool			bTryDown = false;
	u8			TryUpTh = 1;
	u8			TryDownTh = 2;
	u32			TxThroughput;
	long		CurrSignalStrength;
	bool		bUpdateInitialGain = false;
    	u8			u1bOfdm=0, u1bCck = 0;
	char		OfdmTxPwrIdx, CckTxPwrIdx;

	priv->RateAdaptivePeriod= RATE_ADAPTIVE_TIMER_PERIOD;


	CurrRetryCnt	= priv->CurrRetryCnt;
	CurrTxokCnt	= priv->NumTxOkTotal - priv->LastTxokCnt;
	CurrRxokCnt	= priv->ieee80211->NumRxOkTotal - priv->LastRxokCnt;
	CurrSignalStrength = priv->Stats_RecvSignalPower;
	TxThroughput = (u32)(priv->NumTxOkBytesTotal - priv->LastTxOKBytes);
	priv->LastTxOKBytes = priv->NumTxOkBytesTotal;
	priv->CurrentOperaRate = priv->ieee80211->rate/5;
	//printk("priv->CurrentOperaRate is %d\n",priv->CurrentOperaRate);
	//2 Compute retry ratio.
	if (CurrTxokCnt>0)
	{
		CurrRetryRate = (u16)(CurrRetryCnt*100/CurrTxokCnt);
	}
	else
	{ // It may be serious retry. To distinguish serious retry or no packets modified by Bruce
		CurrRetryRate = (u16)(CurrRetryCnt*100/1);
	}


	//
	// Added by Roger, 2007.01.02.
	// For debug information.
	//
	//printk("\n(1) pHalData->LastRetryRate: %d \n",priv->LastRetryRate);
	//printk("(2) RetryCnt = %d  \n", CurrRetryCnt);
	//printk("(3) TxokCnt = %d \n", CurrTxokCnt);
	//printk("(4) CurrRetryRate = %d \n", CurrRetryRate);
	//printk("(5) CurrSignalStrength = %d \n",CurrSignalStrength);
	//printk("(6) TxThroughput is %d\n",TxThroughput);
	//printk("priv->NumTxOkBytesTotal is %d\n",priv->NumTxOkBytesTotal);

	priv->LastRetryCnt = priv->CurrRetryCnt;
	priv->LastTxokCnt = priv->NumTxOkTotal;
	priv->LastRxokCnt = priv->ieee80211->NumRxOkTotal;
	priv->CurrRetryCnt = 0;

	//2No Tx packets, return to init_rate or not?
	if (CurrRetryRate==0 && CurrTxokCnt == 0)
	{
		//
		//After 9 (30*300ms) seconds in this condition, we try to raise rate.
		//
		priv->TryupingCountNoData++;

//		printk("No Tx packets, TryupingCountNoData(%d)\n", priv->TryupingCountNoData);
		//[TRC Dell Lab] Extend raised period from 4.5sec to 9sec, Isaiah 2008-02-15 18:00
		if (priv->TryupingCountNoData>30)
		{
			priv->TryupingCountNoData = 0;
		 	priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate);
			// Reset Fail Record
			priv->LastFailTxRate = 0;
			priv->LastFailTxRateSS = -200;
			priv->FailTxRateCount = 0;
		}
		goto SetInitialGain;
	}
        else
	{
		priv->TryupingCountNoData=0; //Reset trying up times.
	}


	//
	// For Netgear case, I comment out the following signal strength estimation,
	// which can results in lower rate to transmit when sample is NOT enough (e.g. PING request).
	// 2007.04.09, by Roger.
	//

	//
	// Restructure rate adaptive as the following main stages:
	// (1) Add retry threshold in 54M upgrading condition with signal strength.
	// (2) Add the mechanism to degrade to CCK rate according to signal strength
	//		and retry rate.
	// (3) Remove all Initial Gain Updates over OFDM rate. To avoid the complicated
	//		situation, Initial Gain Update is upon on DIG mechanism except CCK rate.
	// (4) Add the mehanism of trying to upgrade tx rate.
	// (5) Record the information of upping tx rate to avoid trying upping tx rate constantly.
	// By Bruce, 2007-06-05.
	//
	//

	// 11Mbps or 36Mbps
	// Check more times in these rate(key rates).
	//
	if(priv->CurrentOperaRate == 22 || priv->CurrentOperaRate == 72)
	{
		TryUpTh += 9;
	}
	//
	// Let these rates down more difficult.
	//
	if(MgntIsCckRate(priv->CurrentOperaRate) || priv->CurrentOperaRate == 36)
	{
			TryDownTh += 1;
	}

	//1 Adjust Rate.
	if (priv->bTryuping == true)
	{
		//2 For Test Upgrading mechanism
		// Note:
		// 	Sometimes the throughput is upon on the capability bwtween the AP and NIC,
		// 	thus the low data rate does not improve the performance.
		// 	We randomly upgrade the data rate and check if the retry rate is improved.

		// Upgrading rate did not improve the retry rate, fallback to the original rate.
		if ( (CurrRetryRate > 25) && TxThroughput < priv->LastTxThroughput)
		{
			//Not necessary raising rate, fall back rate.
			bTryDown = true;
			//printk("case1-1: Not necessary raising rate, fall back rate....\n");
			//printk("case1-1: pMgntInfo->CurrentOperaRate =%d, TxThroughput = %d, LastThroughput = %d\n",
			//		priv->CurrentOperaRate, TxThroughput, priv->LastTxThroughput);
		}
		else
		{
			priv->bTryuping = false;
		}
	}
	else if (CurrSignalStrength > -47 && (CurrRetryRate < 50))
	{
		//2For High Power
		//
		// Added by Roger, 2007.04.09.
		// Return to highest data rate, if signal strength is good enough.
		// SignalStrength threshold(-50dbm) is for RTL8186.
		// Revise SignalStrength threshold to -51dbm.
		//
		// Also need to check retry rate for safety, by Bruce, 2007-06-05.
		if(priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate )
		{
			bTryUp = true;
			// Upgrade Tx Rate directly.
			priv->TryupingCount += TryUpTh;
		}
//		printk("case2: StaRateAdaptive87SE: Power(%d) is high enough!!. \n", CurrSignalStrength);

	}
	else if(CurrTxokCnt > 9 && CurrTxokCnt< 100 && CurrRetryRate >= 600)
	{
		//2 For Serious Retry
		//
		// Traffic is not busy but our Tx retry is serious.
		//
		bTryDown = true;
		// Let Rate Mechanism to degrade tx rate directly.
		priv->TryDownCountLowData += TryDownTh;
//		printk("case3: RA: Tx Retry is serious. Degrade Tx Rate to %d directly...\n", priv->CurrentOperaRate);
	}
	else if ( priv->CurrentOperaRate == 108 )
	{
		//2For 54Mbps
		// Air Link
		if ( (CurrRetryRate>26)&&(priv->LastRetryRate>25))
//		if ( (CurrRetryRate>40)&&(priv->LastRetryRate>39))
		{
			//Down to rate 48Mbps.
			bTryDown = true;
		}
		// Cable Link
		else if ( (CurrRetryRate>17)&&(priv->LastRetryRate>16) && (CurrSignalStrength > -72))
//		else if ( (CurrRetryRate>17)&&(priv->LastRetryRate>16) && (CurrSignalStrength > -72))
		{
			//Down to rate 48Mbps.
			bTryDown = true;
		}

		if(bTryDown && (CurrSignalStrength < -75)) //cable link
		{
			priv->TryDownCountLowData += TryDownTh;
		}
		//printk("case4---54M \n");

	}
	else if ( priv->CurrentOperaRate == 96 )
	{
		//2For 48Mbps
		//Air Link
		if ( ((CurrRetryRate>48) && (priv->LastRetryRate>47)))
//		if ( ((CurrRetryRate>65) && (priv->LastRetryRate>64)))

		{
			//Down to rate 36Mbps.
			bTryDown = true;
		}
		//Cable Link
		else if ( ((CurrRetryRate>21) && (priv->LastRetryRate>20)) && (CurrSignalStrength > -74))
		{
			//Down to rate 36Mbps.
			bTryDown = true;
		}
		else if((CurrRetryRate>  (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 ))
//		else if((CurrRetryRate>  (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 ))
		{
			bTryDown = true;
			priv->TryDownCountLowData += TryDownTh;
		}
		else if ( (CurrRetryRate<8) && (priv->LastRetryRate<8) ) //TO DO: need to consider (RSSI)
//		else if ( (CurrRetryRate<28) && (priv->LastRetryRate<8) )
		{
			bTryUp = true;
		}

		if(bTryDown && (CurrSignalStrength < -75))
		{
			priv->TryDownCountLowData += TryDownTh;
		}
		//printk("case5---48M \n");
	}
	else if ( priv->CurrentOperaRate == 72 )
	{
		//2For 36Mbps
		if ( (CurrRetryRate>43) && (priv->LastRetryRate>41))
//		if ( (CurrRetryRate>60) && (priv->LastRetryRate>59))
		{
			//Down to rate 24Mbps.
			bTryDown = true;
		}
		else if((CurrRetryRate>  (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 ))
//		else if((CurrRetryRate>  (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 ))
		{
			bTryDown = true;
			priv->TryDownCountLowData += TryDownTh;
		}
		else if ( (CurrRetryRate<15) &&  (priv->LastRetryRate<16)) //TO DO: need to consider (RSSI)
//		else if ( (CurrRetryRate<35) &&  (priv->LastRetryRate<36))
		{
			bTryUp = true;
		}

		if(bTryDown && (CurrSignalStrength < -80))
		{
			priv->TryDownCountLowData += TryDownTh;
		}
		//printk("case6---36M \n");
	}
	else if ( priv->CurrentOperaRate == 48 )
	{
		//2For 24Mbps
		// Air Link
		if ( ((CurrRetryRate>63) && (priv->LastRetryRate>62)))
//		if ( ((CurrRetryRate>83) && (priv->LastRetryRate>82)))
		{
			//Down to rate 18Mbps.
			bTryDown = true;
		}
		//Cable Link
		else if ( ((CurrRetryRate>33) && (priv->LastRetryRate>32)) && (CurrSignalStrength > -82) )
//		 else if ( ((CurrRetryRate>50) && (priv->LastRetryRate>49)) && (CurrSignalStrength > -82) )
		{
			//Down to rate 18Mbps.
			bTryDown = true;
		}
		else if((CurrRetryRate>  (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 ))
//		else if((CurrRetryRate>  (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 ))

		{
			bTryDown = true;
			priv->TryDownCountLowData += TryDownTh;
		}
  		else if ( (CurrRetryRate<20) && (priv->LastRetryRate<21)) //TO DO: need to consider (RSSI)
//		else if ( (CurrRetryRate<40) && (priv->LastRetryRate<41))
		{
			bTryUp = true;
		}

		if(bTryDown && (CurrSignalStrength < -82))
		{
			priv->TryDownCountLowData += TryDownTh;
		}
		//printk("case7---24M \n");
	}
	else if ( priv->CurrentOperaRate == 36 )
	{
		//2For 18Mbps
		// original (109, 109)
		//[TRC Dell Lab] (90, 91), Isaiah 2008-02-18 23:24
		//			     (85, 86), Isaiah 2008-02-18 24:00
		if ( ((CurrRetryRate>85) && (priv->LastRetryRate>86)))
//		if ( ((CurrRetryRate>115) && (priv->LastRetryRate>116)))
		{
			//Down to rate 11Mbps.
			bTryDown = true;
		}
		//[TRC Dell Lab]  Isaiah 2008-02-18 23:24
		else if((CurrRetryRate>  (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 ))
//		else if((CurrRetryRate>  (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 ))
		{
			bTryDown = true;
			priv->TryDownCountLowData += TryDownTh;
		}
		else if ( (CurrRetryRate<22) && (priv->LastRetryRate<23)) //TO DO: need to consider (RSSI)
//		else if ( (CurrRetryRate<42) && (priv->LastRetryRate<43))
		{
			bTryUp = true;
		}
		//printk("case8---18M \n");
	}
	else if ( priv->CurrentOperaRate == 22 )
	{
		//2For 11Mbps
		if (CurrRetryRate>95)
//		if (CurrRetryRate>155)
		{
			bTryDown = true;
		}
		else if ( (CurrRetryRate<29) && (priv->LastRetryRate <30) )//TO DO: need to consider (RSSI)
//		else if ( (CurrRetryRate<49) && (priv->LastRetryRate <50) )
			{
			bTryUp = true;
			}
		//printk("case9---11M \n");
		}
	else if ( priv->CurrentOperaRate == 11 )
	{
		//2For 5.5Mbps
		if (CurrRetryRate>149)
//		if (CurrRetryRate>189)
		{
			bTryDown = true;
		}
		else if ( (CurrRetryRate<60) && (priv->LastRetryRate < 65))
//		else if ( (CurrRetryRate<80) && (priv->LastRetryRate < 85))

			{
			bTryUp = true;
			}
		//printk("case10---5.5M \n");
		}
	else if ( priv->CurrentOperaRate == 4 )
	{
		//2For 2 Mbps
		if((CurrRetryRate>99) && (priv->LastRetryRate>99))
//		if((CurrRetryRate>199) && (priv->LastRetryRate>199))
		{
			bTryDown = true;
		}
		else if ( (CurrRetryRate < 65) && (priv->LastRetryRate < 70))
//		else if ( (CurrRetryRate < 85) && (priv->LastRetryRate < 90))
		{
			bTryUp = true;
		}
		//printk("case11---2M \n");
	}
	else if ( priv->CurrentOperaRate == 2 )
	{
		//2For 1 Mbps
		if( (CurrRetryRate<70) && (priv->LastRetryRate<75))
//		if( (CurrRetryRate<90) && (priv->LastRetryRate<95))
		{
			bTryUp = true;
		}
		//printk("case12---1M \n");
	}

	if(bTryUp && bTryDown)
    	printk("StaRateAdaptive87B(): Tx Rate tried upping and downing simultaneously!\n");

	//1 Test Upgrading Tx Rate
	// Sometimes the cause of the low throughput (high retry rate) is the compatibility between the AP and NIC.
	// To test if the upper rate may cause lower retry rate, this mechanism randomly occurs to test upgrading tx rate.
	if(!bTryUp && !bTryDown && (priv->TryupingCount == 0) && (priv->TryDownCountLowData == 0)
		&& priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate && priv->FailTxRateCount < 2)
	{
		if(jiffies% (CurrRetryRate + 101) == 0)
		{
			bTryUp = true;
			priv->bTryuping = true;
			//printk("StaRateAdaptive87SE(): Randomly try upgrading...\n");
		}
	}

	//1 Rate Mechanism
	if(bTryUp)
	{
		priv->TryupingCount++;
		priv->TryDownCountLowData = 0;

		{
//			printk("UP: pHalData->TryupingCount = %d\n", priv->TryupingCount);
//			printk("UP: TryUpTh(%d)+ (FailTxRateCount(%d))^2 =%d\n",
//				TryUpTh, priv->FailTxRateCount, (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount) );
//			printk("UP: pHalData->bTryuping=%d\n",  priv->bTryuping);

		}

		//
		// Check more times if we need to upgrade indeed.
		// Because the largest value of pHalData->TryupingCount is 0xFFFF and
		// the largest value of pHalData->FailTxRateCount is 0x14,
		// this condition will be satisfied at most every 2 min.
		//

		if((priv->TryupingCount > (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount)) ||
			(CurrSignalStrength > priv->LastFailTxRateSS) || priv->bTryuping)
		{
			priv->TryupingCount = 0;
			//
			// When transferring from CCK to OFDM, DIG is an important issue.
			//
			if(priv->CurrentOperaRate == 22)
				bUpdateInitialGain = true;

			// The difference in throughput between 48Mbps and 36Mbps is 8M.
			// So, we must be carefully in this rate scale. Isaiah 2008-02-15.
			//
			if(  ((priv->CurrentOperaRate == 72) || (priv->CurrentOperaRate == 48) || (priv->CurrentOperaRate == 36)) &&
				(priv->FailTxRateCount > 2) )
				priv->RateAdaptivePeriod= (RATE_ADAPTIVE_TIMER_PERIOD/2);

			// (1)To avoid upgrade frequently to the fail tx rate, add the FailTxRateCount into the threshold.
			// (2)If the signal strength is increased, it may be able to upgrade.

			priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate);
//			printk("StaRateAdaptive87SE(): Upgrade Tx Rate to %d\n", priv->CurrentOperaRate);

			//[TRC Dell Lab] Bypass 12/9/6, Isaiah 2008-02-18 20:00
			if(priv->CurrentOperaRate ==36)
			{
				priv->bUpdateARFR=true;
				write_nic_word(dev, ARFR, 0x0F8F); //bypass 12/9/6
//				printk("UP: ARFR=0xF8F\n");
			}
			else if(priv->bUpdateARFR)
			{
				priv->bUpdateARFR=false;
				write_nic_word(dev, ARFR, 0x0FFF); //set 1M ~ 54Mbps.
//				printk("UP: ARFR=0xFFF\n");
			}

			// Update Fail Tx rate and count.
			if(priv->LastFailTxRate != priv->CurrentOperaRate)
			{
				priv->LastFailTxRate = priv->CurrentOperaRate;
				priv->FailTxRateCount = 0;
				priv->LastFailTxRateSS = -200; // Set lowest power.
			}
		}
	}
	else
	{
		if(priv->TryupingCount > 0)
			priv->TryupingCount --;
	}

	if(bTryDown)
	{
		priv->TryDownCountLowData++;
		priv->TryupingCount = 0;
		{
//			printk("DN: pHalData->TryDownCountLowData = %d\n",priv->TryDownCountLowData);
//			printk("DN: TryDownTh =%d\n", TryDownTh);
//			printk("DN: pHalData->bTryuping=%d\n",  priv->bTryuping);
		}

		//Check if Tx rate can be degraded or Test trying upgrading should fallback.
		if(priv->TryDownCountLowData > TryDownTh || priv->bTryuping)
		{
			priv->TryDownCountLowData = 0;
			priv->bTryuping = false;
			// Update fail information.
			if(priv->LastFailTxRate == priv->CurrentOperaRate)
			{
				priv->FailTxRateCount ++;
				// Record the Tx fail rate signal strength.
				if(CurrSignalStrength > priv->LastFailTxRateSS)
				{
					priv->LastFailTxRateSS = CurrSignalStrength;
				}
			}
			else
			{
				priv->LastFailTxRate = priv->CurrentOperaRate;
				priv->FailTxRateCount = 1;
				priv->LastFailTxRateSS = CurrSignalStrength;
			}
			priv->CurrentOperaRate = GetDegradeTxRate(dev, priv->CurrentOperaRate);

			// Reduce chariot training time at weak signal strength situation. SD3 ED demand.
			//[TRC Dell Lab] Revise Signal Threshold from -75 to -80 , Isaiah 2008-02-18 20:00
			if( (CurrSignalStrength < -80) && (priv->CurrentOperaRate > 72 ))
			{
				priv->CurrentOperaRate = 72;
//				printk("DN: weak signal strength (%d), degrade to 36Mbps\n", CurrSignalStrength);
			}

			//[TRC Dell Lab] Bypass 12/9/6, Isaiah 2008-02-18 20:00
			if(priv->CurrentOperaRate ==36)
			{
				priv->bUpdateARFR=true;
				write_nic_word(dev, ARFR, 0x0F8F); //bypass 12/9/6
//				printk("DN: ARFR=0xF8F\n");
			}
			else if(priv->bUpdateARFR)
			{
				priv->bUpdateARFR=false;
				write_nic_word(dev, ARFR, 0x0FFF); //set 1M ~ 54Mbps.
//				printk("DN: ARFR=0xFFF\n");
			}

			//
			// When it is CCK rate, it may need to update initial gain to receive lower power packets.
			//
			if(MgntIsCckRate(priv->CurrentOperaRate))
			{
				bUpdateInitialGain = true;
			}
//			printk("StaRateAdaptive87SE(): Degrade Tx Rate to %d\n", priv->CurrentOperaRate);
		}
	}
	else
	{
		if(priv->TryDownCountLowData > 0)
			priv->TryDownCountLowData --;
	}

	// Keep the Tx fail rate count to equal to 0x15 at most.
	// Reduce the fail count at least to 10 sec if tx rate is tending stable.
	if(priv->FailTxRateCount >= 0x15 ||
		(!bTryUp && !bTryDown && priv->TryDownCountLowData == 0 && priv->TryupingCount && priv->FailTxRateCount > 0x6))
	{
		priv->FailTxRateCount --;
	}


	OfdmTxPwrIdx  = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel];
	CckTxPwrIdx  = priv->chtxpwr[priv->ieee80211->current_network.channel];

	//[TRC Dell Lab] Mac0x9e increase 2 level in 36M~18M situation, Isaiah 2008-02-18 24:00
	if((priv->CurrentOperaRate < 96) &&(priv->CurrentOperaRate > 22))
	{
		u1bCck = read_nic_byte(dev, CCK_TXAGC);
		u1bOfdm = read_nic_byte(dev, OFDM_TXAGC);

		// case 1: Never enter High power
		if(u1bCck == CckTxPwrIdx )
		{
			if(u1bOfdm != (OfdmTxPwrIdx+2) )
			{
			priv->bEnhanceTxPwr= true;
			u1bOfdm = ((u1bOfdm+2) > 35) ? 35: (u1bOfdm+2);
			write_nic_byte(dev, OFDM_TXAGC, u1bOfdm);
//			printk("Enhance OFDM_TXAGC : +++++ u1bOfdm= 0x%x\n", u1bOfdm);
			}
		}
		// case 2: enter high power
		else if(u1bCck < CckTxPwrIdx)
		{
			if(!priv->bEnhanceTxPwr)
			{
				priv->bEnhanceTxPwr= true;
				u1bOfdm = ((u1bOfdm+2) > 35) ? 35: (u1bOfdm+2);
				write_nic_byte(dev, OFDM_TXAGC, u1bOfdm);
				//RT_TRACE(COMP_RATE, DBG_TRACE, ("Enhance OFDM_TXAGC(2) : +++++ u1bOfdm= 0x%x\n", u1bOfdm));
			}
		}
	}
	else if(priv->bEnhanceTxPwr)  //54/48/11/5.5/2/1
	{
		u1bCck = read_nic_byte(dev, CCK_TXAGC);
		u1bOfdm = read_nic_byte(dev, OFDM_TXAGC);

		// case 1: Never enter High power
		if(u1bCck == CckTxPwrIdx )
		{
		priv->bEnhanceTxPwr= false;
		write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx);
		//printk("Recover OFDM_TXAGC : ===== u1bOfdm= 0x%x\n", OfdmTxPwrIdx);
		}
		// case 2: enter high power
		else if(u1bCck < CckTxPwrIdx)
		{
			priv->bEnhanceTxPwr= false;
			u1bOfdm = ((u1bOfdm-2) > 0) ? (u1bOfdm-2): 0;
			write_nic_byte(dev, OFDM_TXAGC, u1bOfdm);
			//RT_TRACE(COMP_RATE, DBG_TRACE, ("Recover OFDM_TXAGC(2): ===== u1bOfdm= 0x%x\n", u1bOfdm));

		}
	}

	//
	// We need update initial gain when we set tx rate "from OFDM to CCK" or
	// "from CCK to OFDM".
	//
SetInitialGain:
	if(bUpdateInitialGain)
	{
		if(MgntIsCckRate(priv->CurrentOperaRate)) // CCK
		{
			if(priv->InitialGain > priv->RegBModeGainStage)
			{
				priv->InitialGainBackUp= priv->InitialGain;

				if(CurrSignalStrength < -85) // Low power, OFDM [0x17] = 26.
				{
					//SD3 SYs suggest that CurrSignalStrength < -65, ofdm 0x17=26.
					priv->InitialGain = priv->RegBModeGainStage;
				}
				else if(priv->InitialGain > priv->RegBModeGainStage + 1)
				{
					priv->InitialGain -= 2;
				}
				else
				{
					priv->InitialGain --;
				}
				printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate);
				UpdateInitialGain(dev);
			}
		}
		else // OFDM
		{
			if(priv->InitialGain < 4)
			{
				priv->InitialGainBackUp= priv->InitialGain;

				priv->InitialGain ++;
				printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate);
				UpdateInitialGain(dev);
			}
		}
	}

	//Record the related info
	priv->LastRetryRate = CurrRetryRate;
	priv->LastTxThroughput = TxThroughput;
	priv->ieee80211->rate = priv->CurrentOperaRate * 5;
}

void rtl8180_rate_adapter(struct work_struct * work)
{
	struct delayed_work *dwork = to_delayed_work(work);
        struct ieee80211_device *ieee = container_of(dwork,struct ieee80211_device,rate_adapter_wq);
        struct net_device *dev = ieee->dev;
        //struct r8180_priv *priv = ieee80211_priv(dev);
//    DMESG("---->rtl8180_rate_adapter");
        StaRateAdaptive87SE(dev);
//   DMESG("<----rtl8180_rate_adapter");
}
void timer_rate_adaptive(unsigned long data)
{
	struct r8180_priv* priv = ieee80211_priv((struct net_device *)data);
	//DMESG("---->timer_rate_adaptive()\n");
	if(!priv->up)
	{
//		DMESG("<----timer_rate_adaptive():driver is not up!\n");
		return;
	}
	if((priv->ieee80211->iw_mode != IW_MODE_MASTER)
			&& (priv->ieee80211->state == IEEE80211_LINKED) &&
			(priv->ForcedDataRate == 0) )
	{
//	DMESG("timer_rate_adaptive():schedule rate_adapter_wq\n");
		queue_work(priv->ieee80211->wq, (void *)&priv->ieee80211->rate_adapter_wq);
//		StaRateAdaptive87SE((struct net_device *)data);
	}
	priv->rateadapter_timer.expires = jiffies + MSECS(priv->RateAdaptivePeriod);
	add_timer(&priv->rateadapter_timer);
	//DMESG("<----timer_rate_adaptive()\n");
}
//by amy 080312}
void
SwAntennaDiversityRxOk8185(
	struct net_device *dev,
	u8 SignalStrength
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);

//	printk("+SwAntennaDiversityRxOk8185: RxSs: %d\n", SignalStrength);

	priv->AdRxOkCnt++;

	if( priv->AdRxSignalStrength != -1)
	{
		priv->AdRxSignalStrength = ((priv->AdRxSignalStrength*7) + (SignalStrength*3)) / 10;
	}
	else
	{ // Initialization case.
		priv->AdRxSignalStrength = SignalStrength;
	}
//{+by amy 080312
	if( priv->LastRxPktAntenna ) //Main antenna.
		priv->AdMainAntennaRxOkCnt++;
	else	 // Aux antenna.
		priv->AdAuxAntennaRxOkCnt++;
//+by amy 080312
//	printk("-SwAntennaDiversityRxOk8185: AdRxOkCnt: %d AdRxSignalStrength: %d\n", priv->AdRxOkCnt, priv->AdRxSignalStrength);
}
//
//	Description:
//		Change Antenna Switch.
//
bool
SetAntenna8185(
	struct net_device *dev,
	u8		u1bAntennaIndex
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	bool bAntennaSwitched = false;

//	printk("+SetAntenna8185(): Antenna is switching to: %d \n", u1bAntennaIndex);

	switch(u1bAntennaIndex)
	{
	case 0:
		/* Mac register, main antenna */
		write_nic_byte(dev, ANTSEL, 0x03);
		/* base band */
		write_phy_cck(dev, 0x11, 0x9b); /* Config CCK RX antenna. */
		write_phy_ofdm(dev, 0x0d, 0x5c); /* Config OFDM RX antenna. */

		bAntennaSwitched = true;
		break;

	case 1:
		/* Mac register, aux antenna */
		write_nic_byte(dev, ANTSEL, 0x00);
		/* base band */
		write_phy_cck(dev, 0x11, 0xbb); /* Config CCK RX antenna. */
		write_phy_ofdm(dev, 0x0d, 0x54); /* Config OFDM RX antenna. */

		bAntennaSwitched = true;

		break;

	default:
		printk("SetAntenna8185: unknown u1bAntennaIndex(%d)\n", u1bAntennaIndex);
		break;
	}

	if(bAntennaSwitched)
	{
		priv->CurrAntennaIndex = u1bAntennaIndex;
	}

//	printk("-SetAntenna8185(): return (%#X)\n", bAntennaSwitched);

	return bAntennaSwitched;
}
//
//	Description:
//		Toggle Antenna switch.
//
bool
SwitchAntenna(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);

	bool		bResult;

	if(priv->CurrAntennaIndex == 0)
	{
			bResult = SetAntenna8185(dev, 1);
//by amy 080312
//		printk("SwitchAntenna(): switching to antenna 1 ......\n");
//		bResult = SetAntenna8185(dev, 1);//-by amy 080312
	}
	else
	{
			bResult = SetAntenna8185(dev, 0);
//by amy 080312
//		printk("SwitchAntenna(): switching to antenna 0 ......\n");
//		bResult = SetAntenna8185(dev, 0);//-by amy 080312
	}

	return bResult;
}
//
//	Description:
//		Engine of SW Antenna Diversity mechanism.
//		Since 8187 has no Tx part information,
//		this implementation is only dependend on Rx part information.
//
//	2006.04.17, by rcnjko.
//
void
SwAntennaDiversity(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	bool   bSwCheckSS=false;
//	printk("+SwAntennaDiversity(): CurrAntennaIndex: %d\n", priv->CurrAntennaIndex);
//	printk("AdTickCount is %d\n",priv->AdTickCount);
//by amy 080312
	if(bSwCheckSS)
	{
		priv->AdTickCount++;

		printk("(1) AdTickCount: %d, AdCheckPeriod: %d\n",
			priv->AdTickCount, priv->AdCheckPeriod);
		printk("(2) AdRxSignalStrength: %ld, AdRxSsThreshold: %ld\n",
			priv->AdRxSignalStrength, priv->AdRxSsThreshold);
	}
//	priv->AdTickCount++;//-by amy 080312

	// Case 1. No Link.
	if(priv->ieee80211->state != IEEE80211_LINKED)
	{
	//	printk("SwAntennaDiversity(): Case 1. No Link.\n");

		priv->bAdSwitchedChecking = false;
		// I switch antenna here to prevent any one of antenna is broken before link established, 2006.04.18, by rcnjko..
		SwitchAntenna(dev);
	}
	// Case 2. Linked but no packet received.
	else if(priv->AdRxOkCnt == 0)
	{
	//	printk("SwAntennaDiversity(): Case 2. Linked but no packet received.\n");

		priv->bAdSwitchedChecking = false;
		SwitchAntenna(dev);
	}
	// Case 3. Evaluate last antenna switch action and undo it if necessary.
	else if(priv->bAdSwitchedChecking == true)
	{
	//	printk("SwAntennaDiversity(): Case 3. Evaluate last antenna switch action.\n");

		priv->bAdSwitchedChecking = false;

		// Adjust Rx signal strength threshold.
		priv->AdRxSsThreshold = (priv->AdRxSignalStrength + priv->AdRxSsBeforeSwitched) / 2;

		priv->AdRxSsThreshold = (priv->AdRxSsThreshold > priv->AdMaxRxSsThreshold) ?
					priv->AdMaxRxSsThreshold: priv->AdRxSsThreshold;
		if(priv->AdRxSignalStrength < priv->AdRxSsBeforeSwitched)
		{ // Rx signal strength is not improved after we swtiched antenna. => Swich back.
//			printk("SwAntennaDiversity(): Rx Signal Strength is not improved, CurrRxSs: %d, LastRxSs: %d\n",
//				priv->AdRxSignalStrength, priv->AdRxSsBeforeSwitched);
//by amy 080312
			// Increase Antenna Diversity checking period due to bad decision.
			priv->AdCheckPeriod *= 2;
//by amy 080312
			// Increase Antenna Diversity checking period.
			if(priv->AdCheckPeriod > priv->AdMaxCheckPeriod)
				priv->AdCheckPeriod = priv->AdMaxCheckPeriod;

			// Wrong deceision => switch back.
			SwitchAntenna(dev);
		}
		else
		{ // Rx Signal Strength is improved.
//			printk("SwAntennaDiversity(): Rx Signal Strength is improved, CurrRxSs: %d, LastRxSs: %d\n",
//				priv->AdRxSignalStrength, priv->AdRxSsBeforeSwitched);

			// Reset Antenna Diversity checking period to its min value.
			priv->AdCheckPeriod = priv->AdMinCheckPeriod;
		}

//		printk("SwAntennaDiversity(): AdRxSsThreshold: %d, AdCheckPeriod: %d\n",
//			priv->AdRxSsThreshold, priv->AdCheckPeriod);
	}
	// Case 4. Evaluate if we shall switch antenna now.
	// Cause Table Speed is very fast in TRC Dell Lab, we check it every time.
	else// if(priv->AdTickCount >= priv->AdCheckPeriod)//-by amy 080312
	{
//		printk("SwAntennaDiversity(): Case 4. Evaluate if we shall switch antenna now.\n");

		priv->AdTickCount = 0;

		//
		// <Roger_Notes> We evaluate RxOk counts for each antenna first and than
		// evaluate signal strength.
		// The following operation can overcome the disability of CCA on both two antennas
		// When signal strength was extremely low or high.
		// 2008.01.30.
		//

		//
		// Evaluate RxOk count from each antenna if we shall switch default antenna now.
		// Added by Roger, 2008.02.21.
//{by amy 080312
		if((priv->AdMainAntennaRxOkCnt < priv->AdAuxAntennaRxOkCnt)
			&& (priv->CurrAntennaIndex == 0))
		{ // We set Main antenna as default but RxOk count was less than Aux ones.

	//		printk("SwAntennaDiversity(): Main antenna RxOK is poor, AdMainAntennaRxOkCnt: %d, AdAuxAntennaRxOkCnt: %d\n",
	//			priv->AdMainAntennaRxOkCnt, priv->AdAuxAntennaRxOkCnt);

			// Switch to Aux antenna.
			SwitchAntenna(dev);
			priv->bHWAdSwitched = true;
		}
		else if((priv->AdAuxAntennaRxOkCnt < priv->AdMainAntennaRxOkCnt)
			&& (priv->CurrAntennaIndex == 1))
		{ // We set Aux antenna as default but RxOk count was less than Main ones.

	//		printk("SwAntennaDiversity(): Aux antenna RxOK is poor, AdMainAntennaRxOkCnt: %d, AdAuxAntennaRxOkCnt: %d\n",
	//			priv->AdMainAntennaRxOkCnt, priv->AdAuxAntennaRxOkCnt);

			// Switch to Main antenna.
			SwitchAntenna(dev);
			priv->bHWAdSwitched = true;
		}
		else
		{// Default antenna is better.

	//		printk("SwAntennaDiversity(): Default antenna is better., AdMainAntennaRxOkCnt: %d, AdAuxAntennaRxOkCnt: %d\n",
	//			priv->AdMainAntennaRxOkCnt, priv->AdAuxAntennaRxOkCnt);

			// Still need to check current signal strength.
			priv->bHWAdSwitched = false;
		}
		//
		// <Roger_Notes> We evaluate Rx signal strength ONLY when default antenna
		// didn't changed by HW evaluation.
		// 2008.02.27.
		//
		// [TRC Dell Lab] SignalStrength is inaccuracy. Isaiah 2008-03-05
		// For example, Throughput of aux is better than main antenna(about 10M v.s 2M),
		// but AdRxSignalStrength is less than main.
		// Our guess is that main antenna have lower throughput and get many change
		// to receive more CCK packets(ex.Beacon) which have stronger SignalStrength.
		//
		if( (!priv->bHWAdSwitched) && (bSwCheckSS))
		{
//by amy 080312}
		// Evaluate Rx signal strength if we shall switch antenna now.
		if(priv->AdRxSignalStrength < priv->AdRxSsThreshold)
		{ // Rx signal strength is weak => Switch Antenna.
//			printk("SwAntennaDiversity(): Rx Signal Strength is weak, CurrRxSs: %d, RxSsThreshold: %d\n",
//				priv->AdRxSignalStrength, priv->AdRxSsThreshold);

			priv->AdRxSsBeforeSwitched = priv->AdRxSignalStrength;
			priv->bAdSwitchedChecking = true;

			SwitchAntenna(dev);
		}
		else
		{ // Rx signal strength is OK.
//			printk("SwAntennaDiversity(): Rx Signal Strength is OK, CurrRxSs: %d, RxSsThreshold: %d\n",
//				priv->AdRxSignalStrength, priv->AdRxSsThreshold);

			priv->bAdSwitchedChecking = false;
			// Increase Rx signal strength threshold if necessary.
			if(	(priv->AdRxSignalStrength > (priv->AdRxSsThreshold + 10)) && // Signal is much stronger than current threshold
				priv->AdRxSsThreshold <= priv->AdMaxRxSsThreshold) // Current threhold is not yet reach upper limit.
			{
				priv->AdRxSsThreshold = (priv->AdRxSsThreshold + priv->AdRxSignalStrength) / 2;
				priv->AdRxSsThreshold = (priv->AdRxSsThreshold > priv->AdMaxRxSsThreshold) ?
												priv->AdMaxRxSsThreshold: priv->AdRxSsThreshold;//+by amy 080312
			}

			// Reduce Antenna Diversity checking period if possible.
			if( priv->AdCheckPeriod > priv->AdMinCheckPeriod )
			{
				priv->AdCheckPeriod /= 2;
			}
		}
		}
	}
//by amy 080312
	// Reset antenna diversity Rx related statistics.
	priv->AdRxOkCnt = 0;
	priv->AdMainAntennaRxOkCnt = 0;
	priv->AdAuxAntennaRxOkCnt = 0;
//by amy 080312

//	priv->AdRxOkCnt = 0;//-by amy 080312

//	printk("-SwAntennaDiversity()\n");
}

//
//	Description:
//		Return TRUE if we shall perform Tx Power Tracking Mecahnism, FALSE otherwise.
//
bool
CheckTxPwrTracking(	struct net_device *dev)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);

	if(!priv->bTxPowerTrack)
	{
		return false;
	}

//lzm reserved 080826
	//if(priv->bScanInProgress)
	//{
	//	return false;
	//}

	//if 87SE is in High Power , don't do Tx Power Tracking. asked by SD3 ED. 2008-08-08 Isaiah
	if(priv->bToUpdateTxPwr)
	{
		return false;
	}

	return true;
}


//
//	Description:
//		Timer callback function of SW Antenna Diversity.
//
void
SwAntennaDiversityTimerCallback(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	RT_RF_POWER_STATE rtState;

	//printk("+SwAntennaDiversityTimerCallback()\n");

	//
	// We do NOT need to switch antenna while RF is off.
	// 2007.05.09, added by Roger.
	//
	rtState = priv->eRFPowerState;
	do{
		if (rtState == eRfOff)
		{
//			printk("SwAntennaDiversityTimer - RF is OFF.\n");
			break;
		}
		else if (rtState == eRfSleep)
		{
			// Don't access BB/RF under Disable PLL situation.
			//RT_TRACE((COMP_RF|COMP_ANTENNA), DBG_LOUD, ("SwAntennaDiversityTimerCallback(): RF is Sleep => skip it\n"));
			break;
		}
		SwAntennaDiversity(dev);

	}while(false);

	if(priv->up)
	{
		priv->SwAntennaDiversityTimer.expires = jiffies + MSECS(ANTENNA_DIVERSITY_TIMER_PERIOD);
		add_timer(&priv->SwAntennaDiversityTimer);
	}

	//printk("-SwAntennaDiversityTimerCallback()\n");
}