- 根目录:
- drivers
- staging
- lirc
- lirc_sir.c
/*
* LIRC SIR driver, (C) 2000 Milan Pikula <www@fornax.sk>
*
* lirc_sir - Device driver for use with SIR (serial infra red)
* mode of IrDA on many notebooks.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* 2000/09/16 Frank Przybylski <mail@frankprzybylski.de> :
* added timeout and relaxed pulse detection, removed gap bug
*
* 2000/12/15 Christoph Bartelmus <lirc@bartelmus.de> :
* added support for Tekram Irmate 210 (sending does not work yet,
* kind of disappointing that nobody was able to implement that
* before),
* major clean-up
*
* 2001/02/27 Christoph Bartelmus <lirc@bartelmus.de> :
* added support for StrongARM SA1100 embedded microprocessor
* parts cut'n'pasted from sa1100_ir.c (C) 2000 Russell King
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/serial_reg.h>
#include <linux/time.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <asm/system.h>
#include <linux/io.h>
#include <asm/irq.h>
#include <linux/fcntl.h>
#ifdef LIRC_ON_SA1100
#include <asm/hardware.h>
#ifdef CONFIG_SA1100_COLLIE
#include <asm/arch/tc35143.h>
#include <asm/ucb1200.h>
#endif
#endif
#include <linux/timer.h>
#include <media/lirc.h>
#include <media/lirc_dev.h>
/* SECTION: Definitions */
/*** Tekram dongle ***/
#ifdef LIRC_SIR_TEKRAM
/* stolen from kernel source */
/* definitions for Tekram dongle */
#define TEKRAM_115200 0x00
#define TEKRAM_57600 0x01
#define TEKRAM_38400 0x02
#define TEKRAM_19200 0x03
#define TEKRAM_9600 0x04
#define TEKRAM_2400 0x08
#define TEKRAM_PW 0x10 /* Pulse select bit */
/* 10bit * 1s/115200bit in milliseconds = 87ms*/
#define TIME_CONST (10000000ul/115200ul)
#endif
#ifdef LIRC_SIR_ACTISYS_ACT200L
static void init_act200(void);
#elif defined(LIRC_SIR_ACTISYS_ACT220L)
static void init_act220(void);
#endif
/*** SA1100 ***/
#ifdef LIRC_ON_SA1100
struct sa1100_ser2_registers {
/* HSSP control register */
unsigned char hscr0;
/* UART registers */
unsigned char utcr0;
unsigned char utcr1;
unsigned char utcr2;
unsigned char utcr3;
unsigned char utcr4;
unsigned char utdr;
unsigned char utsr0;
unsigned char utsr1;
} sr;
static int irq = IRQ_Ser2ICP;
#define LIRC_ON_SA1100_TRANSMITTER_LATENCY 0
/* pulse/space ratio of 50/50 */
static unsigned long pulse_width = (13-LIRC_ON_SA1100_TRANSMITTER_LATENCY);
/* 1000000/freq-pulse_width */
static unsigned long space_width = (13-LIRC_ON_SA1100_TRANSMITTER_LATENCY);
static unsigned int freq = 38000; /* modulation frequency */
static unsigned int duty_cycle = 50; /* duty cycle of 50% */
#endif
#define RBUF_LEN 1024
#define WBUF_LEN 1024
#define LIRC_DRIVER_NAME "lirc_sir"
#define PULSE '['
#ifndef LIRC_SIR_TEKRAM
/* 9bit * 1s/115200bit in milli seconds = 78.125ms*/
#define TIME_CONST (9000000ul/115200ul)
#endif
/* timeout for sequences in jiffies (=5/100s), must be longer than TIME_CONST */
#define SIR_TIMEOUT (HZ*5/100)
#ifndef LIRC_ON_SA1100
#ifndef LIRC_IRQ
#define LIRC_IRQ 4
#endif
#ifndef LIRC_PORT
/* for external dongles, default to com1 */
#if defined(LIRC_SIR_ACTISYS_ACT200L) || \
defined(LIRC_SIR_ACTISYS_ACT220L) || \
defined(LIRC_SIR_TEKRAM)
#define LIRC_PORT 0x3f8
#else
/* onboard sir ports are typically com3 */
#define LIRC_PORT 0x3e8
#endif
#endif
static int io = LIRC_PORT;
static int irq = LIRC_IRQ;
static int threshold = 3;
#endif
static DEFINE_SPINLOCK(timer_lock);
static struct timer_list timerlist;
/* time of last signal change detected */
static struct timeval last_tv = {0, 0};
/* time of last UART data ready interrupt */
static struct timeval last_intr_tv = {0, 0};
static int last_value;
static DECLARE_WAIT_QUEUE_HEAD(lirc_read_queue);
static DEFINE_SPINLOCK(hardware_lock);
static int rx_buf[RBUF_LEN];
static unsigned int rx_tail, rx_head;
static int debug;
#define dprintk(fmt, args...) \
do { \
if (debug) \
printk(KERN_DEBUG LIRC_DRIVER_NAME ": " \
fmt, ## args); \
} while (0)
/* SECTION: Prototypes */
/* Communication with user-space */
static unsigned int lirc_poll(struct file *file, poll_table *wait);
static ssize_t lirc_read(struct file *file, char *buf, size_t count,
loff_t *ppos);
static ssize_t lirc_write(struct file *file, const char *buf, size_t n,
loff_t *pos);
static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
static void add_read_queue(int flag, unsigned long val);
static int init_chrdev(void);
static void drop_chrdev(void);
/* Hardware */
static irqreturn_t sir_interrupt(int irq, void *dev_id);
static void send_space(unsigned long len);
static void send_pulse(unsigned long len);
static int init_hardware(void);
static void drop_hardware(void);
/* Initialisation */
static int init_port(void);
static void drop_port(void);
#ifdef LIRC_ON_SA1100
static void on(void)
{
PPSR |= PPC_TXD2;
}
static void off(void)
{
PPSR &= ~PPC_TXD2;
}
#else
static inline unsigned int sinp(int offset)
{
return inb(io + offset);
}
static inline void soutp(int offset, int value)
{
outb(value, io + offset);
}
#endif
#ifndef MAX_UDELAY_MS
#define MAX_UDELAY_US 5000
#else
#define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
#endif
static void safe_udelay(unsigned long usecs)
{
while (usecs > MAX_UDELAY_US) {
udelay(MAX_UDELAY_US);
usecs -= MAX_UDELAY_US;
}
udelay(usecs);
}
/* SECTION: Communication with user-space */
static unsigned int lirc_poll(struct file *file, poll_table *wait)
{
poll_wait(file, &lirc_read_queue, wait);
if (rx_head != rx_tail)
return POLLIN | POLLRDNORM;
return 0;
}
static ssize_t lirc_read(struct file *file, char *buf, size_t count,
loff_t *ppos)
{
int n = 0;
int retval = 0;
DECLARE_WAITQUEUE(wait, current);
if (count % sizeof(int))
return -EINVAL;
add_wait_queue(&lirc_read_queue, &wait);
set_current_state(TASK_INTERRUPTIBLE);
while (n < count) {
if (rx_head != rx_tail) {
if (copy_to_user((void *) buf + n,
(void *) (rx_buf + rx_head),
sizeof(int))) {
retval = -EFAULT;
break;
}
rx_head = (rx_head + 1) & (RBUF_LEN - 1);
n += sizeof(int);
} else {
if (file->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
break;
}
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
schedule();
set_current_state(TASK_INTERRUPTIBLE);
}
}
remove_wait_queue(&lirc_read_queue, &wait);
set_current_state(TASK_RUNNING);
return n ? n : retval;
}
static ssize_t lirc_write(struct file *file, const char *buf, size_t n,
loff_t *pos)
{
unsigned long flags;
int i, count;
int *tx_buf;
count = n / sizeof(int);
if (n % sizeof(int) || count % 2 == 0)
return -EINVAL;
tx_buf = memdup_user(buf, n);
if (IS_ERR(tx_buf))
return PTR_ERR(tx_buf);
i = 0;
#ifdef LIRC_ON_SA1100
/* disable receiver */
Ser2UTCR3 = 0;
#endif
local_irq_save(flags);
while (1) {
if (i >= count)
break;
if (tx_buf[i])
send_pulse(tx_buf[i]);
i++;
if (i >= count)
break;
if (tx_buf[i])
send_space(tx_buf[i]);
i++;
}
local_irq_restore(flags);
#ifdef LIRC_ON_SA1100
off();
udelay(1000); /* wait 1ms for IR diode to recover */
Ser2UTCR3 = 0;
/* clear status register to prevent unwanted interrupts */
Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
/* enable receiver */
Ser2UTCR3 = UTCR3_RXE|UTCR3_RIE;
#endif
kfree(tx_buf);
return count;
}
static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
{
int retval = 0;
__u32 value = 0;
#ifdef LIRC_ON_SA1100
if (cmd == LIRC_GET_FEATURES)
value = LIRC_CAN_SEND_PULSE |
LIRC_CAN_SET_SEND_DUTY_CYCLE |
LIRC_CAN_SET_SEND_CARRIER |
LIRC_CAN_REC_MODE2;
else if (cmd == LIRC_GET_SEND_MODE)
value = LIRC_MODE_PULSE;
else if (cmd == LIRC_GET_REC_MODE)
value = LIRC_MODE_MODE2;
#else
if (cmd == LIRC_GET_FEATURES)
value = LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2;
else if (cmd == LIRC_GET_SEND_MODE)
value = LIRC_MODE_PULSE;
else if (cmd == LIRC_GET_REC_MODE)
value = LIRC_MODE_MODE2;
#endif
switch (cmd) {
case LIRC_GET_FEATURES:
case LIRC_GET_SEND_MODE:
case LIRC_GET_REC_MODE:
retval = put_user(value, (__u32 *) arg);
break;
case LIRC_SET_SEND_MODE:
case LIRC_SET_REC_MODE:
retval = get_user(value, (__u32 *) arg);
break;
#ifdef LIRC_ON_SA1100
case LIRC_SET_SEND_DUTY_CYCLE:
retval = get_user(value, (__u32 *) arg);
if (retval)
return retval;
if (value <= 0 || value > 100)
return -EINVAL;
/* (value/100)*(1000000/freq) */
duty_cycle = value;
pulse_width = (unsigned long) duty_cycle*10000/freq;
space_width = (unsigned long) 1000000L/freq-pulse_width;
if (pulse_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
pulse_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
if (space_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
space_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
break;
case LIRC_SET_SEND_CARRIER:
retval = get_user(value, (__u32 *) arg);
if (retval)
return retval;
if (value > 500000 || value < 20000)
return -EINVAL;
freq = value;
pulse_width = (unsigned long) duty_cycle*10000/freq;
space_width = (unsigned long) 1000000L/freq-pulse_width;
if (pulse_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
pulse_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
if (space_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
space_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
break;
#endif
default:
retval = -ENOIOCTLCMD;
}
if (retval)
return retval;
if (cmd == LIRC_SET_REC_MODE) {
if (value != LIRC_MODE_MODE2)
retval = -ENOSYS;
} else if (cmd == LIRC_SET_SEND_MODE) {
if (value != LIRC_MODE_PULSE)
retval = -ENOSYS;
}
return retval;
}
static void add_read_queue(int flag, unsigned long val)
{
unsigned int new_rx_tail;
int newval;
dprintk("add flag %d with val %lu\n", flag, val);
newval = val & PULSE_MASK;
/*
* statistically, pulses are ~TIME_CONST/2 too long. we could
* maybe make this more exact, but this is good enough
*/
if (flag) {
/* pulse */
if (newval > TIME_CONST/2)
newval -= TIME_CONST/2;
else /* should not ever happen */
newval = 1;
newval |= PULSE_BIT;
} else {
newval += TIME_CONST/2;
}
new_rx_tail = (rx_tail + 1) & (RBUF_LEN - 1);
if (new_rx_tail == rx_head) {
dprintk("Buffer overrun.\n");
return;
}
rx_buf[rx_tail] = newval;
rx_tail = new_rx_tail;
wake_up_interruptible(&lirc_read_queue);
}
static const struct file_operations lirc_fops = {
.owner = THIS_MODULE,
.read = lirc_read,
.write = lirc_write,
.poll = lirc_poll,
.unlocked_ioctl = lirc_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = lirc_ioctl,
#endif
.open = lirc_dev_fop_open,
.release = lirc_dev_fop_close,
.llseek = no_llseek,
};
static int set_use_inc(void *data)
{
return 0;
}
static void set_use_dec(void *data)
{
}
static struct lirc_driver driver = {
.name = LIRC_DRIVER_NAME,
.minor = -1,
.code_length = 1,
.sample_rate = 0,
.data = NULL,
.add_to_buf = NULL,
.set_use_inc = set_use_inc,
.set_use_dec = set_use_dec,
.fops = &lirc_fops,
.dev = NULL,
.owner = THIS_MODULE,
};
static int init_chrdev(void)
{
driver.minor = lirc_register_driver(&driver);
if (driver.minor < 0) {
printk(KERN_ERR LIRC_DRIVER_NAME ": init_chrdev() failed.\n");
return -EIO;
}
return 0;
}
static void drop_chrdev(void)
{
lirc_unregister_driver(driver.minor);
}
/* SECTION: Hardware */
static long delta(struct timeval *tv1, struct timeval *tv2)
{
unsigned long deltv;
deltv = tv2->tv_sec - tv1->tv_sec;
if (deltv > 15)
deltv = 0xFFFFFF;
else
deltv = deltv*1000000 +
tv2->tv_usec -
tv1->tv_usec;
return deltv;
}
static void sir_timeout(unsigned long data)
{
/*
* if last received signal was a pulse, but receiving stopped
* within the 9 bit frame, we need to finish this pulse and
* simulate a signal change to from pulse to space. Otherwise
* upper layers will receive two sequences next time.
*/
unsigned long flags;
unsigned long pulse_end;
/* avoid interference with interrupt */
spin_lock_irqsave(&timer_lock, flags);
if (last_value) {
#ifndef LIRC_ON_SA1100
/* clear unread bits in UART and restart */
outb(UART_FCR_CLEAR_RCVR, io + UART_FCR);
#endif
/* determine 'virtual' pulse end: */
pulse_end = delta(&last_tv, &last_intr_tv);
dprintk("timeout add %d for %lu usec\n", last_value, pulse_end);
add_read_queue(last_value, pulse_end);
last_value = 0;
last_tv = last_intr_tv;
}
spin_unlock_irqrestore(&timer_lock, flags);
}
static irqreturn_t sir_interrupt(int irq, void *dev_id)
{
unsigned char data;
struct timeval curr_tv;
static unsigned long deltv;
#ifdef LIRC_ON_SA1100
int status;
static int n;
status = Ser2UTSR0;
/*
* Deal with any receive errors first. The bytes in error may be
* the only bytes in the receive FIFO, so we do this first.
*/
while (status & UTSR0_EIF) {
int bstat;
if (debug) {
dprintk("EIF\n");
bstat = Ser2UTSR1;
if (bstat & UTSR1_FRE)
dprintk("frame error\n");
if (bstat & UTSR1_ROR)
dprintk("receive fifo overrun\n");
if (bstat & UTSR1_PRE)
dprintk("parity error\n");
}
bstat = Ser2UTDR;
n++;
status = Ser2UTSR0;
}
if (status & (UTSR0_RFS | UTSR0_RID)) {
do_gettimeofday(&curr_tv);
deltv = delta(&last_tv, &curr_tv);
do {
data = Ser2UTDR;
dprintk("%d data: %u\n", n, (unsigned int) data);
n++;
} while (status & UTSR0_RID && /* do not empty fifo in order to
* get UTSR0_RID in any case */
Ser2UTSR1 & UTSR1_RNE); /* data ready */
if (status&UTSR0_RID) {
add_read_queue(0 , deltv - n * TIME_CONST); /*space*/
add_read_queue(1, n * TIME_CONST); /*pulse*/
n = 0;
last_tv = curr_tv;
}
}
if (status & UTSR0_TFS)
printk(KERN_ERR "transmit fifo not full, shouldn't happen\n");
/* We must clear certain bits. */
status &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
if (status)
Ser2UTSR0 = status;
#else
unsigned long deltintrtv;
unsigned long flags;
int iir, lsr;
while ((iir = inb(io + UART_IIR) & UART_IIR_ID)) {
switch (iir&UART_IIR_ID) { /* FIXME toto treba preriedit */
case UART_IIR_MSI:
(void) inb(io + UART_MSR);
break;
case UART_IIR_RLSI:
(void) inb(io + UART_LSR);
break;
case UART_IIR_THRI:
#if 0
if (lsr & UART_LSR_THRE) /* FIFO is empty */
outb(data, io + UART_TX)
#endif
break;
case UART_IIR_RDI:
/* avoid interference with timer */
spin_lock_irqsave(&timer_lock, flags);
do {
del_timer(&timerlist);
data = inb(io + UART_RX);
do_gettimeofday(&curr_tv);
deltv = delta(&last_tv, &curr_tv);
deltintrtv = delta(&last_intr_tv, &curr_tv);
dprintk("t %lu, d %d\n", deltintrtv, (int)data);
/*
* if nothing came in last X cycles,
* it was gap
*/
if (deltintrtv > TIME_CONST * threshold) {
if (last_value) {
dprintk("GAP\n");
/* simulate signal change */
add_read_queue(last_value,
deltv -
deltintrtv);
last_value = 0;
last_tv.tv_sec =
last_intr_tv.tv_sec;
last_tv.tv_usec =
last_intr_tv.tv_usec;
deltv = deltintrtv;
}
}
data = 1;
if (data ^ last_value) {
/*
* deltintrtv > 2*TIME_CONST, remember?
* the other case is timeout
*/
add_read_queue(last_value,
deltv-TIME_CONST);
last_value = data;
last_tv = curr_tv;
if (last_tv.tv_usec >= TIME_CONST) {
last_tv.tv_usec -= TIME_CONST;
} else {
last_tv.tv_sec--;
last_tv.tv_usec += 1000000 -
TIME_CONST;
}
}
last_intr_tv = curr_tv;
if (data) {
/*
* start timer for end of
* sequence detection
*/
timerlist.expires = jiffies +
SIR_TIMEOUT;
add_timer(&timerlist);
}
lsr = inb(io + UART_LSR);
} while (lsr & UART_LSR_DR); /* data ready */
spin_unlock_irqrestore(&timer_lock, flags);
break;
default:
break;
}
}
#endif
return IRQ_RETVAL(IRQ_HANDLED);
}
#ifdef LIRC_ON_SA1100
static void send_pulse(unsigned long length)
{
unsigned long k, delay;
int flag;
if (length == 0)
return;
/*
* this won't give us the carrier frequency we really want
* due to integer arithmetic, but we can accept this inaccuracy
*/
for (k = flag = 0; k < length; k += delay, flag = !flag) {
if (flag) {
off();
delay = space_width;
} else {
on();
delay = pulse_width;
}
safe_udelay(delay);
}
off();
}
static void send_space(unsigned long length)
{
if (length == 0)
return;
off();
safe_udelay(length);
}
#else
static void send_space(unsigned long len)
{
safe_udelay(len);
}
static void send_pulse(unsigned long len)
{
long bytes_out = len / TIME_CONST;
long time_left;
time_left = (long)len - (long)bytes_out * (long)TIME_CONST;
if (bytes_out == 0) {
bytes_out++;
time_left = 0;
}
while (bytes_out--) {
outb(PULSE, io + UART_TX);
/* FIXME treba seriozne cakanie z char/serial.c */
while (!(inb(io + UART_LSR) & UART_LSR_THRE))
;
}
#if 0
if (time_left > 0)
safe_udelay(time_left);
#endif
}
#endif
#ifdef CONFIG_SA1100_COLLIE
static int sa1100_irda_set_power_collie(int state)
{
if (state) {
/*
* 0 - off
* 1 - short range, lowest power
* 2 - medium range, medium power
* 3 - maximum range, high power
*/
ucb1200_set_io_direction(TC35143_GPIO_IR_ON,
TC35143_IODIR_OUTPUT);
ucb1200_set_io(TC35143_GPIO_IR_ON, TC35143_IODAT_LOW);
udelay(100);
} else {
/* OFF */
ucb1200_set_io_direction(TC35143_GPIO_IR_ON,
TC35143_IODIR_OUTPUT);
ucb1200_set_io(TC35143_GPIO_IR_ON, TC35143_IODAT_HIGH);
}
return 0;
}
#endif
static int init_hardware(void)
{
unsigned long flags;
spin_lock_irqsave(&hardware_lock, flags);
/* reset UART */
#ifdef LIRC_ON_SA1100
#ifdef CONFIG_SA1100_BITSY
if (machine_is_bitsy()) {
printk(KERN_INFO "Power on IR module\n");
set_bitsy_egpio(EGPIO_BITSY_IR_ON);
}
#endif
#ifdef CONFIG_SA1100_COLLIE
sa1100_irda_set_power_collie(3); /* power on */
#endif
sr.hscr0 = Ser2HSCR0;
sr.utcr0 = Ser2UTCR0;
sr.utcr1 = Ser2UTCR1;
sr.utcr2 = Ser2UTCR2;
sr.utcr3 = Ser2UTCR3;
sr.utcr4 = Ser2UTCR4;
sr.utdr = Ser2UTDR;
sr.utsr0 = Ser2UTSR0;
sr.utsr1 = Ser2UTSR1;
/* configure GPIO */
/* output */
PPDR |= PPC_TXD2;
PSDR |= PPC_TXD2;
/* set output to 0 */
off();
/* Enable HP-SIR modulation, and ensure that the port is disabled. */
Ser2UTCR3 = 0;
Ser2HSCR0 = sr.hscr0 & (~HSCR0_HSSP);
/* clear status register to prevent unwanted interrupts */
Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
/* 7N1 */
Ser2UTCR0 = UTCR0_1StpBit|UTCR0_7BitData;
/* 115200 */
Ser2UTCR1 = 0;
Ser2UTCR2 = 1;
/* use HPSIR, 1.6 usec pulses */
Ser2UTCR4 = UTCR4_HPSIR|UTCR4_Z1_6us;
/* enable receiver, receive fifo interrupt */
Ser2UTCR3 = UTCR3_RXE|UTCR3_RIE;
/* clear status register to prevent unwanted interrupts */
Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
#elif defined(LIRC_SIR_TEKRAM)
/* disable FIFO */
soutp(UART_FCR,
UART_FCR_CLEAR_RCVR|
UART_FCR_CLEAR_XMIT|
UART_FCR_TRIGGER_1);
/* Set DLAB 0. */
soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
/* First of all, disable all interrupts */
soutp(UART_IER, sinp(UART_IER) &
(~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
/* Set DLAB 1. */
soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
/* Set divisor to 12 => 9600 Baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 12);
/* Set DLAB 0. */
soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
/* power supply */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
safe_udelay(50*1000);
/* -DTR low -> reset PIC */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
udelay(1*1000);
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
udelay(100);
/* -RTS low -> send control byte */
soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
udelay(7);
soutp(UART_TX, TEKRAM_115200|TEKRAM_PW);
/* one byte takes ~1042 usec to transmit at 9600,8N1 */
udelay(1500);
/* back to normal operation */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
udelay(50);
udelay(1500);
/* read previous control byte */
printk(KERN_INFO LIRC_DRIVER_NAME
": 0x%02x\n", sinp(UART_RX));
/* Set DLAB 1. */
soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
/* Set divisor to 1 => 115200 Baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 1);
/* Set DLAB 0, 8 Bit */
soutp(UART_LCR, UART_LCR_WLEN8);
/* enable interrupts */
soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
#else
outb(0, io + UART_MCR);
outb(0, io + UART_IER);
/* init UART */
/* set DLAB, speed = 115200 */
outb(UART_LCR_DLAB | UART_LCR_WLEN7, io + UART_LCR);
outb(1, io + UART_DLL); outb(0, io + UART_DLM);
/* 7N1+start = 9 bits at 115200 ~ 3 bits at 44000 */
outb(UART_LCR_WLEN7, io + UART_LCR);
/* FIFO operation */
outb(UART_FCR_ENABLE_FIFO, io + UART_FCR);
/* interrupts */
/* outb(UART_IER_RLSI|UART_IER_RDI|UART_IER_THRI, io + UART_IER); */
outb(UART_IER_RDI, io + UART_IER);
/* turn on UART */
outb(UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2, io + UART_MCR);
#ifdef LIRC_SIR_ACTISYS_ACT200L
init_act200();
#elif defined(LIRC_SIR_ACTISYS_ACT220L)
init_act220();
#endif
#endif
spin_unlock_irqrestore(&hardware_lock, flags);
return 0;
}
static void drop_hardware(void)
{
unsigned long flags;
spin_lock_irqsave(&hardware_lock, flags);
#ifdef LIRC_ON_SA1100
Ser2UTCR3 = 0;
Ser2UTCR0 = sr.utcr0;
Ser2UTCR1 = sr.utcr1;
Ser2UTCR2 = sr.utcr2;
Ser2UTCR4 = sr.utcr4;
Ser2UTCR3 = sr.utcr3;
Ser2HSCR0 = sr.hscr0;
#ifdef CONFIG_SA1100_BITSY
if (machine_is_bitsy())
clr_bitsy_egpio(EGPIO_BITSY_IR_ON);
#endif
#ifdef CONFIG_SA1100_COLLIE
sa1100_irda_set_power_collie(0); /* power off */
#endif
#else
/* turn off interrupts */
outb(0, io + UART_IER);
#endif
spin_unlock_irqrestore(&hardware_lock, flags);
}
/* SECTION: Initialisation */
static int init_port(void)
{
int retval;
/* get I/O port access and IRQ line */
#ifndef LIRC_ON_SA1100
if (request_region(io, 8, LIRC_DRIVER_NAME) == NULL) {
printk(KERN_ERR LIRC_DRIVER_NAME
": i/o port 0x%.4x already in use.\n", io);
return -EBUSY;
}
#endif
retval = request_irq(irq, sir_interrupt, IRQF_DISABLED,
LIRC_DRIVER_NAME, NULL);
if (retval < 0) {
# ifndef LIRC_ON_SA1100
release_region(io, 8);
# endif
printk(KERN_ERR LIRC_DRIVER_NAME
": IRQ %d already in use.\n",
irq);
return retval;
}
#ifndef LIRC_ON_SA1100
printk(KERN_INFO LIRC_DRIVER_NAME
": I/O port 0x%.4x, IRQ %d.\n",
io, irq);
#endif
init_timer(&timerlist);
timerlist.function = sir_timeout;
timerlist.data = 0xabadcafe;
return 0;
}
static void drop_port(void)
{
free_irq(irq, NULL);
del_timer_sync(&timerlist);
#ifndef LIRC_ON_SA1100
release_region(io, 8);
#endif
}
#ifdef LIRC_SIR_ACTISYS_ACT200L
/* Crystal/Cirrus CS8130 IR transceiver, used in Actisys Act200L dongle */
/* some code borrowed from Linux IRDA driver */
/* Register 0: Control register #1 */
#define ACT200L_REG0 0x00
#define ACT200L_TXEN 0x01 /* Enable transmitter */
#define ACT200L_RXEN 0x02 /* Enable receiver */
#define ACT200L_ECHO 0x08 /* Echo control chars */
/* Register 1: Control register #2 */
#define ACT200L_REG1 0x10
#define ACT200L_LODB 0x01 /* Load new baud rate count value */
#define ACT200L_WIDE 0x04 /* Expand the maximum allowable pulse */
/* Register 3: Transmit mode register #2 */
#define ACT200L_REG3 0x30
#define ACT200L_B0 0x01 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P) */
#define ACT200L_B1 0x02 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P) */
#define ACT200L_CHSY 0x04 /* StartBit Synced 0=bittime, 1=startbit */
/* Register 4: Output Power register */
#define ACT200L_REG4 0x40
#define ACT200L_OP0 0x01 /* Enable LED1C output */
#define ACT200L_OP1 0x02 /* Enable LED2C output */
#define ACT200L_BLKR 0x04
/* Register 5: Receive Mode register */
#define ACT200L_REG5 0x50
#define ACT200L_RWIDL 0x01 /* fixed 1.6us pulse mode */
/*.. other various IRDA bit modes, and TV remote modes..*/
/* Register 6: Receive Sensitivity register #1 */
#define ACT200L_REG6 0x60
#define ACT200L_RS0 0x01 /* receive threshold bit 0 */
#define ACT200L_RS1 0x02 /* receive threshold bit 1 */
/* Register 7: Receive Sensitivity register #2 */
#define ACT200L_REG7 0x70
#define ACT200L_ENPOS 0x04 /* Ignore the falling edge */
/* Register 8,9: Baud Rate Divider register #1,#2 */
#define ACT200L_REG8 0x80
#define ACT200L_REG9 0x90
#define ACT200L_2400 0x5f
#define ACT200L_9600 0x17
#define ACT200L_19200 0x0b
#define ACT200L_38400 0x05
#define ACT200L_57600 0x03
#define ACT200L_115200 0x01
/* Register 13: Control register #3 */
#define ACT200L_REG13 0xd0
#define ACT200L_SHDW 0x01 /* Enable access to shadow registers */
/* Register 15: Status register */
#define ACT200L_REG15 0xf0
/* Register 21: Control register #4 */
#define ACT200L_REG21 0x50
#define ACT200L_EXCK 0x02 /* Disable clock output driver */
#define ACT200L_OSCL 0x04 /* oscillator in low power, medium accuracy mode */
static void init_act200(void)
{
int i;
__u8 control[] = {
ACT200L_REG15,
ACT200L_REG13 | ACT200L_SHDW,
ACT200L_REG21 | ACT200L_EXCK | ACT200L_OSCL,
ACT200L_REG13,
ACT200L_REG7 | ACT200L_ENPOS,
ACT200L_REG6 | ACT200L_RS0 | ACT200L_RS1,
ACT200L_REG5 | ACT200L_RWIDL,
ACT200L_REG4 | ACT200L_OP0 | ACT200L_OP1 | ACT200L_BLKR,
ACT200L_REG3 | ACT200L_B0,
ACT200L_REG0 | ACT200L_TXEN | ACT200L_RXEN,
ACT200L_REG8 | (ACT200L_115200 & 0x0f),
ACT200L_REG9 | ((ACT200L_115200 >> 4) & 0x0f),
ACT200L_REG1 | ACT200L_LODB | ACT200L_WIDE
};
/* Set DLAB 1. */
soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN8);
/* Set divisor to 12 => 9600 Baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 12);
/* Set DLAB 0. */
soutp(UART_LCR, UART_LCR_WLEN8);
/* Set divisor to 12 => 9600 Baud */
/* power supply */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
for (i = 0; i < 50; i++)
safe_udelay(1000);
/* Reset the dongle : set RTS low for 25 ms */
soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
for (i = 0; i < 25; i++)
udelay(1000);
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
udelay(100);
/* Clear DTR and set RTS to enter command mode */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
udelay(7);
/* send out the control register settings for 115K 7N1 SIR operation */
for (i = 0; i < sizeof(control); i++) {
soutp(UART_TX, control[i]);
/* one byte takes ~1042 usec to transmit at 9600,8N1 */
udelay(1500);
}
/* back to normal operation */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
udelay(50);
udelay(1500);
soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
/* Set DLAB 1. */
soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);
/* Set divisor to 1 => 115200 Baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 1);
/* Set DLAB 0. */
soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
/* Set DLAB 0, 7 Bit */
soutp(UART_LCR, UART_LCR_WLEN7);
/* enable interrupts */
soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
}
#endif
#ifdef LIRC_SIR_ACTISYS_ACT220L
/*
* Derived from linux IrDA driver (net/irda/actisys.c)
* Drop me a mail for any kind of comment: maxx@spaceboyz.net
*/
void init_act220(void)
{
int i;
/* DLAB 1 */
soutp(UART_LCR, UART_LCR_DLAB|UART_LCR_WLEN7);
/* 9600 baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 12);
/* DLAB 0 */
soutp(UART_LCR, UART_LCR_WLEN7);
/* reset the dongle, set DTR low for 10us */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
udelay(10);
/* back to normal (still 9600) */
soutp(UART_MCR, UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2);
/*
* send RTS pulses until we reach 115200
* i hope this is really the same for act220l/act220l+
*/
for (i = 0; i < 3; i++) {
udelay(10);
/* set RTS low for 10 us */
soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
udelay(10);
/* set RTS high for 10 us */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
}
/* back to normal operation */
udelay(1500); /* better safe than sorry ;) */
/* Set DLAB 1. */
soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);
/* Set divisor to 1 => 115200 Baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 1);
/* Set DLAB 0, 7 Bit */
/* The dongle doesn't seem to have any problems with operation at 7N1 */
soutp(UART_LCR, UART_LCR_WLEN7);
/* enable interrupts */
soutp(UART_IER, UART_IER_RDI);
}
#endif
static int init_lirc_sir(void)
{
int retval;
init_waitqueue_head(&lirc_read_queue);
retval = init_port();
if (retval < 0)
return retval;
init_hardware();
printk(KERN_INFO LIRC_DRIVER_NAME
": Installed.\n");
return 0;
}
static int __init lirc_sir_init(void)
{
int retval;
retval = init_chrdev();
if (retval < 0)
return retval;
retval = init_lirc_sir();
if (retval) {
drop_chrdev();
return retval;
}
return 0;
}
static void __exit lirc_sir_exit(void)
{
drop_hardware();
drop_chrdev();
drop_port();
printk(KERN_INFO LIRC_DRIVER_NAME ": Uninstalled.\n");
}
module_init(lirc_sir_init);
module_exit(lirc_sir_exit);
#ifdef LIRC_SIR_TEKRAM
MODULE_DESCRIPTION("Infrared receiver driver for Tekram Irmate 210");
MODULE_AUTHOR("Christoph Bartelmus");
#elif defined(LIRC_ON_SA1100)
MODULE_DESCRIPTION("LIRC driver for StrongARM SA1100 embedded microprocessor");
MODULE_AUTHOR("Christoph Bartelmus");
#elif defined(LIRC_SIR_ACTISYS_ACT200L)
MODULE_DESCRIPTION("LIRC driver for Actisys Act200L");
MODULE_AUTHOR("Karl Bongers");
#elif defined(LIRC_SIR_ACTISYS_ACT220L)
MODULE_DESCRIPTION("LIRC driver for Actisys Act220L(+)");
MODULE_AUTHOR("Jan Roemisch");
#else
MODULE_DESCRIPTION("Infrared receiver driver for SIR type serial ports");
MODULE_AUTHOR("Milan Pikula");
#endif
MODULE_LICENSE("GPL");
#ifdef LIRC_ON_SA1100
module_param(irq, int, S_IRUGO);
MODULE_PARM_DESC(irq, "Interrupt (16)");
#else
module_param(io, int, S_IRUGO);
MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
module_param(irq, int, S_IRUGO);
MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
module_param(threshold, int, S_IRUGO);
MODULE_PARM_DESC(threshold, "space detection threshold (3)");
#endif
module_param(debug, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable debugging messages");