- 根目录:
- drivers
- staging
- iio
- light
- tsl2563.c
/*
* drivers/i2c/chips/tsl2563.c
*
* Copyright (C) 2008 Nokia Corporation
*
* Written by Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
* Contact: Amit Kucheria <amit.kucheria@verdurent.com>
*
* Converted to IIO driver
* Amit Kucheria <amit.kucheria@verdurent.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/hwmon.h>
#include <linux/err.h>
#include <linux/slab.h>
#include "../iio.h"
#include "tsl2563.h"
/* Use this many bits for fraction part. */
#define ADC_FRAC_BITS (14)
/* Given number of 1/10000's in ADC_FRAC_BITS precision. */
#define FRAC10K(f) (((f) * (1L << (ADC_FRAC_BITS))) / (10000))
/* Bits used for fraction in calibration coefficients.*/
#define CALIB_FRAC_BITS (10)
/* 0.5 in CALIB_FRAC_BITS precision */
#define CALIB_FRAC_HALF (1 << (CALIB_FRAC_BITS - 1))
/* Make a fraction from a number n that was multiplied with b. */
#define CALIB_FRAC(n, b) (((n) << CALIB_FRAC_BITS) / (b))
/* Decimal 10^(digits in sysfs presentation) */
#define CALIB_BASE_SYSFS (1000)
#define TSL2563_CMD (0x80)
#define TSL2563_CLEARINT (0x40)
#define TSL2563_REG_CTRL (0x00)
#define TSL2563_REG_TIMING (0x01)
#define TSL2563_REG_LOWLOW (0x02) /* data0 low threshold, 2 bytes */
#define TSL2563_REG_LOWHIGH (0x03)
#define TSL2563_REG_HIGHLOW (0x04) /* data0 high threshold, 2 bytes */
#define TSL2563_REG_HIGHHIGH (0x05)
#define TSL2563_REG_INT (0x06)
#define TSL2563_REG_ID (0x0a)
#define TSL2563_REG_DATA0LOW (0x0c) /* broadband sensor value, 2 bytes */
#define TSL2563_REG_DATA0HIGH (0x0d)
#define TSL2563_REG_DATA1LOW (0x0e) /* infrared sensor value, 2 bytes */
#define TSL2563_REG_DATA1HIGH (0x0f)
#define TSL2563_CMD_POWER_ON (0x03)
#define TSL2563_CMD_POWER_OFF (0x00)
#define TSL2563_CTRL_POWER_MASK (0x03)
#define TSL2563_TIMING_13MS (0x00)
#define TSL2563_TIMING_100MS (0x01)
#define TSL2563_TIMING_400MS (0x02)
#define TSL2563_TIMING_MASK (0x03)
#define TSL2563_TIMING_GAIN16 (0x10)
#define TSL2563_TIMING_GAIN1 (0x00)
#define TSL2563_INT_DISBLED (0x00)
#define TSL2563_INT_LEVEL (0x10)
#define TSL2563_INT_PERSIST(n) ((n) & 0x0F)
struct tsl2563_gainlevel_coeff {
u8 gaintime;
u16 min;
u16 max;
};
static struct tsl2563_gainlevel_coeff tsl2563_gainlevel_table[] = {
{
.gaintime = TSL2563_TIMING_400MS | TSL2563_TIMING_GAIN16,
.min = 0,
.max = 65534,
}, {
.gaintime = TSL2563_TIMING_400MS | TSL2563_TIMING_GAIN1,
.min = 2048,
.max = 65534,
}, {
.gaintime = TSL2563_TIMING_100MS | TSL2563_TIMING_GAIN1,
.min = 4095,
.max = 37177,
}, {
.gaintime = TSL2563_TIMING_13MS | TSL2563_TIMING_GAIN1,
.min = 3000,
.max = 65535,
},
};
struct tsl2563_chip {
struct mutex lock;
struct i2c_client *client;
struct iio_dev *indio_dev;
struct delayed_work poweroff_work;
struct work_struct work_thresh;
s64 event_timestamp;
/* Remember state for suspend and resume functions */
pm_message_t state;
struct tsl2563_gainlevel_coeff *gainlevel;
u16 low_thres;
u16 high_thres;
u8 intr;
bool int_enabled;
/* Calibration coefficients */
u32 calib0;
u32 calib1;
int cover_comp_gain;
/* Cache current values, to be returned while suspended */
u32 data0;
u32 data1;
};
static int tsl2563_write(struct i2c_client *client, u8 reg, u8 value)
{
int ret;
u8 buf[2];
buf[0] = TSL2563_CMD | reg;
buf[1] = value;
ret = i2c_master_send(client, buf, sizeof(buf));
return (ret == sizeof(buf)) ? 0 : ret;
}
static int tsl2563_read(struct i2c_client *client, u8 reg, void *buf, int len)
{
int ret;
u8 cmd = TSL2563_CMD | reg;
ret = i2c_master_send(client, &cmd, sizeof(cmd));
if (ret != sizeof(cmd))
return ret;
return i2c_master_recv(client, buf, len);
}
static int tsl2563_set_power(struct tsl2563_chip *chip, int on)
{
struct i2c_client *client = chip->client;
u8 cmd;
cmd = on ? TSL2563_CMD_POWER_ON : TSL2563_CMD_POWER_OFF;
return tsl2563_write(client, TSL2563_REG_CTRL, cmd);
}
/*
* Return value is 0 for off, 1 for on, or a negative error
* code if reading failed.
*/
static int tsl2563_get_power(struct tsl2563_chip *chip)
{
struct i2c_client *client = chip->client;
int ret;
u8 val;
ret = tsl2563_read(client, TSL2563_REG_CTRL, &val, sizeof(val));
if (ret != sizeof(val))
return ret;
return (val & TSL2563_CTRL_POWER_MASK) == TSL2563_CMD_POWER_ON;
}
static int tsl2563_configure(struct tsl2563_chip *chip)
{
int ret;
ret = tsl2563_write(chip->client, TSL2563_REG_TIMING,
chip->gainlevel->gaintime);
if (ret)
goto error_ret;
ret = tsl2563_write(chip->client, TSL2563_REG_HIGHLOW,
chip->high_thres & 0xFF);
if (ret)
goto error_ret;
ret = tsl2563_write(chip->client, TSL2563_REG_HIGHHIGH,
(chip->high_thres >> 8) & 0xFF);
if (ret)
goto error_ret;
ret = tsl2563_write(chip->client, TSL2563_REG_LOWLOW,
chip->low_thres & 0xFF);
if (ret)
goto error_ret;
ret = tsl2563_write(chip->client, TSL2563_REG_LOWHIGH,
(chip->low_thres >> 8) & 0xFF);
/* Interrupt register is automatically written anyway if it is relevant
so is not here */
error_ret:
return ret;
}
static void tsl2563_poweroff_work(struct work_struct *work)
{
struct tsl2563_chip *chip =
container_of(work, struct tsl2563_chip, poweroff_work.work);
tsl2563_set_power(chip, 0);
}
static int tsl2563_detect(struct tsl2563_chip *chip)
{
int ret;
ret = tsl2563_set_power(chip, 1);
if (ret)
return ret;
ret = tsl2563_get_power(chip);
if (ret < 0)
return ret;
return ret ? 0 : -ENODEV;
}
static int tsl2563_read_id(struct tsl2563_chip *chip, u8 *id)
{
struct i2c_client *client = chip->client;
int ret;
ret = tsl2563_read(client, TSL2563_REG_ID, id, sizeof(*id));
if (ret != sizeof(*id))
return ret;
return 0;
}
/*
* "Normalized" ADC value is one obtained with 400ms of integration time and
* 16x gain. This function returns the number of bits of shift needed to
* convert between normalized values and HW values obtained using given
* timing and gain settings.
*/
static int adc_shiftbits(u8 timing)
{
int shift = 0;
switch (timing & TSL2563_TIMING_MASK) {
case TSL2563_TIMING_13MS:
shift += 5;
break;
case TSL2563_TIMING_100MS:
shift += 2;
break;
case TSL2563_TIMING_400MS:
/* no-op */
break;
}
if (!(timing & TSL2563_TIMING_GAIN16))
shift += 4;
return shift;
}
/* Convert a HW ADC value to normalized scale. */
static u32 normalize_adc(u16 adc, u8 timing)
{
return adc << adc_shiftbits(timing);
}
static void tsl2563_wait_adc(struct tsl2563_chip *chip)
{
unsigned int delay;
switch (chip->gainlevel->gaintime & TSL2563_TIMING_MASK) {
case TSL2563_TIMING_13MS:
delay = 14;
break;
case TSL2563_TIMING_100MS:
delay = 101;
break;
default:
delay = 402;
}
/*
* TODO: Make sure that we wait at least required delay but why we
* have to extend it one tick more?
*/
schedule_timeout_interruptible(msecs_to_jiffies(delay) + 2);
}
static int tsl2563_adjust_gainlevel(struct tsl2563_chip *chip, u16 adc)
{
struct i2c_client *client = chip->client;
if (adc > chip->gainlevel->max || adc < chip->gainlevel->min) {
(adc > chip->gainlevel->max) ?
chip->gainlevel++ : chip->gainlevel--;
tsl2563_write(client, TSL2563_REG_TIMING,
chip->gainlevel->gaintime);
tsl2563_wait_adc(chip);
tsl2563_wait_adc(chip);
return 1;
} else
return 0;
}
static int tsl2563_get_adc(struct tsl2563_chip *chip)
{
struct i2c_client *client = chip->client;
u8 buf0[2], buf1[2];
u16 adc0, adc1;
int retry = 1;
int ret = 0;
if (chip->state.event != PM_EVENT_ON)
goto out;
if (!chip->int_enabled) {
cancel_delayed_work(&chip->poweroff_work);
if (!tsl2563_get_power(chip)) {
ret = tsl2563_set_power(chip, 1);
if (ret)
goto out;
ret = tsl2563_configure(chip);
if (ret)
goto out;
tsl2563_wait_adc(chip);
}
}
while (retry) {
ret = tsl2563_read(client,
TSL2563_REG_DATA0LOW,
buf0, sizeof(buf0));
if (ret != sizeof(buf0))
goto out;
ret = tsl2563_read(client, TSL2563_REG_DATA1LOW,
buf1, sizeof(buf1));
if (ret != sizeof(buf1))
goto out;
adc0 = (buf0[1] << 8) + buf0[0];
adc1 = (buf1[1] << 8) + buf1[0];
retry = tsl2563_adjust_gainlevel(chip, adc0);
}
chip->data0 = normalize_adc(adc0, chip->gainlevel->gaintime);
chip->data1 = normalize_adc(adc1, chip->gainlevel->gaintime);
if (!chip->int_enabled)
schedule_delayed_work(&chip->poweroff_work, 5 * HZ);
ret = 0;
out:
return ret;
}
static inline int calib_to_sysfs(u32 calib)
{
return (int) (((calib * CALIB_BASE_SYSFS) +
CALIB_FRAC_HALF) >> CALIB_FRAC_BITS);
}
static inline u32 calib_from_sysfs(int value)
{
return (((u32) value) << CALIB_FRAC_BITS) / CALIB_BASE_SYSFS;
}
/*
* Conversions between lux and ADC values.
*
* The basic formula is lux = c0 * adc0 - c1 * adc1, where c0 and c1 are
* appropriate constants. Different constants are needed for different
* kinds of light, determined by the ratio adc1/adc0 (basically the ratio
* of the intensities in infrared and visible wavelengths). lux_table below
* lists the upper threshold of the adc1/adc0 ratio and the corresponding
* constants.
*/
struct tsl2563_lux_coeff {
unsigned long ch_ratio;
unsigned long ch0_coeff;
unsigned long ch1_coeff;
};
static const struct tsl2563_lux_coeff lux_table[] = {
{
.ch_ratio = FRAC10K(1300),
.ch0_coeff = FRAC10K(315),
.ch1_coeff = FRAC10K(262),
}, {
.ch_ratio = FRAC10K(2600),
.ch0_coeff = FRAC10K(337),
.ch1_coeff = FRAC10K(430),
}, {
.ch_ratio = FRAC10K(3900),
.ch0_coeff = FRAC10K(363),
.ch1_coeff = FRAC10K(529),
}, {
.ch_ratio = FRAC10K(5200),
.ch0_coeff = FRAC10K(392),
.ch1_coeff = FRAC10K(605),
}, {
.ch_ratio = FRAC10K(6500),
.ch0_coeff = FRAC10K(229),
.ch1_coeff = FRAC10K(291),
}, {
.ch_ratio = FRAC10K(8000),
.ch0_coeff = FRAC10K(157),
.ch1_coeff = FRAC10K(180),
}, {
.ch_ratio = FRAC10K(13000),
.ch0_coeff = FRAC10K(34),
.ch1_coeff = FRAC10K(26),
}, {
.ch_ratio = ULONG_MAX,
.ch0_coeff = 0,
.ch1_coeff = 0,
},
};
/*
* Convert normalized, scaled ADC values to lux.
*/
static unsigned int adc_to_lux(u32 adc0, u32 adc1)
{
const struct tsl2563_lux_coeff *lp = lux_table;
unsigned long ratio, lux, ch0 = adc0, ch1 = adc1;
ratio = ch0 ? ((ch1 << ADC_FRAC_BITS) / ch0) : ULONG_MAX;
while (lp->ch_ratio < ratio)
lp++;
lux = ch0 * lp->ch0_coeff - ch1 * lp->ch1_coeff;
return (unsigned int) (lux >> ADC_FRAC_BITS);
}
/*--------------------------------------------------------------*/
/* Sysfs interface */
/*--------------------------------------------------------------*/
static ssize_t tsl2563_adc_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret;
mutex_lock(&chip->lock);
ret = tsl2563_get_adc(chip);
if (ret)
goto out;
switch (this_attr->address) {
case 0:
ret = snprintf(buf, PAGE_SIZE, "%d\n", chip->data0);
break;
case 1:
ret = snprintf(buf, PAGE_SIZE, "%d\n", chip->data1);
break;
}
out:
mutex_unlock(&chip->lock);
return ret;
}
/* Apply calibration coefficient to ADC count. */
static u32 calib_adc(u32 adc, u32 calib)
{
unsigned long scaled = adc;
scaled *= calib;
scaled >>= CALIB_FRAC_BITS;
return (u32) scaled;
}
static ssize_t tsl2563_lux_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
u32 calib0, calib1;
int ret;
mutex_lock(&chip->lock);
ret = tsl2563_get_adc(chip);
if (ret)
goto out;
calib0 = calib_adc(chip->data0, chip->calib0) * chip->cover_comp_gain;
calib1 = calib_adc(chip->data1, chip->calib1) * chip->cover_comp_gain;
ret = snprintf(buf, PAGE_SIZE, "%d\n", adc_to_lux(calib0, calib1));
out:
mutex_unlock(&chip->lock);
return ret;
}
static ssize_t format_calib(char *buf, int len, u32 calib)
{
return snprintf(buf, PAGE_SIZE, "%d\n", calib_to_sysfs(calib));
}
static ssize_t tsl2563_calib_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret;
mutex_lock(&chip->lock);
switch (this_attr->address) {
case 0:
ret = format_calib(buf, PAGE_SIZE, chip->calib0);
break;
case 1:
ret = format_calib(buf, PAGE_SIZE, chip->calib1);
break;
default:
ret = -ENODEV;
}
mutex_unlock(&chip->lock);
return ret;
}
static ssize_t tsl2563_calib_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int value;
u32 calib;
if (1 != sscanf(buf, "%d", &value))
return -EINVAL;
calib = calib_from_sysfs(value);
switch (this_attr->address) {
case 0:
chip->calib0 = calib;
break;
case 1:
chip->calib1 = calib;
break;
}
return len;
}
static IIO_DEVICE_ATTR(intensity0_both_raw, S_IRUGO,
tsl2563_adc_show, NULL, 0);
static IIO_DEVICE_ATTR(intensity1_ir_raw, S_IRUGO,
tsl2563_adc_show, NULL, 1);
static DEVICE_ATTR(illuminance0_input, S_IRUGO, tsl2563_lux_show, NULL);
static IIO_DEVICE_ATTR(intensity0_both_calibgain, S_IRUGO | S_IWUSR,
tsl2563_calib_show, tsl2563_calib_store, 0);
static IIO_DEVICE_ATTR(intensity1_ir_calibgain, S_IRUGO | S_IWUSR,
tsl2563_calib_show, tsl2563_calib_store, 1);
static ssize_t tsl2563_show_name(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
return sprintf(buf, "%s\n", chip->client->name);
}
static DEVICE_ATTR(name, S_IRUGO, tsl2563_show_name, NULL);
static struct attribute *tsl2563_attributes[] = {
&iio_dev_attr_intensity0_both_raw.dev_attr.attr,
&iio_dev_attr_intensity1_ir_raw.dev_attr.attr,
&dev_attr_illuminance0_input.attr,
&iio_dev_attr_intensity0_both_calibgain.dev_attr.attr,
&iio_dev_attr_intensity1_ir_calibgain.dev_attr.attr,
&dev_attr_name.attr,
NULL
};
static const struct attribute_group tsl2563_group = {
.attrs = tsl2563_attributes,
};
static ssize_t tsl2563_read_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
u16 val = 0;
switch (this_attr->address) {
case TSL2563_REG_HIGHLOW:
val = chip->high_thres;
break;
case TSL2563_REG_LOWLOW:
val = chip->low_thres;
break;
}
return snprintf(buf, PAGE_SIZE, "%d\n", val);
}
static ssize_t tsl2563_write_thresh(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
unsigned long val;
int ret;
ret = strict_strtoul(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&chip->lock);
ret = tsl2563_write(chip->client, this_attr->address, val & 0xFF);
if (ret)
goto error_ret;
ret = tsl2563_write(chip->client, this_attr->address + 1,
(val >> 8) & 0xFF);
switch (this_attr->address) {
case TSL2563_REG_HIGHLOW:
chip->high_thres = val;
break;
case TSL2563_REG_LOWLOW:
chip->low_thres = val;
break;
}
error_ret:
mutex_unlock(&chip->lock);
return ret < 0 ? ret : len;
}
static IIO_DEVICE_ATTR(intensity0_both_raw_thresh_rising_value,
S_IRUGO | S_IWUSR,
tsl2563_read_thresh,
tsl2563_write_thresh,
TSL2563_REG_HIGHLOW);
static IIO_DEVICE_ATTR(intensity0_both_raw_thresh_falling_value,
S_IRUGO | S_IWUSR,
tsl2563_read_thresh,
tsl2563_write_thresh,
TSL2563_REG_LOWLOW);
static int tsl2563_int_th(struct iio_dev *dev_info,
int index,
s64 timestamp,
int not_test)
{
struct tsl2563_chip *chip = dev_info->dev_data;
chip->event_timestamp = timestamp;
schedule_work(&chip->work_thresh);
return 0;
}
static void tsl2563_int_bh(struct work_struct *work_s)
{
struct tsl2563_chip *chip
= container_of(work_s,
struct tsl2563_chip, work_thresh);
u8 cmd = TSL2563_CMD | TSL2563_CLEARINT;
iio_push_event(chip->indio_dev, 0,
IIO_UNMOD_EVENT_CODE(IIO_EV_CLASS_LIGHT,
0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_EITHER),
chip->event_timestamp);
/* reenable_irq */
enable_irq(chip->client->irq);
/* clear the interrupt and push the event */
i2c_master_send(chip->client, &cmd, sizeof(cmd));
}
static ssize_t tsl2563_write_interrupt_config(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
struct iio_event_attr *this_attr = to_iio_event_attr(attr);
int input, ret = 0;
ret = sscanf(buf, "%d", &input);
if (ret != 1)
return -EINVAL;
mutex_lock(&chip->lock);
if (input && !(chip->intr & 0x30)) {
iio_add_event_to_list(this_attr->listel,
&indio_dev->interrupts[0]->ev_list);
chip->intr &= ~0x30;
chip->intr |= 0x10;
/* ensure the chip is actually on */
cancel_delayed_work(&chip->poweroff_work);
if (!tsl2563_get_power(chip)) {
ret = tsl2563_set_power(chip, 1);
if (ret)
goto out;
ret = tsl2563_configure(chip);
if (ret)
goto out;
}
ret = tsl2563_write(chip->client, TSL2563_REG_INT, chip->intr);
chip->int_enabled = true;
}
if (!input && (chip->intr & 0x30)) {
chip->intr |= ~0x30;
ret = tsl2563_write(chip->client, TSL2563_REG_INT, chip->intr);
iio_remove_event_from_list(this_attr->listel,
&indio_dev->interrupts[0]->ev_list);
chip->int_enabled = false;
/* now the interrupt is not enabled, we can go to sleep */
schedule_delayed_work(&chip->poweroff_work, 5 * HZ);
}
out:
mutex_unlock(&chip->lock);
return (ret < 0) ? ret : len;
}
static ssize_t tsl2563_read_interrupt_config(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
int ret;
u8 rxbuf;
ssize_t len;
mutex_lock(&chip->lock);
ret = tsl2563_read(chip->client,
TSL2563_REG_INT,
&rxbuf,
sizeof(rxbuf));
mutex_unlock(&chip->lock);
if (ret < 0)
goto error_ret;
len = snprintf(buf, PAGE_SIZE, "%d\n", !!(rxbuf & 0x30));
error_ret:
return (ret < 0) ? ret : len;
}
IIO_EVENT_ATTR(intensity0_both_thresh_en,
tsl2563_read_interrupt_config,
tsl2563_write_interrupt_config,
0,
tsl2563_int_th);
static struct attribute *tsl2563_event_attributes[] = {
&iio_event_attr_intensity0_both_thresh_en.dev_attr.attr,
&iio_dev_attr_intensity0_both_raw_thresh_rising_value.dev_attr.attr,
&iio_dev_attr_intensity0_both_raw_thresh_falling_value.dev_attr.attr,
NULL,
};
static struct attribute_group tsl2563_event_attribute_group = {
.attrs = tsl2563_event_attributes,
};
/*--------------------------------------------------------------*/
/* Probe, Attach, Remove */
/*--------------------------------------------------------------*/
static struct i2c_driver tsl2563_i2c_driver;
static int __devinit tsl2563_probe(struct i2c_client *client,
const struct i2c_device_id *device_id)
{
struct tsl2563_chip *chip;
struct tsl2563_platform_data *pdata = client->dev.platform_data;
int err = 0;
int ret;
u8 id;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
INIT_WORK(&chip->work_thresh, tsl2563_int_bh);
i2c_set_clientdata(client, chip);
chip->client = client;
err = tsl2563_detect(chip);
if (err) {
dev_err(&client->dev, "device not found, error %d\n", -err);
goto fail1;
}
err = tsl2563_read_id(chip, &id);
if (err)
goto fail1;
mutex_init(&chip->lock);
/* Default values used until userspace says otherwise */
chip->low_thres = 0x0;
chip->high_thres = 0xffff;
chip->gainlevel = tsl2563_gainlevel_table;
chip->intr = TSL2563_INT_PERSIST(4);
chip->calib0 = calib_from_sysfs(CALIB_BASE_SYSFS);
chip->calib1 = calib_from_sysfs(CALIB_BASE_SYSFS);
if (pdata)
chip->cover_comp_gain = pdata->cover_comp_gain;
else
chip->cover_comp_gain = 1;
dev_info(&client->dev, "model %d, rev. %d\n", id >> 4, id & 0x0f);
chip->indio_dev = iio_allocate_device();
if (!chip->indio_dev)
goto fail1;
chip->indio_dev->attrs = &tsl2563_group;
chip->indio_dev->dev.parent = &client->dev;
chip->indio_dev->dev_data = (void *)(chip);
chip->indio_dev->driver_module = THIS_MODULE;
chip->indio_dev->modes = INDIO_DIRECT_MODE;
if (client->irq) {
chip->indio_dev->num_interrupt_lines = 1;
chip->indio_dev->event_attrs
= &tsl2563_event_attribute_group;
}
ret = iio_device_register(chip->indio_dev);
if (ret)
goto fail1;
if (client->irq) {
ret = iio_register_interrupt_line(client->irq,
chip->indio_dev,
0,
IRQF_TRIGGER_RISING,
client->name);
if (ret)
goto fail2;
}
err = tsl2563_configure(chip);
if (err)
goto fail3;
INIT_DELAYED_WORK(&chip->poweroff_work, tsl2563_poweroff_work);
/* The interrupt cannot yet be enabled so this is fine without lock */
schedule_delayed_work(&chip->poweroff_work, 5 * HZ);
return 0;
fail3:
if (client->irq)
iio_unregister_interrupt_line(chip->indio_dev, 0);
fail2:
iio_device_unregister(chip->indio_dev);
fail1:
kfree(chip);
return err;
}
static int tsl2563_remove(struct i2c_client *client)
{
struct tsl2563_chip *chip = i2c_get_clientdata(client);
if (!chip->int_enabled)
cancel_delayed_work(&chip->poweroff_work);
/* Ensure that interrupts are disabled - then flush any bottom halves */
chip->intr |= ~0x30;
tsl2563_write(chip->client, TSL2563_REG_INT, chip->intr);
flush_scheduled_work();
tsl2563_set_power(chip, 0);
if (client->irq)
iio_unregister_interrupt_line(chip->indio_dev, 0);
iio_device_unregister(chip->indio_dev);
kfree(chip);
return 0;
}
static int tsl2563_suspend(struct i2c_client *client, pm_message_t state)
{
struct tsl2563_chip *chip = i2c_get_clientdata(client);
int ret;
mutex_lock(&chip->lock);
ret = tsl2563_set_power(chip, 0);
if (ret)
goto out;
chip->state = state;
out:
mutex_unlock(&chip->lock);
return ret;
}
static int tsl2563_resume(struct i2c_client *client)
{
struct tsl2563_chip *chip = i2c_get_clientdata(client);
int ret;
mutex_lock(&chip->lock);
ret = tsl2563_set_power(chip, 1);
if (ret)
goto out;
ret = tsl2563_configure(chip);
if (ret)
goto out;
chip->state.event = PM_EVENT_ON;
out:
mutex_unlock(&chip->lock);
return ret;
}
static const struct i2c_device_id tsl2563_id[] = {
{ "tsl2560", 0 },
{ "tsl2561", 1 },
{ "tsl2562", 2 },
{ "tsl2563", 3 },
{}
};
MODULE_DEVICE_TABLE(i2c, tsl2563_id);
static struct i2c_driver tsl2563_i2c_driver = {
.driver = {
.name = "tsl2563",
},
.suspend = tsl2563_suspend,
.resume = tsl2563_resume,
.probe = tsl2563_probe,
.remove = __devexit_p(tsl2563_remove),
.id_table = tsl2563_id,
};
static int __init tsl2563_init(void)
{
return i2c_add_driver(&tsl2563_i2c_driver);
}
static void __exit tsl2563_exit(void)
{
i2c_del_driver(&tsl2563_i2c_driver);
}
MODULE_AUTHOR("Nokia Corporation");
MODULE_DESCRIPTION("tsl2563 light sensor driver");
MODULE_LICENSE("GPL");
module_init(tsl2563_init);
module_exit(tsl2563_exit);