Kernel  |  2.6.39

下载     查看原文件
C++程序  |  1356行  |  38.77 KB
/* fd_mcs.c -- Future Domain MCS 600/700 (or IBM OEM) driver
 *
 * FutureDomain MCS-600/700 v0.2 03/11/1998 by ZP Gu (zpg@castle.net)
 *
 * This driver is cloned from fdomain.* to specifically support
 * the Future Domain MCS 600/700 MCA SCSI adapters. Some PS/2s
 * also equipped with IBM Fast SCSI Adapter/A which is an OEM
 * of MCS 700.
 *
 * This driver also supports Reply SB16/SCSI card (the SCSI part).
 *
 * What makes this driver different is that this driver is MCA only
 * and it supports multiple adapters in the same system, IRQ 
 * sharing, some driver statistics, and maps highest SCSI id to sda.
 * All cards are auto-detected.
 *
 * Assumptions: TMC-1800/18C50/18C30, BIOS >= 3.4
 *
 * LILO command-line options:
 *   fd_mcs=<FIFO_COUNT>[,<FIFO_SIZE>]
 *
 * ********************************************************
 * Please see Copyrights/Comments in fdomain.* for credits.
 * Following is from fdomain.c for acknowledgement:
 *
 * Created: Sun May  3 18:53:19 1992 by faith@cs.unc.edu
 * Revised: Wed Oct  2 11:10:55 1996 by r.faith@ieee.org
 * Author: Rickard E. Faith, faith@cs.unc.edu
 * Copyright 1992, 1993, 1994, 1995, 1996 Rickard E. Faith
 *
 * $Id: fdomain.c,v 5.45 1996/10/02 15:13:06 root Exp $

 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2, or (at your option) any
 * later version.

 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.

 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 675 Mass Ave, Cambridge, MA 02139, USA.

 **************************************************************************

 NOTES ON USER DEFINABLE OPTIONS:

 DEBUG: This turns on the printing of various debug information.

 ENABLE_PARITY: This turns on SCSI parity checking.  With the current
 driver, all attached devices must support SCSI parity.  If none of your
 devices support parity, then you can probably get the driver to work by
 turning this option off.  I have no way of testing this, however, and it
 would appear that no one ever uses this option.

 FIFO_COUNT: The host adapter has an 8K cache (host adapters based on the
 18C30 chip have a 2k cache).  When this many 512 byte blocks are filled by
 the SCSI device, an interrupt will be raised.  Therefore, this could be as
 low as 0, or as high as 16.  Note, however, that values which are too high
 or too low seem to prevent any interrupts from occurring, and thereby lock
 up the machine.  I have found that 2 is a good number, but throughput may
 be increased by changing this value to values which are close to 2.
 Please let me know if you try any different values.
 [*****Now a runtime option*****]

 RESELECTION: This is no longer an option, since I gave up trying to
 implement it in version 4.x of this driver.  It did not improve
 performance at all and made the driver unstable (because I never found one
 of the two race conditions which were introduced by the multiple
 outstanding command code).  The instability seems a very high price to pay
 just so that you don't have to wait for the tape to rewind.  If you want
 this feature implemented, send me patches.  I'll be happy to send a copy
 of my (broken) driver to anyone who would like to see a copy.

 **************************************************************************/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/blkdev.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/proc_fs.h>
#include <linux/delay.h>
#include <linux/mca.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <scsi/scsicam.h>
#include <linux/mca-legacy.h>

#include <asm/io.h>
#include <asm/system.h>

#include "scsi.h"
#include <scsi/scsi_host.h>

#define DRIVER_VERSION "v0.2 by ZP Gu<zpg@castle.net>"

/* START OF USER DEFINABLE OPTIONS */

#define DEBUG            0	/* Enable debugging output */
#define ENABLE_PARITY    1	/* Enable SCSI Parity */

/* END OF USER DEFINABLE OPTIONS */

#if DEBUG
#define EVERY_ACCESS     0	/* Write a line on every scsi access */
#define ERRORS_ONLY      1	/* Only write a line if there is an error */
#define DEBUG_MESSAGES   1	/* Debug MESSAGE IN phase */
#define DEBUG_ABORT      1	/* Debug abort() routine */
#define DEBUG_RESET      1	/* Debug reset() routine */
#define DEBUG_RACE       1	/* Debug interrupt-driven race condition */
#else
#define EVERY_ACCESS     0	/* LEAVE THESE ALONE--CHANGE THE ONES ABOVE */
#define ERRORS_ONLY      0
#define DEBUG_MESSAGES   0
#define DEBUG_ABORT      0
#define DEBUG_RESET      0
#define DEBUG_RACE       0
#endif

/* Errors are reported on the line, so we don't need to report them again */
#if EVERY_ACCESS
#undef ERRORS_ONLY
#define ERRORS_ONLY      0
#endif

#if ENABLE_PARITY
#define PARITY_MASK      0x08
#else
#define PARITY_MASK      0x00
#endif

enum chip_type {
	unknown = 0x00,
	tmc1800 = 0x01,
	tmc18c50 = 0x02,
	tmc18c30 = 0x03,
};

enum {
	in_arbitration = 0x02,
	in_selection = 0x04,
	in_other = 0x08,
	disconnect = 0x10,
	aborted = 0x20,
	sent_ident = 0x40,
};

enum in_port_type {
	Read_SCSI_Data = 0,
	SCSI_Status = 1,
	TMC_Status = 2,
	FIFO_Status = 3,	/* tmc18c50/tmc18c30 only */
	Interrupt_Cond = 4,	/* tmc18c50/tmc18c30 only */
	LSB_ID_Code = 5,
	MSB_ID_Code = 6,
	Read_Loopback = 7,
	SCSI_Data_NoACK = 8,
	Interrupt_Status = 9,
	Configuration1 = 10,
	Configuration2 = 11,	/* tmc18c50/tmc18c30 only */
	Read_FIFO = 12,
	FIFO_Data_Count = 14
};

enum out_port_type {
	Write_SCSI_Data = 0,
	SCSI_Cntl = 1,
	Interrupt_Cntl = 2,
	SCSI_Mode_Cntl = 3,
	TMC_Cntl = 4,
	Memory_Cntl = 5,	/* tmc18c50/tmc18c30 only */
	Write_Loopback = 7,
	IO_Control = 11,	/* tmc18c30 only */
	Write_FIFO = 12
};

struct fd_hostdata {
	unsigned long _bios_base;
	int _bios_major;
	int _bios_minor;
	volatile int _in_command;
	Scsi_Cmnd *_current_SC;
	enum chip_type _chip;
	int _adapter_mask;
	int _fifo_count;	/* Number of 512 byte blocks before INTR */

	char _adapter_name[64];
#if DEBUG_RACE
	volatile int _in_interrupt_flag;
#endif

	int _SCSI_Mode_Cntl_port;
	int _FIFO_Data_Count_port;
	int _Interrupt_Cntl_port;
	int _Interrupt_Status_port;
	int _Interrupt_Cond_port;
	int _Read_FIFO_port;
	int _Read_SCSI_Data_port;
	int _SCSI_Cntl_port;
	int _SCSI_Data_NoACK_port;
	int _SCSI_Status_port;
	int _TMC_Cntl_port;
	int _TMC_Status_port;
	int _Write_FIFO_port;
	int _Write_SCSI_Data_port;

	int _FIFO_Size;		/* = 0x2000;  8k FIFO for
				   pre-tmc18c30 chips */
	/* simple stats */
	int _Bytes_Read;
	int _Bytes_Written;
	int _INTR_Processed;
};

#define FD_MAX_HOSTS 3		/* enough? */

#define HOSTDATA(shpnt) ((struct fd_hostdata *) shpnt->hostdata)
#define bios_base             (HOSTDATA(shpnt)->_bios_base)
#define bios_major            (HOSTDATA(shpnt)->_bios_major)
#define bios_minor            (HOSTDATA(shpnt)->_bios_minor)
#define in_command            (HOSTDATA(shpnt)->_in_command)
#define current_SC            (HOSTDATA(shpnt)->_current_SC)
#define chip                  (HOSTDATA(shpnt)->_chip)
#define adapter_mask          (HOSTDATA(shpnt)->_adapter_mask)
#define FIFO_COUNT            (HOSTDATA(shpnt)->_fifo_count)
#define adapter_name          (HOSTDATA(shpnt)->_adapter_name)
#if DEBUG_RACE
#define in_interrupt_flag     (HOSTDATA(shpnt)->_in_interrupt_flag)
#endif
#define SCSI_Mode_Cntl_port   (HOSTDATA(shpnt)->_SCSI_Mode_Cntl_port)
#define FIFO_Data_Count_port  (HOSTDATA(shpnt)->_FIFO_Data_Count_port)
#define Interrupt_Cntl_port   (HOSTDATA(shpnt)->_Interrupt_Cntl_port)
#define Interrupt_Status_port (HOSTDATA(shpnt)->_Interrupt_Status_port)
#define Interrupt_Cond_port   (HOSTDATA(shpnt)->_Interrupt_Cond_port)
#define Read_FIFO_port        (HOSTDATA(shpnt)->_Read_FIFO_port)
#define Read_SCSI_Data_port   (HOSTDATA(shpnt)->_Read_SCSI_Data_port)
#define SCSI_Cntl_port        (HOSTDATA(shpnt)->_SCSI_Cntl_port)
#define SCSI_Data_NoACK_port  (HOSTDATA(shpnt)->_SCSI_Data_NoACK_port)
#define SCSI_Status_port      (HOSTDATA(shpnt)->_SCSI_Status_port)
#define TMC_Cntl_port         (HOSTDATA(shpnt)->_TMC_Cntl_port)
#define TMC_Status_port       (HOSTDATA(shpnt)->_TMC_Status_port)
#define Write_FIFO_port       (HOSTDATA(shpnt)->_Write_FIFO_port)
#define Write_SCSI_Data_port  (HOSTDATA(shpnt)->_Write_SCSI_Data_port)
#define FIFO_Size             (HOSTDATA(shpnt)->_FIFO_Size)
#define Bytes_Read            (HOSTDATA(shpnt)->_Bytes_Read)
#define Bytes_Written         (HOSTDATA(shpnt)->_Bytes_Written)
#define INTR_Processed        (HOSTDATA(shpnt)->_INTR_Processed)

struct fd_mcs_adapters_struct {
	char *name;
	int id;
	enum chip_type fd_chip;
	int fifo_size;
	int fifo_count;
};

#define REPLY_ID 0x5137

static struct fd_mcs_adapters_struct fd_mcs_adapters[] = {
	{"Future Domain SCSI Adapter MCS-700(18C50)",
	 0x60e9,
	 tmc18c50,
	 0x2000,
	 4},
	{"Future Domain SCSI Adapter MCS-600/700(TMC-1800)",
	 0x6127,
	 tmc1800,
	 0x2000,
	 4},
	{"Reply Sound Blaster/SCSI Adapter",
	 REPLY_ID,
	 tmc18c30,
	 0x800,
	 2},
};

#define FD_BRDS ARRAY_SIZE(fd_mcs_adapters)

static irqreturn_t fd_mcs_intr(int irq, void *dev_id);

static unsigned long addresses[] = { 0xc8000, 0xca000, 0xce000, 0xde000 };
static unsigned short ports[] = { 0x140, 0x150, 0x160, 0x170 };
static unsigned short interrupts[] = { 3, 5, 10, 11, 12, 14, 15, 0 };

/* host information */
static int found = 0;
static struct Scsi_Host *hosts[FD_MAX_HOSTS + 1] = { NULL };

static int user_fifo_count = 0;
static int user_fifo_size = 0;

#ifndef MODULE
static int __init fd_mcs_setup(char *str)
{
	static int done_setup = 0;
	int ints[3];

	get_options(str, 3, ints);
	if (done_setup++ || ints[0] < 1 || ints[0] > 2 || ints[1] < 1 || ints[1] > 16) {
		printk("fd_mcs: usage: fd_mcs=FIFO_COUNT, FIFO_SIZE\n");
		return 0;
	}

	user_fifo_count = ints[0] >= 1 ? ints[1] : 0;
	user_fifo_size = ints[0] >= 2 ? ints[2] : 0;
	return 1;
}

__setup("fd_mcs=", fd_mcs_setup);
#endif /* !MODULE */

static void print_banner(struct Scsi_Host *shpnt)
{
	printk("scsi%d <fd_mcs>: ", shpnt->host_no);

	if (bios_base) {
		printk("BIOS at 0x%lX", bios_base);
	} else {
		printk("No BIOS");
	}

	printk(", HostID %d, %s Chip, IRQ %d, IO 0x%lX\n", shpnt->this_id, chip == tmc18c50 ? "TMC-18C50" : (chip == tmc18c30 ? "TMC-18C30" : (chip == tmc1800 ? "TMC-1800" : "Unknown")), shpnt->irq, shpnt->io_port);
}


static void do_pause(unsigned amount)
{				/* Pause for amount*10 milliseconds */
	do {
		mdelay(10);
	} while (--amount);
}

static void fd_mcs_make_bus_idle(struct Scsi_Host *shpnt)
{
	outb(0, SCSI_Cntl_port);
	outb(0, SCSI_Mode_Cntl_port);
	if (chip == tmc18c50 || chip == tmc18c30)
		outb(0x21 | PARITY_MASK, TMC_Cntl_port);	/* Clear forced intr. */
	else
		outb(0x01 | PARITY_MASK, TMC_Cntl_port);
}

static int fd_mcs_detect(struct scsi_host_template * tpnt)
{
	int loop;
	struct Scsi_Host *shpnt;

	/* get id, port, bios, irq */
	int slot;
	u_char pos2, pos3, pos4;
	int id, port, irq;
	unsigned long bios;

	/* if not MCA machine, return */
	if (!MCA_bus)
		return 0;

	/* changeable? */
	id = 7;

	for (loop = 0; loop < FD_BRDS; loop++) {
		slot = 0;
		while (MCA_NOTFOUND != (slot = mca_find_adapter(fd_mcs_adapters[loop].id, slot))) {

			/* if we get this far, an adapter has been detected and is
			   enabled */

			printk(KERN_INFO "scsi  <fd_mcs>: %s at slot %d\n", fd_mcs_adapters[loop].name, slot + 1);

			pos2 = mca_read_stored_pos(slot, 2);
			pos3 = mca_read_stored_pos(slot, 3);
			pos4 = mca_read_stored_pos(slot, 4);

			/* ready for next probe */
			slot++;

			if (fd_mcs_adapters[loop].id == REPLY_ID) {	/* reply card */
				static int reply_irq[] = { 10, 11, 14, 15 };

				bios = 0;	/* no bios */

				if (pos2 & 0x2)
					port = ports[pos4 & 0x3];
				else
					continue;

				/* can't really disable it, same as irq=10 */
				irq = reply_irq[((pos4 >> 2) & 0x1) + 2 * ((pos4 >> 4) & 0x1)];
			} else {
				bios = addresses[pos2 >> 6];
				port = ports[(pos2 >> 4) & 0x03];
				irq = interrupts[(pos2 >> 1) & 0x07];
			}

			if (irq) {
				/* claim the slot */
				mca_set_adapter_name(slot - 1, fd_mcs_adapters[loop].name);

				/* check irq/region */
				if (request_irq(irq, fd_mcs_intr, IRQF_SHARED, "fd_mcs", hosts)) {
					printk(KERN_ERR "fd_mcs: interrupt is not available, skipping...\n");
					continue;
				}

				/* request I/O region */
				if (request_region(port, 0x10, "fd_mcs")) {
					printk(KERN_ERR "fd_mcs: I/O region is already in use, skipping...\n");
					continue;
				}
				/* register */
				if (!(shpnt = scsi_register(tpnt, sizeof(struct fd_hostdata)))) {
					printk(KERN_ERR "fd_mcs: scsi_register() failed\n");
					release_region(port, 0x10);
					free_irq(irq, hosts);
					continue;
				}


				/* save name */
				strcpy(adapter_name, fd_mcs_adapters[loop].name);

				/* chip/fifo */
				chip = fd_mcs_adapters[loop].fd_chip;
				/* use boot time value if available */
				FIFO_COUNT = user_fifo_count ? user_fifo_count : fd_mcs_adapters[loop].fifo_count;
				FIFO_Size = user_fifo_size ? user_fifo_size : fd_mcs_adapters[loop].fifo_size;

/* FIXME: Do we need to keep this bit of code inside NOT_USED around at all? */
#ifdef NOT_USED
				/* *************************************************** */
				/* Try to toggle 32-bit mode.  This only
				   works on an 18c30 chip.  (User reports
				   say this works, so we should switch to
				   it in the near future.) */
				outb(0x80, port + IO_Control);
				if ((inb(port + Configuration2) & 0x80) == 0x80) {
					outb(0x00, port + IO_Control);
					if ((inb(port + Configuration2) & 0x80) == 0x00) {
						chip = tmc18c30;
						FIFO_Size = 0x800;	/* 2k FIFO */

						printk("FIRST: chip=%s, fifo_size=0x%x\n", (chip == tmc18c30) ? "tmc18c30" : "tmc18c50", FIFO_Size);
					}
				}

				/* That should have worked, but appears to
				   have problems.  Let's assume it is an
				   18c30 if the RAM is disabled. */

				if (inb(port + Configuration2) & 0x02) {
					chip = tmc18c30;
					FIFO_Size = 0x800;	/* 2k FIFO */

					printk("SECOND: chip=%s, fifo_size=0x%x\n", (chip == tmc18c30) ? "tmc18c30" : "tmc18c50", FIFO_Size);
				}
				/* *************************************************** */
#endif

				/* IBM/ANSI scsi scan ordering */
				/* Stick this back in when the scsi.c changes are there */
				shpnt->reverse_ordering = 1;


				/* saving info */
				hosts[found++] = shpnt;

				shpnt->this_id = id;
				shpnt->irq = irq;
				shpnt->io_port = port;
				shpnt->n_io_port = 0x10;

				/* save */
				bios_base = bios;
				adapter_mask = (1 << id);

				/* save more */
				SCSI_Mode_Cntl_port = port + SCSI_Mode_Cntl;
				FIFO_Data_Count_port = port + FIFO_Data_Count;
				Interrupt_Cntl_port = port + Interrupt_Cntl;
				Interrupt_Status_port = port + Interrupt_Status;
				Interrupt_Cond_port = port + Interrupt_Cond;
				Read_FIFO_port = port + Read_FIFO;
				Read_SCSI_Data_port = port + Read_SCSI_Data;
				SCSI_Cntl_port = port + SCSI_Cntl;
				SCSI_Data_NoACK_port = port + SCSI_Data_NoACK;
				SCSI_Status_port = port + SCSI_Status;
				TMC_Cntl_port = port + TMC_Cntl;
				TMC_Status_port = port + TMC_Status;
				Write_FIFO_port = port + Write_FIFO;
				Write_SCSI_Data_port = port + Write_SCSI_Data;

				Bytes_Read = 0;
				Bytes_Written = 0;
				INTR_Processed = 0;

				/* say something */
				print_banner(shpnt);

				/* reset */
				outb(1, SCSI_Cntl_port);
				do_pause(2);
				outb(0, SCSI_Cntl_port);
				do_pause(115);
				outb(0, SCSI_Mode_Cntl_port);
				outb(PARITY_MASK, TMC_Cntl_port);
				/* done reset */
			}
		}

		if (found == FD_MAX_HOSTS) {
			printk("fd_mcs: detecting reached max=%d host adapters.\n", FD_MAX_HOSTS);
			break;
		}
	}

	return found;
}

static const char *fd_mcs_info(struct Scsi_Host *shpnt)
{
	return adapter_name;
}

static int TOTAL_INTR = 0;

/*
 * inout : decides on the direction of the dataflow and the meaning of the 
 *         variables
 * buffer: If inout==FALSE data is being written to it else read from it
 * *start: If inout==FALSE start of the valid data in the buffer
 * offset: If inout==FALSE offset from the beginning of the imaginary file 
 *         from which we start writing into the buffer
 * length: If inout==FALSE max number of bytes to be written into the buffer 
 *         else number of bytes in the buffer
 */
static int fd_mcs_proc_info(struct Scsi_Host *shpnt, char *buffer, char **start, off_t offset, int length, int inout)
{
	int len = 0;

	if (inout)
		return (-ENOSYS);

	*start = buffer + offset;

	len += sprintf(buffer + len, "Future Domain MCS-600/700 Driver %s\n", DRIVER_VERSION);
	len += sprintf(buffer + len, "HOST #%d: %s\n", shpnt->host_no, adapter_name);
	len += sprintf(buffer + len, "FIFO Size=0x%x, FIFO Count=%d\n", FIFO_Size, FIFO_COUNT);
	len += sprintf(buffer + len, "DriverCalls=%d, Interrupts=%d, BytesRead=%d, BytesWrite=%d\n\n", TOTAL_INTR, INTR_Processed, Bytes_Read, Bytes_Written);

	if ((len -= offset) <= 0)
		return 0;
	if (len > length)
		len = length;
	return len;
}

static int fd_mcs_select(struct Scsi_Host *shpnt, int target)
{
	int status;
	unsigned long timeout;

	outb(0x82, SCSI_Cntl_port);	/* Bus Enable + Select */
	outb(adapter_mask | (1 << target), SCSI_Data_NoACK_port);

	/* Stop arbitration and enable parity */
	outb(PARITY_MASK, TMC_Cntl_port);

	timeout = 350;		/* 350mS -- because of timeouts
				   (was 250mS) */

	do {
		status = inb(SCSI_Status_port);	/* Read adapter status */
		if (status & 1) {	/* Busy asserted */
			/* Enable SCSI Bus (on error, should make bus idle with 0) */
			outb(0x80, SCSI_Cntl_port);
			return 0;
		}
		udelay(1000);	/* wait one msec */
	} while (--timeout);

	/* Make bus idle */
	fd_mcs_make_bus_idle(shpnt);
#if EVERY_ACCESS
	if (!target)
		printk("Selection failed\n");
#endif
#if ERRORS_ONLY
	if (!target) {
		static int flag = 0;

		if (!flag)	/* Skip first failure for all chips. */
			++flag;
		else
			printk("fd_mcs: Selection failed\n");
	}
#endif
	return 1;
}

static void my_done(struct Scsi_Host *shpnt, int error)
{
	if (in_command) {
		in_command = 0;
		outb(0x00, Interrupt_Cntl_port);
		fd_mcs_make_bus_idle(shpnt);
		current_SC->result = error;
		current_SC->scsi_done(current_SC);
	} else {
		panic("fd_mcs: my_done() called outside of command\n");
	}
#if DEBUG_RACE
	in_interrupt_flag = 0;
#endif
}

/* only my_done needs to be protected  */
static irqreturn_t fd_mcs_intr(int irq, void *dev_id)
{
	unsigned long flags;
	int status;
	int done = 0;
	unsigned data_count, tmp_count;

	int i = 0;
	struct Scsi_Host *shpnt;

	TOTAL_INTR++;

	/* search for one adapter-response on shared interrupt */
	while ((shpnt = hosts[i++])) {
		if ((inb(TMC_Status_port)) & 1)
			break;
	}

	/* return if some other device on this IRQ caused the interrupt */
	if (!shpnt) {
		return IRQ_NONE;
	}

	INTR_Processed++;

	outb(0x00, Interrupt_Cntl_port);

	/* Abort calls my_done, so we do nothing here. */
	if (current_SC->SCp.phase & aborted) {
#if DEBUG_ABORT
		printk("Interrupt after abort, ignoring\n");
#endif
		/* return IRQ_HANDLED; */
	}
#if DEBUG_RACE
	++in_interrupt_flag;
#endif

	if (current_SC->SCp.phase & in_arbitration) {
		status = inb(TMC_Status_port);	/* Read adapter status */
		if (!(status & 0x02)) {
#if EVERY_ACCESS
			printk(" AFAIL ");
#endif
			spin_lock_irqsave(shpnt->host_lock, flags);
			my_done(shpnt, DID_BUS_BUSY << 16);
			spin_unlock_irqrestore(shpnt->host_lock, flags);
			return IRQ_HANDLED;
		}
		current_SC->SCp.phase = in_selection;

		outb(0x40 | FIFO_COUNT, Interrupt_Cntl_port);

		outb(0x82, SCSI_Cntl_port);	/* Bus Enable + Select */
		outb(adapter_mask | (1 << scmd_id(current_SC)), SCSI_Data_NoACK_port);

		/* Stop arbitration and enable parity */
		outb(0x10 | PARITY_MASK, TMC_Cntl_port);
#if DEBUG_RACE
		in_interrupt_flag = 0;
#endif
		return IRQ_HANDLED;
	} else if (current_SC->SCp.phase & in_selection) {
		status = inb(SCSI_Status_port);
		if (!(status & 0x01)) {
			/* Try again, for slow devices */
			if (fd_mcs_select(shpnt, scmd_id(current_SC))) {
#if EVERY_ACCESS
				printk(" SFAIL ");
#endif
				spin_lock_irqsave(shpnt->host_lock, flags);
				my_done(shpnt, DID_NO_CONNECT << 16);
				spin_unlock_irqrestore(shpnt->host_lock, flags);
				return IRQ_HANDLED;
			} else {
#if EVERY_ACCESS
				printk(" AltSel ");
#endif
				/* Stop arbitration and enable parity */
				outb(0x10 | PARITY_MASK, TMC_Cntl_port);
			}
		}
		current_SC->SCp.phase = in_other;
		outb(0x90 | FIFO_COUNT, Interrupt_Cntl_port);
		outb(0x80, SCSI_Cntl_port);
#if DEBUG_RACE
		in_interrupt_flag = 0;
#endif
		return IRQ_HANDLED;
	}

	/* current_SC->SCp.phase == in_other: this is the body of the routine */

	status = inb(SCSI_Status_port);

	if (status & 0x10) {	/* REQ */

		switch (status & 0x0e) {

		case 0x08:	/* COMMAND OUT */
			outb(current_SC->cmnd[current_SC->SCp.sent_command++], Write_SCSI_Data_port);
#if EVERY_ACCESS
			printk("CMD = %x,", current_SC->cmnd[current_SC->SCp.sent_command - 1]);
#endif
			break;
		case 0x00:	/* DATA OUT -- tmc18c50/tmc18c30 only */
			if (chip != tmc1800 && !current_SC->SCp.have_data_in) {
				current_SC->SCp.have_data_in = -1;
				outb(0xd0 | PARITY_MASK, TMC_Cntl_port);
			}
			break;
		case 0x04:	/* DATA IN -- tmc18c50/tmc18c30 only */
			if (chip != tmc1800 && !current_SC->SCp.have_data_in) {
				current_SC->SCp.have_data_in = 1;
				outb(0x90 | PARITY_MASK, TMC_Cntl_port);
			}
			break;
		case 0x0c:	/* STATUS IN */
			current_SC->SCp.Status = inb(Read_SCSI_Data_port);
#if EVERY_ACCESS
			printk("Status = %x, ", current_SC->SCp.Status);
#endif
#if ERRORS_ONLY
			if (current_SC->SCp.Status && current_SC->SCp.Status != 2 && current_SC->SCp.Status != 8) {
				printk("ERROR fd_mcs: target = %d, command = %x, status = %x\n", current_SC->device->id, current_SC->cmnd[0], current_SC->SCp.Status);
			}
#endif
			break;
		case 0x0a:	/* MESSAGE OUT */
			outb(MESSAGE_REJECT, Write_SCSI_Data_port);	/* Reject */
			break;
		case 0x0e:	/* MESSAGE IN */
			current_SC->SCp.Message = inb(Read_SCSI_Data_port);
#if EVERY_ACCESS
			printk("Message = %x, ", current_SC->SCp.Message);
#endif
			if (!current_SC->SCp.Message)
				++done;
#if DEBUG_MESSAGES || EVERY_ACCESS
			if (current_SC->SCp.Message) {
				printk("fd_mcs: message = %x\n", current_SC->SCp.Message);
			}
#endif
			break;
		}
	}

	if (chip == tmc1800 && !current_SC->SCp.have_data_in && (current_SC->SCp.sent_command >= current_SC->cmd_len)) {
		/* We have to get the FIFO direction
		   correct, so I've made a table based
		   on the SCSI Standard of which commands
		   appear to require a DATA OUT phase.
		 */
		/*
		   p. 94: Command for all device types
		   CHANGE DEFINITION            40 DATA OUT
		   COMPARE                      39 DATA OUT
		   COPY                         18 DATA OUT
		   COPY AND VERIFY              3a DATA OUT
		   INQUIRY                      12 
		   LOG SELECT                   4c DATA OUT
		   LOG SENSE                    4d
		   MODE SELECT (6)              15 DATA OUT
		   MODE SELECT (10)             55 DATA OUT
		   MODE SENSE (6)               1a
		   MODE SENSE (10)              5a
		   READ BUFFER                  3c
		   RECEIVE DIAGNOSTIC RESULTS   1c
		   REQUEST SENSE                03
		   SEND DIAGNOSTIC              1d DATA OUT
		   TEST UNIT READY              00
		   WRITE BUFFER                 3b DATA OUT

		   p.178: Commands for direct-access devices (not listed on p. 94)
		   FORMAT UNIT                  04 DATA OUT
		   LOCK-UNLOCK CACHE            36
		   PRE-FETCH                    34
		   PREVENT-ALLOW MEDIUM REMOVAL 1e
		   READ (6)/RECEIVE             08
		   READ (10)                    3c
		   READ CAPACITY                25
		   READ DEFECT DATA (10)        37
		   READ LONG                    3e
		   REASSIGN BLOCKS              07 DATA OUT
		   RELEASE                      17
		   RESERVE                      16 DATA OUT
		   REZERO UNIT/REWIND           01
		   SEARCH DATA EQUAL (10)       31 DATA OUT
		   SEARCH DATA HIGH (10)        30 DATA OUT
		   SEARCH DATA LOW (10)         32 DATA OUT
		   SEEK (6)                     0b
		   SEEK (10)                    2b
		   SET LIMITS (10)              33
		   START STOP UNIT              1b
		   SYNCHRONIZE CACHE            35
		   VERIFY (10)                  2f
		   WRITE (6)/PRINT/SEND         0a DATA OUT
		   WRITE (10)/SEND              2a DATA OUT
		   WRITE AND VERIFY (10)        2e DATA OUT
		   WRITE LONG                   3f DATA OUT
		   WRITE SAME                   41 DATA OUT ?

		   p. 261: Commands for sequential-access devices (not previously listed)
		   ERASE                        19
		   LOAD UNLOAD                  1b
		   LOCATE                       2b
		   READ BLOCK LIMITS            05
		   READ POSITION                34
		   READ REVERSE                 0f
		   RECOVER BUFFERED DATA        14
		   SPACE                        11
		   WRITE FILEMARKS              10 ?

		   p. 298: Commands for printer devices (not previously listed)
		   ****** NOT SUPPORTED BY THIS DRIVER, since 0b is SEEK (6) *****
		   SLEW AND PRINT               0b DATA OUT  -- same as seek
		   STOP PRINT                   1b
		   SYNCHRONIZE BUFFER           10

		   p. 315: Commands for processor devices (not previously listed)

		   p. 321: Commands for write-once devices (not previously listed)
		   MEDIUM SCAN                  38
		   READ (12)                    a8
		   SEARCH DATA EQUAL (12)       b1 DATA OUT
		   SEARCH DATA HIGH (12)        b0 DATA OUT
		   SEARCH DATA LOW (12)         b2 DATA OUT
		   SET LIMITS (12)              b3
		   VERIFY (12)                  af
		   WRITE (12)                   aa DATA OUT
		   WRITE AND VERIFY (12)        ae DATA OUT

		   p. 332: Commands for CD-ROM devices (not previously listed)
		   PAUSE/RESUME                 4b
		   PLAY AUDIO (10)              45
		   PLAY AUDIO (12)              a5
		   PLAY AUDIO MSF               47
		   PLAY TRACK RELATIVE (10)     49
		   PLAY TRACK RELATIVE (12)     a9
		   READ HEADER                  44
		   READ SUB-CHANNEL             42
		   READ TOC                     43

		   p. 370: Commands for scanner devices (not previously listed)
		   GET DATA BUFFER STATUS       34
		   GET WINDOW                   25
		   OBJECT POSITION              31
		   SCAN                         1b
		   SET WINDOW                   24 DATA OUT

		   p. 391: Commands for optical memory devices (not listed)
		   ERASE (10)                   2c
		   ERASE (12)                   ac
		   MEDIUM SCAN                  38 DATA OUT
		   READ DEFECT DATA (12)        b7
		   READ GENERATION              29
		   READ UPDATED BLOCK           2d
		   UPDATE BLOCK                 3d DATA OUT

		   p. 419: Commands for medium changer devices (not listed)
		   EXCHANGE MEDIUM              46
		   INITIALIZE ELEMENT STATUS    07
		   MOVE MEDIUM                  a5
		   POSITION TO ELEMENT          2b
		   READ ELEMENT STATUS          b8
		   REQUEST VOL. ELEMENT ADDRESS b5
		   SEND VOLUME TAG              b6 DATA OUT

		   p. 454: Commands for communications devices (not listed previously)
		   GET MESSAGE (6)              08
		   GET MESSAGE (10)             28
		   GET MESSAGE (12)             a8
		 */

		switch (current_SC->cmnd[0]) {
		case CHANGE_DEFINITION:
		case COMPARE:
		case COPY:
		case COPY_VERIFY:
		case LOG_SELECT:
		case MODE_SELECT:
		case MODE_SELECT_10:
		case SEND_DIAGNOSTIC:
		case WRITE_BUFFER:

		case FORMAT_UNIT:
		case REASSIGN_BLOCKS:
		case RESERVE:
		case SEARCH_EQUAL:
		case SEARCH_HIGH:
		case SEARCH_LOW:
		case WRITE_6:
		case WRITE_10:
		case WRITE_VERIFY:
		case 0x3f:
		case 0x41:

		case 0xb1:
		case 0xb0:
		case 0xb2:
		case 0xaa:
		case 0xae:

		case 0x24:

		case 0x38:
		case 0x3d:

		case 0xb6:

		case 0xea:	/* alternate number for WRITE LONG */

			current_SC->SCp.have_data_in = -1;
			outb(0xd0 | PARITY_MASK, TMC_Cntl_port);
			break;

		case 0x00:
		default:

			current_SC->SCp.have_data_in = 1;
			outb(0x90 | PARITY_MASK, TMC_Cntl_port);
			break;
		}
	}

	if (current_SC->SCp.have_data_in == -1) {	/* DATA OUT */
		while ((data_count = FIFO_Size - inw(FIFO_Data_Count_port)) > 512) {
#if EVERY_ACCESS
			printk("DC=%d, ", data_count);
#endif
			if (data_count > current_SC->SCp.this_residual)
				data_count = current_SC->SCp.this_residual;
			if (data_count > 0) {
#if EVERY_ACCESS
				printk("%d OUT, ", data_count);
#endif
				if (data_count == 1) {
					Bytes_Written++;

					outb(*current_SC->SCp.ptr++, Write_FIFO_port);
					--current_SC->SCp.this_residual;
				} else {
					data_count >>= 1;
					tmp_count = data_count << 1;
					outsw(Write_FIFO_port, current_SC->SCp.ptr, data_count);
					current_SC->SCp.ptr += tmp_count;
					Bytes_Written += tmp_count;
					current_SC->SCp.this_residual -= tmp_count;
				}
			}
			if (!current_SC->SCp.this_residual) {
				if (current_SC->SCp.buffers_residual) {
					--current_SC->SCp.buffers_residual;
					++current_SC->SCp.buffer;
					current_SC->SCp.ptr = sg_virt(current_SC->SCp.buffer);
					current_SC->SCp.this_residual = current_SC->SCp.buffer->length;
				} else
					break;
			}
		}
	} else if (current_SC->SCp.have_data_in == 1) {	/* DATA IN */
		while ((data_count = inw(FIFO_Data_Count_port)) > 0) {
#if EVERY_ACCESS
			printk("DC=%d, ", data_count);
#endif
			if (data_count > current_SC->SCp.this_residual)
				data_count = current_SC->SCp.this_residual;
			if (data_count) {
#if EVERY_ACCESS
				printk("%d IN, ", data_count);
#endif
				if (data_count == 1) {
					Bytes_Read++;
					*current_SC->SCp.ptr++ = inb(Read_FIFO_port);
					--current_SC->SCp.this_residual;
				} else {
					data_count >>= 1;	/* Number of words */
					tmp_count = data_count << 1;
					insw(Read_FIFO_port, current_SC->SCp.ptr, data_count);
					current_SC->SCp.ptr += tmp_count;
					Bytes_Read += tmp_count;
					current_SC->SCp.this_residual -= tmp_count;
				}
			}
			if (!current_SC->SCp.this_residual && current_SC->SCp.buffers_residual) {
				--current_SC->SCp.buffers_residual;
				++current_SC->SCp.buffer;
				current_SC->SCp.ptr = sg_virt(current_SC->SCp.buffer);
				current_SC->SCp.this_residual = current_SC->SCp.buffer->length;
			}
		}
	}

	if (done) {
#if EVERY_ACCESS
		printk(" ** IN DONE %d ** ", current_SC->SCp.have_data_in);
#endif

#if EVERY_ACCESS
		printk("BEFORE MY_DONE. . .");
#endif
		spin_lock_irqsave(shpnt->host_lock, flags);
		my_done(shpnt, (current_SC->SCp.Status & 0xff)
			| ((current_SC->SCp.Message & 0xff) << 8) | (DID_OK << 16));
		spin_unlock_irqrestore(shpnt->host_lock, flags);
#if EVERY_ACCESS
		printk("RETURNING.\n");
#endif

	} else {
		if (current_SC->SCp.phase & disconnect) {
			outb(0xd0 | FIFO_COUNT, Interrupt_Cntl_port);
			outb(0x00, SCSI_Cntl_port);
		} else {
			outb(0x90 | FIFO_COUNT, Interrupt_Cntl_port);
		}
	}
#if DEBUG_RACE
	in_interrupt_flag = 0;
#endif
	return IRQ_HANDLED;
}

static int fd_mcs_release(struct Scsi_Host *shpnt)
{
	int i, this_host, irq_usage;

	release_region(shpnt->io_port, shpnt->n_io_port);

	this_host = -1;
	irq_usage = 0;
	for (i = 0; i < found; i++) {
		if (shpnt == hosts[i])
			this_host = i;
		if (shpnt->irq == hosts[i]->irq)
			irq_usage++;
	}

	/* only for the last one */
	if (1 == irq_usage)
		free_irq(shpnt->irq, hosts);

	found--;

	for (i = this_host; i < found; i++)
		hosts[i] = hosts[i + 1];

	hosts[found] = NULL;

	return 0;
}

static int fd_mcs_queue_lck(Scsi_Cmnd * SCpnt, void (*done) (Scsi_Cmnd *))
{
	struct Scsi_Host *shpnt = SCpnt->device->host;

	if (in_command) {
		panic("fd_mcs: fd_mcs_queue() NOT REENTRANT!\n");
	}
#if EVERY_ACCESS
	printk("queue: target = %d cmnd = 0x%02x pieces = %d size = %u\n",
		SCpnt->target, *(unsigned char *) SCpnt->cmnd,
		scsi_sg_count(SCpnt), scsi_bufflen(SCpnt));
#endif

	fd_mcs_make_bus_idle(shpnt);

	SCpnt->scsi_done = done;	/* Save this for the done function */
	current_SC = SCpnt;

	/* Initialize static data */

	if (scsi_bufflen(current_SC)) {
		current_SC->SCp.buffer = scsi_sglist(current_SC);
		current_SC->SCp.ptr = sg_virt(current_SC->SCp.buffer);
		current_SC->SCp.this_residual = current_SC->SCp.buffer->length;
		current_SC->SCp.buffers_residual = scsi_sg_count(current_SC) - 1;
	} else {
		current_SC->SCp.ptr = NULL;
		current_SC->SCp.this_residual = 0;
		current_SC->SCp.buffer = NULL;
		current_SC->SCp.buffers_residual = 0;
	}


	current_SC->SCp.Status = 0;
	current_SC->SCp.Message = 0;
	current_SC->SCp.have_data_in = 0;
	current_SC->SCp.sent_command = 0;
	current_SC->SCp.phase = in_arbitration;

	/* Start arbitration */
	outb(0x00, Interrupt_Cntl_port);
	outb(0x00, SCSI_Cntl_port);	/* Disable data drivers */
	outb(adapter_mask, SCSI_Data_NoACK_port);	/* Set our id bit */
	in_command = 1;
	outb(0x20, Interrupt_Cntl_port);
	outb(0x14 | PARITY_MASK, TMC_Cntl_port);	/* Start arbitration */

	return 0;
}

static DEF_SCSI_QCMD(fd_mcs_queue)

#if DEBUG_ABORT || DEBUG_RESET
static void fd_mcs_print_info(Scsi_Cmnd * SCpnt)
{
	unsigned int imr;
	unsigned int irr;
	unsigned int isr;
	struct Scsi_Host *shpnt = SCpnt->host;

	if (!SCpnt || !SCpnt->host) {
		printk("fd_mcs: cannot provide detailed information\n");
	}

	printk("%s\n", fd_mcs_info(SCpnt->host));
	print_banner(SCpnt->host);
	switch (SCpnt->SCp.phase) {
	case in_arbitration:
		printk("arbitration ");
		break;
	case in_selection:
		printk("selection ");
		break;
	case in_other:
		printk("other ");
		break;
	default:
		printk("unknown ");
		break;
	}

	printk("(%d), target = %d cmnd = 0x%02x pieces = %d size = %u\n",
		SCpnt->SCp.phase, SCpnt->device->id, *(unsigned char *) SCpnt->cmnd,
		scsi_sg_count(SCpnt), scsi_bufflen(SCpnt));
	printk("sent_command = %d, have_data_in = %d, timeout = %d\n", SCpnt->SCp.sent_command, SCpnt->SCp.have_data_in, SCpnt->timeout);
#if DEBUG_RACE
	printk("in_interrupt_flag = %d\n", in_interrupt_flag);
#endif

	imr = (inb(0x0a1) << 8) + inb(0x21);
	outb(0x0a, 0xa0);
	irr = inb(0xa0) << 8;
	outb(0x0a, 0x20);
	irr += inb(0x20);
	outb(0x0b, 0xa0);
	isr = inb(0xa0) << 8;
	outb(0x0b, 0x20);
	isr += inb(0x20);

	/* Print out interesting information */
	printk("IMR = 0x%04x", imr);
	if (imr & (1 << shpnt->irq))
		printk(" (masked)");
	printk(", IRR = 0x%04x, ISR = 0x%04x\n", irr, isr);

	printk("SCSI Status      = 0x%02x\n", inb(SCSI_Status_port));
	printk("TMC Status       = 0x%02x", inb(TMC_Status_port));
	if (inb(TMC_Status_port) & 1)
		printk(" (interrupt)");
	printk("\n");
	printk("Interrupt Status = 0x%02x", inb(Interrupt_Status_port));
	if (inb(Interrupt_Status_port) & 0x08)
		printk(" (enabled)");
	printk("\n");
	if (chip == tmc18c50 || chip == tmc18c30) {
		printk("FIFO Status      = 0x%02x\n", inb(shpnt->io_port + FIFO_Status));
		printk("Int. Condition   = 0x%02x\n", inb(shpnt->io_port + Interrupt_Cond));
	}
	printk("Configuration 1  = 0x%02x\n", inb(shpnt->io_port + Configuration1));
	if (chip == tmc18c50 || chip == tmc18c30)
		printk("Configuration 2  = 0x%02x\n", inb(shpnt->io_port + Configuration2));
}
#endif

static int fd_mcs_abort(Scsi_Cmnd * SCpnt)
{
	struct Scsi_Host *shpnt = SCpnt->device->host;

	unsigned long flags;
#if EVERY_ACCESS || ERRORS_ONLY || DEBUG_ABORT
	printk("fd_mcs: abort ");
#endif

	spin_lock_irqsave(shpnt->host_lock, flags);
	if (!in_command) {
#if EVERY_ACCESS || ERRORS_ONLY
		printk(" (not in command)\n");
#endif
		spin_unlock_irqrestore(shpnt->host_lock, flags);
		return FAILED;
	} else
		printk("\n");

#if DEBUG_ABORT
	fd_mcs_print_info(SCpnt);
#endif

	fd_mcs_make_bus_idle(shpnt);

	current_SC->SCp.phase |= aborted;

	current_SC->result = DID_ABORT << 16;

	/* Aborts are not done well. . . */
	my_done(shpnt, DID_ABORT << 16);

	spin_unlock_irqrestore(shpnt->host_lock, flags);
	return SUCCESS;
}

static int fd_mcs_bus_reset(Scsi_Cmnd * SCpnt) {
	struct Scsi_Host *shpnt = SCpnt->device->host;
	unsigned long flags;

#if DEBUG_RESET
	static int called_once = 0;
#endif

#if ERRORS_ONLY
	if (SCpnt)
		printk("fd_mcs: SCSI Bus Reset\n");
#endif

#if DEBUG_RESET
	if (called_once)
		fd_mcs_print_info(current_SC);
	called_once = 1;
#endif

	spin_lock_irqsave(shpnt->host_lock, flags);

	outb(1, SCSI_Cntl_port);
	do_pause(2);
	outb(0, SCSI_Cntl_port);
	do_pause(115);
	outb(0, SCSI_Mode_Cntl_port);
	outb(PARITY_MASK, TMC_Cntl_port);

	spin_unlock_irqrestore(shpnt->host_lock, flags);

	/* Unless this is the very first call (i.e., SCPnt == NULL), everything
	   is probably hosed at this point.  We will, however, try to keep
	   things going by informing the high-level code that we need help. */
		return SUCCESS;
}

#include <scsi/scsi_ioctl.h>

static int fd_mcs_biosparam(struct scsi_device * disk, struct block_device *bdev,
			    sector_t capacity, int *info_array) 
{
	unsigned char *p = scsi_bios_ptable(bdev);
	int size = capacity;

	/* BIOS >= 3.4 for MCA cards */
	/* This algorithm was provided by Future Domain (much thanks!). */

	if (p && p[65] == 0xaa && p[64] == 0x55	/* Partition table valid */
	    && p[4]) {	/* Partition type */
		/* The partition table layout is as follows:

		   Start: 0x1b3h
		   Offset: 0 = partition status
		   1 = starting head
		   2 = starting sector and cylinder (word, encoded)
		   4 = partition type
		   5 = ending head
		   6 = ending sector and cylinder (word, encoded)
		   8 = starting absolute sector (double word)
		   c = number of sectors (double word)
		   Signature: 0x1fe = 0x55aa

		   So, this algorithm assumes:
		   1) the first partition table is in use,
		   2) the data in the first entry is correct, and
		   3) partitions never divide cylinders

		   Note that (1) may be FALSE for NetBSD (and other BSD flavors),
		   as well as for Linux.  Note also, that Linux doesn't pay any
		   attention to the fields that are used by this algorithm -- it
		   only uses the absolute sector data.  Recent versions of Linux's
		   fdisk(1) will fill this data in correctly, and forthcoming
		   versions will check for consistency.

		   Checking for a non-zero partition type is not part of the
		   Future Domain algorithm, but it seemed to be a reasonable thing
		   to do, especially in the Linux and BSD worlds. */

		info_array[0] = p[5] + 1;	/* heads */
		info_array[1] = p[6] & 0x3f;	/* sectors */
	} else {
		/* Note that this new method guarantees that there will always be
		   less than 1024 cylinders on a platter.  This is good for drives
		   up to approximately 7.85GB (where 1GB = 1024 * 1024 kB). */
		if ((unsigned int) size >= 0x7e0000U) 
		{
			info_array[0] = 0xff;	/* heads   = 255 */
			info_array[1] = 0x3f;	/* sectors =  63 */
		} else if ((unsigned int) size >= 0x200000U) {
			info_array[0] = 0x80;	/* heads   = 128 */
			info_array[1] = 0x3f;	/* sectors =  63 */
		} else {
			info_array[0] = 0x40;	/* heads   =  64 */
			info_array[1] = 0x20;	/* sectors =  32 */
		}
	}
	/* For both methods, compute the cylinders */
	info_array[2] = (unsigned int) size / (info_array[0] * info_array[1]);
	kfree(p);
	return 0;
}

static struct scsi_host_template driver_template = {
	.proc_name			= "fd_mcs",
	.proc_info			= fd_mcs_proc_info,
	.detect				= fd_mcs_detect,
	.release			= fd_mcs_release,
	.info				= fd_mcs_info,
	.queuecommand   		= fd_mcs_queue, 
	.eh_abort_handler		= fd_mcs_abort,
	.eh_bus_reset_handler		= fd_mcs_bus_reset,
	.bios_param     		= fd_mcs_biosparam,
	.can_queue      		= 1,
	.this_id        		= 7,
	.sg_tablesize   		= 64,
	.cmd_per_lun    		= 1,
	.use_clustering 		= DISABLE_CLUSTERING,
};
#include "scsi_module.c"

MODULE_LICENSE("GPL");