- 根目录:
- drivers
- staging
- msm
- memory.c
/* arch/arm/mach-msm/memory.c
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2009-2010, Code Aurora Forum. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/mach/map.h>
#include "memory_ll.h"
#include <asm/cacheflush.h>
#if defined(CONFIG_MSM_NPA_REMOTE)
#include "npa_remote.h"
#include <linux/completion.h>
#include <linux/err.h>
#endif
int arch_io_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t prot)
{
unsigned long pfn_addr = pfn << PAGE_SHIFT;
/*
if ((pfn_addr >= 0x88000000) && (pfn_addr < 0xD0000000)) {
prot = pgprot_device(prot);
printk("remapping device %lx\n", prot);
}
*/
panic("Memory remap PFN stuff not done\n");
return remap_pfn_range(vma, addr, pfn, size, prot);
}
void *zero_page_strongly_ordered;
static void map_zero_page_strongly_ordered(void)
{
if (zero_page_strongly_ordered)
return;
/*
zero_page_strongly_ordered =
ioremap_strongly_ordered(page_to_pfn(empty_zero_page)
<< PAGE_SHIFT, PAGE_SIZE);
*/
panic("Strongly ordered memory functions not implemented\n");
}
void write_to_strongly_ordered_memory(void)
{
map_zero_page_strongly_ordered();
*(int *)zero_page_strongly_ordered = 0;
}
EXPORT_SYMBOL(write_to_strongly_ordered_memory);
void flush_axi_bus_buffer(void)
{
__asm__ __volatile__ ("mcr p15, 0, %0, c7, c10, 5" \
: : "r" (0) : "memory");
write_to_strongly_ordered_memory();
}
#define CACHE_LINE_SIZE 32
/* These cache related routines make the assumption that the associated
* physical memory is contiguous. They will operate on all (L1
* and L2 if present) caches.
*/
void clean_and_invalidate_caches(unsigned long vstart,
unsigned long length, unsigned long pstart)
{
unsigned long vaddr;
for (vaddr = vstart; vaddr < vstart + length; vaddr += CACHE_LINE_SIZE)
asm ("mcr p15, 0, %0, c7, c14, 1" : : "r" (vaddr));
#ifdef CONFIG_OUTER_CACHE
outer_flush_range(pstart, pstart + length);
#endif
asm ("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
asm ("mcr p15, 0, %0, c7, c5, 0" : : "r" (0));
flush_axi_bus_buffer();
}
void clean_caches(unsigned long vstart,
unsigned long length, unsigned long pstart)
{
unsigned long vaddr;
for (vaddr = vstart; vaddr < vstart + length; vaddr += CACHE_LINE_SIZE)
asm ("mcr p15, 0, %0, c7, c10, 1" : : "r" (vaddr));
#ifdef CONFIG_OUTER_CACHE
outer_clean_range(pstart, pstart + length);
#endif
asm ("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
asm ("mcr p15, 0, %0, c7, c5, 0" : : "r" (0));
flush_axi_bus_buffer();
}
void invalidate_caches(unsigned long vstart,
unsigned long length, unsigned long pstart)
{
unsigned long vaddr;
for (vaddr = vstart; vaddr < vstart + length; vaddr += CACHE_LINE_SIZE)
asm ("mcr p15, 0, %0, c7, c6, 1" : : "r" (vaddr));
#ifdef CONFIG_OUTER_CACHE
outer_inv_range(pstart, pstart + length);
#endif
asm ("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
asm ("mcr p15, 0, %0, c7, c5, 0" : : "r" (0));
flush_axi_bus_buffer();
}
void *alloc_bootmem_aligned(unsigned long size, unsigned long alignment)
{
void *unused_addr = NULL;
unsigned long addr, tmp_size, unused_size;
/* Allocate maximum size needed, see where it ends up.
* Then free it -- in this path there are no other allocators
* so we can depend on getting the same address back
* when we allocate a smaller piece that is aligned
* at the end (if necessary) and the piece we really want,
* then free the unused first piece.
*/
tmp_size = size + alignment - PAGE_SIZE;
addr = (unsigned long)alloc_bootmem(tmp_size);
free_bootmem(__pa(addr), tmp_size);
unused_size = alignment - (addr % alignment);
if (unused_size)
unused_addr = alloc_bootmem(unused_size);
addr = (unsigned long)alloc_bootmem(size);
if (unused_size)
free_bootmem(__pa(unused_addr), unused_size);
return (void *)addr;
}
#if defined(CONFIG_MSM_NPA_REMOTE)
struct npa_client *npa_memory_client;
#endif
static int change_memory_power_state(unsigned long start_pfn,
unsigned long nr_pages, int state)
{
#if defined(CONFIG_MSM_NPA_REMOTE)
static atomic_t node_created_flag = ATOMIC_INIT(1);
#else
unsigned long start;
unsigned long size;
unsigned long virtual;
#endif
int rc = 0;
#if defined(CONFIG_MSM_NPA_REMOTE)
if (atomic_dec_and_test(&node_created_flag)) {
/* Create NPA 'required' client. */
npa_memory_client = npa_create_sync_client(NPA_MEMORY_NODE_NAME,
"memory node", NPA_CLIENT_REQUIRED);
if (IS_ERR(npa_memory_client)) {
rc = PTR_ERR(npa_memory_client);
return rc;
}
}
rc = npa_issue_required_request(npa_memory_client, state);
#else
if (state == MEMORY_DEEP_POWERDOWN) {
/* simulate turning off memory by writing bit pattern into it */
start = start_pfn << PAGE_SHIFT;
size = nr_pages << PAGE_SHIFT;
virtual = __phys_to_virt(start);
memset((void *)virtual, 0x27, size);
}
#endif
return rc;
}
int platform_physical_remove_pages(unsigned long start_pfn,
unsigned long nr_pages)
{
return change_memory_power_state(start_pfn, nr_pages,
MEMORY_DEEP_POWERDOWN);
}
int platform_physical_add_pages(unsigned long start_pfn,
unsigned long nr_pages)
{
return change_memory_power_state(start_pfn, nr_pages, MEMORY_ACTIVE);
}
int platform_physical_low_power_pages(unsigned long start_pfn,
unsigned long nr_pages)
{
return change_memory_power_state(start_pfn, nr_pages,
MEMORY_SELF_REFRESH);
}